
Project: Primality of Fermat and Mersenne
Numbers

Mathematical Programming with Python
MATH 2604: Advanced Scientific Computing 4

Spring 2025
Monday/Wednesday/Friday, 1:00-1:50pm

https://people.sc.fsu.edu/∼jburkardt/classes/python 2025/primality/primality.pdf

Fermat and Mersenne identified two classes of integers that were likely to include many primes.

1 Overview

Finding new prime numbers is useful, because they are part of many encryption systems. Fermat and
Mersenne both considered special classes of numbers that seemed to contain many large primes. Checking
the primality of a very large number is a difficult task. One tool is the Lucas-Lehmer test. In this project,
you will look at using implementing this tool in Python and applying it to several candidates that might be
prime.

Note that recently, a new largest Mersenne prime was discovered p = 2136279841

Finally, note the interesting pattern of the binary digits of the Fermat and Mersenne numbers:

Fermat 22
n

+ 1 Mersenne 2p − 1
Decimal Binary Decimal Binary

20 + 1 = 1 11 22 − 1 = 3 11
22 + 1 = 5 101 23 − 1 = 7 111

24 + 1 = 17 10001 25 − 1 = 31 11111
28 + 1 = 257 100000001 27 − 1 = 127 1111111

216 + 1 = 65537 10000000000000001 213 − 1 = 8191 1111111111111

2 Fermat primes

While searching for ways to generate primes, Pierre Fermat considered Fermat numbers, with the simple
formula

Fn = 22
n

+ 1

1

The first values in the sequence are

F0 = 22
0

+ 1 = 2

F1 = 22
1

+ 1 = 5

F2 = 22
2

+ 1 = 17

F3 = 22
3

+ 1 = 257

F4 = 22
4

+ 1 = 65, 537

F5 = 22
5

+ 1 = 4, 294, 967, 297

Fermat was able to verify that the F0 through F4 were prime, and thought he might have found a way to
produce an endless prime sequence. Euler, however, found a factorization of F5, and it is generally believed
that F4 is the last Fermat prime.

This does mean that F5 is a good test case for codes that check whether a number is prime, or that look for
the factors of a composite number.

3 Fermat’s primality test

Fermat’s little theorem states that, if p is prime, and a is not a multiple of p, then

ap−1 = −1(mod p)

Because computationally, the mod() function returns positive remainders, we might prefer to write this as:

ap−1 = p− 1(mod p)

Now suppose we are given a number which might or might not be prime. If we find a value a with 2 ≤ a ≤ p−2
such that the condition fails, then n cannot be a prime. (Why don’t we have to check a = p − 1?). For a
large n, there are many values of a to consider. It would be too expensive to check them all. What we are
hoping is for a quick negative result after checking 3 or 4 values of a chosen at random. Thus, Fermat’s
primality test is generally probabilistic. If it fails, then n is definitely not a prime. But if it is passed, we
really only can say that n was “lucky” so far; so far, it only looks like a possible prime.

4 Mersenne primes

Marin Mersenne looked at Mersenne numbers of the form

Mn = 2n − 1

It is possible to show that, if n is not a prime, then Mn cannot be prime. In fact, if k divides n, then 2k − 1
divides 2n− 1. (This is also true for bases other than 2). Turning this around, we ask, if n is prime, will Mn

be a Mersenne prime?

2

The sequence starts out promising:

M2 = 22 − 1 = 3

M3 = 23 − 1 = 7

M5 = 25 − 1 = 31

M7 = 27 − 1 = 127

M11 = 211 − 1 = 2047

M13 = 213 − 1 = 8191

M17 = 217 − 1 = 131071

All but one of these value is prime. (Can you spot the nonprime?) However, the sequence soon begins to
return more nonprimes than primes. Nonetheless, researchers have continued to find ever higher indices for
which Mn is prime. The 51st Mersenne prime, 282,589,933 − 1, is the largest prime number known.

The GIMPS (Great Internet Mersenne Prime Search) at https://www.mersenne.org/primes/ records all
the known Mersenne primes, and coordinates an ongoing search for new values.

5 The Lucas-Lehmer Test

Given how large the Mersenne numbers become, we have to be extremely clever if we want to be able to
determine whether a large Mersenne number is prime. Luckily, because of the special structure that these
numbers have, the Lucas-Lehmer test provides an exact answer efficiently. Let Mn be a given Mersenne
number. Then the Lucas-Lehmer test defines a sequence si which starts at s0 = 4 with subsequent values
defined recursively

si = s2i−1 − 2

Then Mn is prime if and only if sn−2 = 0 mod Mn Here is pseudocode from Wikipedia for this calculation:

Lucas{Lehmer(p)

var s = 4

var M = 2^p - 1

repeat p - 2 times:

s = ((s x s) - 2) mod M

if s == 0 return PRIME else return COMPOSITE

Notice that when we update the value of s, we use modular arithmetic every time, rather than simply for
the check at the end. It turns out that this is legal, and keeps our s values from increasing without limit.

It’s not hard to turn this into a Python code:

def l u ca s l ehmer (n) :

i f (n == 2) :
return True

Mn = 2∗∗n − 1
s = 4
for in range (n − 2) :

s = ((s ∗ s − 2) % Mn)

return (s == 0)

Listing 1: lucas lehmer.py

3

The Mersenne numbers quickily become gigantic. It is amazing that we can still determine the primality of
these monster numbers within a reasonable amount of computer time. As an exercise, we can try to tabulate
the size of some of these numbers versus the time it takes to run the Lucas-Lehmer test.

Note the underscore used in the for() loop. This is programming convention to suggest that the loop index
variable is of no interest, so we are giving it the stupidest name we can think of. Surprisingly, you can give
any variable the underscore name, and it will hold a value and can be used in arithmetic like any other
variable. I don’t really think it’s useful, but you will see other people doing it, and now you don’t have to
be so puzzled.

4

