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”The pandas library”

• pandas offers tools for data analysis;
• The basic structures are the Series and DataFrame;
• A Series is simply a one-dimensional sequence of values, similar to a numpy array;
• A DataFrame stores a set of Series in a two dimensional table;
• A DataFrame can hold a combination of text, numbers, and other items;
• Rows and columns of a DataFrame can be accessed by labels rather than indices;
• Data cleaning is a preliminary task to identify data entries that are missing, implausible, or
inappropriate;

• Statistical analysis looks for relations between columns of data;
• A variety of plotting options can be applied to the data;
• Many functions are available for analyzing and aggregating the information in a DataFrame;

1 A Python library for data analysis

The pandas library offers tools for the collection, cleaning, analysis of large collections of data. A typical
dataset is stored in a dataframe, which can be thought of as a generalization of an array. But the items in a
numpy array are all of the same datatype, and are accessed only by row and column index. In contrast, each
column of a dataframe can include data of any type, and can be accessed by specifying the corresponding
column label. The rows of the dataframe are often simply indices, but can also involve labels.

Because pandas is designed for real world applications, it expects the data to be in a rougher format than
the mathematical arrays handled by numpy. So the first important operation is data input, in which raw
data files in a variety of inputs, such as Excel files xls, comma separated value files csv, Java Script Object
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json, or even simple text files txt. This data must be read into the uniform pandas dataframe format before
any further work can be done.

Because pandas expects the data may be coming from business or medical applications, it has to deal with
the likelihood that some of the data items are missing or nonsensical or have been given a special value
indicating a problem.

The pandas homepage at https://pandas/pydata/org explains how to download and install the library.

By convention, the shortcut pd is used to refer to elements of the pandas library after it has been imported.

import pandas as pd

2 The Series data structure

The most important pandas object is the DataFrame, which is a sort of table of values. Each column of this
table is a list of values of the same datatype, known as a Series. We will start our discussion by looking at
how these objects can be defined and manipulated.

A new Series can be created as a list of values fed to the pd.Series() function:

r i v e r l e n g t h s = pd . S e r i e s ( [ 6300 , 6650 , 6275 , 6400 ] )

which will print out as

0 6300

1 6650

2 6275

3 6400

dtype: int64

The numbers that appear on the left are the index values associated with each item of data. All Series
data will have a list of indices; they can be specified, but otherwise they default to a simple integer sequence
is used. Individual entries of the Series can be referenced by index:

for i in range ( 0 , 4 ) :
print ( r i v e r l e n g t h s [ i ] )

or by a generator:

for l ength in r i v e r l e n g t h s :
print ( l ength )

The default index is not an integer array, but an integer generator, something like the Python range()

function. The index is an attribute of the Series and can be referenced.

print ( r i v e r l e n g t h s . index )
RangeIndex ( s t a r t =0, stop=4, s tep=1)

The user can replace the default index by more meaningful values:

r i v e r l e n g t h s = pd . S e r i e s ( [ 6300 , 6650 , 6275 , 6400 ] ,
index = [ ’ Yangtze ’ , ’ N i l e ’ , ’ M i s s i s s i p p i ’ , ’Amazon ’ ] )

Now, we can reference our river lengths by name:

print ( ” r i v e r l e n g t h s [ ’ N i l e ’ ] = ” , r i v e r l e n g t h s [ ’ N i l e ’ ] )

The data can be given a descriptive name (aside from the variable name) and a data type:
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r i v e r l e n g t h s = pd . S e r i e s ( [ 6300 , 6650 , 6275 , 6400 ] ,
name = ’ Length (km) ’ , dtype = f loat )

This extra information will show up when we print the Series or some of its entries:

print ( r i v e r l e n g t h s )

Yangtze 6300 .0
Ni l e 6650 .0
M i s s i s s i p p i 6275 .0
Amazon 6400 .0
Name : Length (km) , dtype : f l o a t 6 4

We can filter the data

print ( r i v e r l e n g t h s [ r i v e r l e n g t h s < 6500 ] )

Yangtze 6300 .0
M i s s i s s i p p i 6275 .0
Amazon 6400 .0
Name : Length (km) , dtype : f l o a t 6 4

We can create a new Series, in this case, a copy of our river lengths converted to miles:

r i v e r l e n g t h s m i l e s = r i v e r l e n g t h s ∗ 0.621371
r i v e r l e n g t h s m i l e s . name = ”Length ( mi l e s ) ”

Yangtze 3914.637300
Ni l e 4132.117150
M i s s i s s i p p i 3899.103025
Amazon 3976.774400
Name : Length ( mi l e s ) , dtype : f l o a t 6 4

3 Creating a new Series from old ones

Computations can be done using the entries in a Series. For instance, suppose we have created two Series,
containing the mass m and radius r of various astronomical bodies. We would like to create a new Series

which stores the surface gravity of a body as grav = G ∗m/r2, where G is the gravitational constant, stored
in scipy.constants.G.

We carry out the computation almost as though we were working with numpy arrays. Some data is missing,
and in those cases the result is reported as NaN (Not-a-Number). We can remove such results from our table
before presenting it.

We created our two Series as Python dicts, so they each come with an index and name already:

mass = pd . S e r i e s ( { \
’Ganymede ’ : 1 .482 e23 , \
’ C a l l i s t o ’ : 1 .076323 , \
’ Io ’ : 8 .932 e22 , \
’ Europa ’ : 4 .800 e22 , \
’Moon ’ : 7 .342 e22 , \
’ Earth ’ : 5 .972 e24 } ,
name = ’mass ( kg ) ’ )

r ad iu s = pd . S e r i e s ( { \
’Ganymede ’ : 2 .634 e6 , \
’ Io ’ : 1 .822 e6 , \
’Moon ’ : 1 .737 e6 , \
’ Earth ’ : 6 .371 e6 } ,
name = ’ rad iu s (m) ’ )
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Now we compute the surface gravity values, creating a new Series, for which we can also specify the name
and the index name:

from s c ipy . cons tant s import G
grav i ty = G ∗ mass / rad iu s ∗∗2
g rav i ty . name = ’ su r f a c e g rav i ty m/ s ∗∗2 ’
g rav i ty . index . name = ’Body ’

with the result:

Body

Callisto NaN

Earth 9.819973

Europa NaN

Ganymede 1.425681

Io 1.795799

Moon 1.624129

Name: surface gravity m/s**2, dtype: float64

We can report whether each entry has the value NaN with the command:

g rav i ty . i s n u l l ( )

We can make a copy of our Series with the NaN data: removed:

g rav i ty = grav i ty . dropna ( )

and we can even copy out the computed values into a numpy array:

g r av i t y a r r ay = grav i ty . va lue s

4 Creating a DataFrame Online

A DataFrame can be thought of as a two-dimensional table of an ordered and labeled set of Series columns,
sharing the same index. One way to create a DataFrame is to use the command pd.DataFrame() to reorganize
the information in a dictionary, possibly adding a new index:

moon data = { \
’mass ’ : [ 1 .482 e23 , 1 .076 e23 , 8 .932 e23 , 4 .800 e22 , 7 .342 e22 ] , \
’ r ad iu s ’ : [ 2 .634 e6 , None , 1 .822 e6 , None , 1 .737 e6 ] , \
’ parent ’ : [ ’ Jup i t e r ’ , ’ Jup i t e r ’ , ’ Jup i t e r ’ , ’ Jup i t e r ’ , ’ Earth ’ ] }

moon index = [ ’Ganymede ’ , ’ C a l l i s t o ’ , ’ Io ’ , ’ Europa ’ , ’Moon ’ ]

moon df = pd . DataFrame ( moon data , index = moon index )

As a DataFrame, the information will now print out as:

mass radius parent

Ganymede 1.482000e+23 2634000.0 Jupiter

Callisto 1.076000e+23 NaN Jupiter

Io 8.932000e+23 1822000.0 Jupiter

Europa 4.800000e+22 NaN Jupiter

Moon 7.342000e+22 1737000.0 Earth

Some of the differences between a numpy array and a DataFrame should be clear now. Each column of
the DataFrame is a Series and hence consists of data of the same type, but different columns may con-
tain different data types: character, float, integer, boolean. And while numpy uses numeric indexing, in a
DataFrame each row has an index, each column has a header, these can be character strings, and can be
used for indexing.
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5 Accessing rows, columns, and cells

To refer to a value or the index of a value in a DataFrame, pandas supplies functions loc[] and iloc[].

To print the values in a specific row, specify the row label:

print ( moon df . l o c [ ”Europa” ] )

resulting in:

mass 48000000000000000000000.0

radius NaN

parent Jupiter

Name: Europa, dtype: object

To print the values in a specific column, specify the row label as a colon, and follow it by the column label:

print ( moon df . l o c [ : , ”mass” ] )

resulting in:

Ganymede 1.482000e+23

Callisto 1.076000e+23

Io 8.932000e+23

Europa 4.800000e+22

Moon 7.342000e+22

Name: mass, dtype: float64

To print a single value, specify the row and column labels:

print ( moon df . l o c [ ”Europa” , ”mass” )

resulting in:

4.8e+22

We can use loc() to identify an entry we wish to change:

moon df . l o c [ ’ C a l l i s t o ’ , ’ r ad iu s ’ ] = 2410300

The iloc() function uses numeric indexing to access rows, columns or specific entries.

print ( moon df . i l o c [ 3 ] )
print ( moon df . i l o c [ : , 0 ] )
print ( moon df . i l o c [ 3 , 0 ] )

6 Fitting a line to data

In our next example, we will find two variables which seem to be vary together. A simple model would be a
linear relationship, of the form y = ax+ b. Although our data is unlikely to lie exactly on any such line, we
can try to determine values a and b that represent a good fit, as long as we can define what we mean by a
good fit.

The linear least squares solution to our problem finds values such that we minimize the sum of the squared
errors,

E(a, b) =

i<n∑
i=0

(axi + b− yi)
2
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The solution to this problem can be found by setting to zero the partial derivatives ∂E
∂a and ∂E

∂b and doing
some manipulation to find

a =
x · (y − ȳ)

x · (x− x̄)

b = ȳ − a ∗ x̄

where the barred quanties are mean values, and the dot indicates a vector dot product. This can be
programmed as:

def l l s q ( x , y ) :
import numpy as np
xbar = np .mean ( x )
ybar = np .mean ( y )

xy = np . dot ( x , y − ybar )
xx = np . dot ( x , x − xbar )

a = xy / xx
b = ybar − a ∗ xbar

return a , b

In the coming example, we will suspect that our data is well described by a linear relationship, we will want
to compute a and b, and then draw our linear formula along with a scatterplot of our data for comparison.

7 Creating a DataFrame from a File

Most of the time, pandas is used to handle large datasets which have been created by other programs, and
stored in files. These files

• come in a variety of formats;
• may have column headers;
• may have row indices;
• may very likely have some missing data.

pandas supplies a number of special functions for reading a file in these formats, for finding the headers and
indices or supplying default values if missing, and for treating missing data.

The most common file reading functions include:

• pd.read csv(), for Comma Separated Values (csv) data;
• pd.read excel(), for Microsoft Excel data;
• pd.read json(), for JSON data;

The first arguments to the file reading functions is the name of the file to be read. Following that, there are
many optional arguments that allow you to deal with the peculiarities of the file you are reading and how
you want to handle it.

8 The India Dataset

The file india data.csv is available on the Canvas website, and on the text website at https://scipython.com/eg/bak.
We will use pandas to read, modify, and analyze the data in this file. The file contains columns of demo-
graphic data on the 36 states and union territories (UT) of India.
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The data file can be read in with:

df = pd . r ead c sv ( ’ i nd i a da ta . csv ’ , i nd ex c o l = 0 )

The DataFrame contains an index of State names:

df . index

Index ( [ ’ Uttar Pradesh ’ , ’ Maharashtra ’ , ’ Bihar ’ , ’West Bengal ’ ,
. . .
’Dadra and Nagar Have l i ’ , ’Daman and Diu ’ , ’ Lakshadweep ’ ] ,

dtype=’ ob j e c t ’ , name=’ State /UT’ )

and column labels:

df . columns

Index ( [ ’Male Populat ion ’ , ’ Female Populat ion ’ , ’ Area (km2) ’ ,
’Male L i t e racy (%) ’ , ’ Female L i t e racy (%) ’ , ’ F e r t i l i t y Rate ’ ] ,

dtype=’ ob j e c t ’ )

