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The numpy Library

• numpy() defines a matrix as an array of arrays;
• Matrices represent linear transformations of vectors;
• Initialize a matrix with data, or with zeros, ones, or random values;
• Access an entry by double index, like A[i,j];
• Multiplication A*x=b using np.dot();
• Solve linear system by x=np.linalg.solve(A,b);
• Factoriations: L,U=np.lu(A), or QR, or SVD;
• Matrix eigenvalues: L = np.linalg.eigvals(A);

1 A numpy matrix is an array of arrays

We know that to numpy(), an m-vector is simply a list of numeric values, with an index 0 ≤ i < m. Let’s
write it out to look like a column vector:

v = np . array ( [
0 ,
1 ,
2 ,

1



. . .
m−1 ] )

To create an m×n matrix, we can simply specify that the i-th entry of the array is itself an array of values,
that is, the values of row i, something like this:

A = np.array ( [

[row 0],

[row 1],

[row 2],

...

[row m-1]

] )

where each row will be a vector of n values.

If we use a single index to refer to the array, then A[i] represents the entire i-th row of values, whereas,
A[i,j] is the j-th item of the i-th row. Note that rows have a special status here. In order to reference all
the entries of the j-th column, we have to use two indices: A[:,j].

For a matrix formed as a numpy() array, the rows must all have the same number of elements, and the
elements must be numeric.

2 Making matrices

Now it’s time to move to two dimensions, and see how numpy arrays can be used to create, modify and
analyze matrices.

An m× n mathematical matrix can be represented by a numpy array of dimensions ( m, n ). We can create
matrices by commands like:

E = np . empty ( [ 3 , 2 ] )
I = np . i d e n t i t y ( 3 )
O = np . ones ( [ 3 , 2 ] )
R = np . random . rand ( 3 , 2 ) # Does not b racke t the dimensions !
Z = np . z e r o s ( [ 3 , 2 ] )

For small matrices we can enter the values in a list of lists. Suppose our mathematical matrix is:

A =


00 01 02 03
10 11 12 13
20 21 22 23
30 31 32 33
40 41 42 43


Then we can enter the Python commands:

A = np . array ( [ \
[ 0 , 1 , 2 , 3 ] , \
[ 10 , 11 , 12 , 13 ] , \
[ 20 , 21 , 22 , 23 ] , \
[ 30 , 31 , 32 , 32 ] , \
[ 40 , 41 , 42 , 43 ] ] )

Some new numpy array attributes are available as well:

• A.ndim tells us that A is a 2-dimensional array;
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• A.shape statement returns (5,4);
• A.shape[0] returns 5;
• A.size returns 20 (total number of entries);

To index the item in row i, column j, we write numpy arrays use the more familiar A[i,j].

We have already seen some examples of how Python indexing works. For our sample matrix A,

A[ 1 , 2 ] = 12
A[ 0 , : ] = [ 0 , 1 , 2 , 3 ] # Row 0
A[ : , 1 ] = [ 1 , 11 , 21 , 31 , 41 ] # Column 1
A[ 2 : 4 , 1 ] = [ 21 , 31 ] # Rows 2 and 3 of column 1

3 Operators: transpose(), dot(), matmul()

For a matrix, we have the np.transpose() operator:

B = np . t ranspose (A)
[ [ 0 , 10 , 20 , 30 , 40 ] ,

[ 1 , 11 , 21 , 31 , 41 ] ,
[ 2 , 12 , 32 , 32 , 42 ] ,
[ 3 , 13 , 23 , 33 , 43 ] ]

which can also be written as

B = A.T

Given two vectors u and v of the same length, we can compute their dot product

udotv = np . dot ( u , v )

A is anm×nmatrix and x is a vector of length n, we can use the np.dot() operator to carry out matrix-vector
multiplication

b = np . dot ( A, x )

x = [ 1 , 2 , 3 , 4 ]
b = np . dot ( A, x )
[ 20 , 120 , 220 , 320 , 420 ]

If A is an m×n matrix and B is an n×k matrix, we can compute the matrix-vector product using matmul():

B = A.T # B i s now an nxm matrix
C = np .matmul ( A, B ) # C i s an mxm matrix

4 Plotting Temperature Data

Some numpy nfunctions can be applied to a matrix in a variety of ways. To start with, consider the np.max()
function. Let’s take as our data an array T that actually measures the temperature every 3 hours, over a
week.

T = np . array ( [ \
[ −1, −4, −8, −9, −9, −8, −9, −8 ] , \
[−12 ,−12 ,−12 ,−10 , −5, 0 , 0 , 0 ] , \
[ 1 , 2 , 2 , 4 , 7 , 8 , 7 , 6 ] , \
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[ 3 , 3 , 2 , 2 , 3 , 5 , 3 , 1 ] , \
[ 1 , 1 , 2 , 6 , 11 , 12 , 12 , 11 ] , \
[ 8 , 6 , 5 , 5 , 8 , 11 , 9 , 7 ] , \
[ 6 , 5 , 4 , 6 , 8 , 10 , 8 , 7 ] ] )

We could look at this data day by day, and plot it that way:

h = np . l i n s p a c e ( 1 , 22 , 8 ) # 24 hour time
p l t . c l f ( )
for day in range ( 0 , 7 ) :

p l t . p l o t ( h , T[ day , : ] )
p l t . g r i d ( True )
p l t . show ( )
p l t . c l o s e ( )

If we want a single plot over the whole week, we need to “flatten” the matrix, that is, to make a vector by
stringing the rows together:

Tweek = T. f l a t t e n ( )
p l t . p l o t ( Tweek )
p l t . show ( )
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5 Analyzing Temperature Data

Now that we have our temperature data, we might want to ask for the minimum, average, and maximums

• for each day
• for each measured hour;
• over the whole week.

min day = np .min ( T, ax i s = 0 )
min hour = np .min ( T, ax i s = 1 )
min week = np .min ( T )

and our results are:

min(T) daily = [-12 -12 -12 -10 -9 -8 -9 -8]

min(T) hourly = [ -9 -12 1 1 1 5 4]

min(T) weekly = -12

You should see that axis=0 computes the minimum value for each row, while axis=1 does the same for
columns, and with no axis specified, the minimum is over the whole set of data.

You can get similar results using np.max(), np.mean(), and np.sum().

6 Making X and Y Spatial Matrices for Plotting

A standard way of sampling a function z = f(x, y) is to define a grid of m equally spaced points over the
x range, and n equally spaced points over the y range, evaluate the function zi,j = f(xi, yj) and somehow
create a visual display of this information.

The numpy library allows us to write such a process in an efficient way. Here, we would like to sample the
function f(x, y) = 2x2 + 1.05x4 + x6/6 = xy + y2 over the square −2 ≤ x, y ≤ +2 and then make a contour
plot.

xvec = np . l i n s p a c e ( −2.0 , 2 . 0 , 31 )
yvec = np . l i n s p a c e ( −2.0 , 2 . 0 , 31 )

X, Y = np . meshgrid ( xvec , yvec )
Z = 2 ∗ X∗∗2 − 1 .05 ∗ X∗∗4 + X∗∗6 / 6 + X ∗ Y + Y∗∗2

p l t . c l f ( )
p l t . contour f ( X, Y, Z ) # f i l l e d reg ions
p l t . contour ( X, Y, Z , l e v e l s = 35 ) # contour l i n e s
p l t . show ( )
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