We can quickly inspect the DataFrame with df.head(n), which outputs the first n rows (or five rows if not
specified):

df . head ( )

Male Populat ion . . . Female L i t e racy (%)
State /UT . . .
Uttar Pradesh 104480510 . . . 59 .26
Maharashtra 58243056 . . . 75 .48
Bihar 54278157 . . . 53 .33
West Bengal 46809027 . . . 71 .16
Madhya Pradesh 37612306 . . . 60 .02

[ 5 rows x 5 columns ]

pandas makes it straightforward to compute new columns for our DataFrame. We can add a column for the
population of each State:

df [ ’ Populat ion ’ ] = df [ ’Male Populat ion ’ ] + df [ ’ Female Populat ion ’ ]

and then we can sum the ’Population’ column to get the total population:

t o ta l pop = df [ ’ Populat ion ’ ] . sum( )
print ( ’ Total populat ion : ’ , t o t a l pop )

Total populat ion : 1 ,210 ,754 ,977

We can add a column for the population density, and as a check, print the density of West Bengal:

df [ ’ Populat ion Density (km−2) ’ ] = df [ ’ Populat ion ’ ] / df [ ’ Area (km2) ’ ]
d f . l o c [ ’West Bengal ’ , ’ Populat ion Density (km−2) ’ ]

1028.44009149089

and compute the mean population density over India:

t o ta l pop / df [ ’ Area (km2) ’ ] . sum( )

368.3195047153525

Maximum and minimum values are obtained in the same way as in numpy. For example:
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df [ ’Male L i t e racy (%) ’ ] .min( )

73 .39

Perhaps more usefully, idxmin and idxmax return the index labels of the minimum and maximum values,
respectively. Here, we seek the largest state/UT by area:

df [ ’ Area (km2) ’ ] . idxmax ( )

’ Rajasthan ’

Naturally, the value returned can be passed to df.loc[] to obtain the entire row. For example, the row
corresponding to the most densely populated State / UT:

df . l o c [ df [ ’ Populat ion Density (km−2) ’ ] . idxmax ( ) ]

Male Populat ion 8887326
Female Populat ion 7800615
Area (km2) 1484
Male L i t e racy (%) 91 .03
Female L i t e racy (%) 80 .93
Populat ion 16687940
Populat ion Density (km−2) 1 .124524 e+04
Name : Delhi , dtype : f l o a t 6 4

Correlation statistics between DataFrames or Series can be calculated with the corr() function:

df [ ’ Female L i t e racy (%) ’ ] . c o r r ( df [ ’ F e r t i l i t y Rate ’ ] )

−0.7361949271996956

The correlation is relatively large and negative, suggesting that as Female Literacy rises, there is a strong
tendency for the Fertility Rate to decline.

In this example, because just two columns of data are being compared, a single correlation coefficient is
produced. If we seek the correlations of many columns of data, a full correlation matrix is returned as a new
DataFrame.

pandas can produce simple, labeled plots and charts from a DataFrame using matplotlib. For instance, we
can compute a scatter plot of literacy versus fertility:

df . p l o t . s c a t t e r ( ’ Female L i t e racy (%) ’ , ’ F e r t i l i t y Rate ’ )
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We would like to use the method of linear least squares to get a linear fit to the data of the form

Fertility Rate = a * Female Literacy + b

If we do this immediately, the code fails because one of the values of literacy is missing, and so all the
numeric results become NaN’s. To get around this problem, we need to drop records with missing data:

df = df . dropna ( )

Now we can use the method of linear least squares to come up with a linear fit to the data, by extracting
the numerical values, and calling

x = df [ ’ Female L i t e racy (%) ’ ] . va lue s
y = df [ ’ F e r t i l i t y Rate ’ ] . va lue s
a , b = l l s q ( x , y )
a = −0.045
b = 5.627

and now we can replot our data with the addition of our linear least squares function y = −0.045∗x+5.627:
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