
Making Magic
Mathematical Programming with Python

MATH 2604: Advanced Scientific Computing 4
Spring 2025

Monday/Wednesday/Friday, 1:00-1:50pm

https://people.sc.fsu.edu/∼jburkardt/classes/python 2025/magic/magic.pdf

Albrecht Dürer’s Melencolia II includes a magic square in the upper right corner,
He fiddled with the numbers so that the date 1514 appeared in the bottom row.

A magic square is a classic math object

• Magic squares have intrigued recreational mathematicians for centuries;
• Algorithms have been found for creating squares of odd or even order;
• An odd algorithm is defined by Christian Hill in his textbook;
• To set up a square requires that we be able to do certain simple tasks;
• We will create a magic square using numpy() arrays;

1 Magic squares

A magic square of order n is an n × n array of numbers such that all rows, all columns, and all diagonals
have the same sum. (In a “semi-magic square”, this is only true for the rows and columns.) It is not obvious
at first how to construct a magic square, and hence they are often considered to be lucky charms with magic
properties.

1

A magic square is a simple example of a matrix. When programmers need a “random” matrix to illustrate
some procedure, they frequently use a magic matrix, since the entries are distinct integers, and the matrix
has some interesting properties. MATLAB, for example, has a built-in magic(n) function to create a magic
matrix of any order.

Knowing the values and their placement in advance, it’s easy to define a numpy() array for our 3×3 example:

A = np . array ([
[8 , 1 , 6] ,
[3 , 5 , 7] ,
[4 , 9 , 2]])

and we can test our matrix with the commands

np .sum (A[: , 0])
np .sum (A[: , 1])
np .sum (A[: , 2])
np .sum (A[0 , :])
np .sum (A[1 , :])
np .sum (A[2 , :])
A[0 , 0] + A[1 , 1] + A[2 , 2]
A[2 , 0] + A[1 , 1] + A[0 , 2] # Sure ly there i s a neater way?

But our question today is, how can we use Python to create a new magic square, by following the steps of
the magic square algorithm? Assuming the algorithm is clear, we would hope that we know enough Python
to get a suitable program fairly quickly and easily.

Creating a magic matrix is really a test example for us. We will soon be wanting to create and use numerical
vectors and matrices, and perform all sorts of linear algebra operations with them. We really need to be
comfortable with the Python tools we will use to do this.

2 An algorithm for magic matrices of odd order

I remember learning this algorithm in third grade!

To create an n × n magic square, draw a grid of empty boxes to hold your values. Number the rows from
top to bottom, and the columns from left to right.

1. Start in the middle of the top row, and let k = 1.

2. Write k in the current grid position;

3. If k = n2, the grid is complete, so stop;

4. Else, set k = k + 1;

5. Plan to move diagonally up and right. But if this move leaves the grid, wrap to the first column or
last row.

6. If this cell is already filled, move vertically down one space instead;

7. Return to step 2.

While the algorithm seems to make sense, let’s work through some examples to see what is being talked
about! Create a suitable empty grid of cells, and then recreate the magic matrices of order 3, 5, and 7.

The 3× 3 example:

A3 =

 8 1 6
3 5 7
4 9 2

2

The 5× 5 example:

A5 =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

The 7× 7 example:

A7 =

30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45
13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20

3 Implementing the algorithm

There are several tasks we need to do computationally, in order to carry out this algorithm in Python.

We need to:

• create, in advance, a place to store the entries, that is a list of n rows, each row a list of n values.
• specify any entry using indexing.
• tell when a planned move takes us out of the grid.

We would also like to:

• easily print the resulting magic matrix.
• easily compute the row, column and diagonal sums.
• compute the row and column sums using matrix multiplication.

This very last item can best be illustrated by using MATLAB. If An is a magic matrix of order n, and v is
a vector of 1’s of length n, then A ∗ x is the vector of row sums, and AT ∗ x is the vector of column sums.
There are other commands that allow us to also check the diagonal and antidiagonal sums.

% Warning : This i s MATLAB code , not Python !
n = 7
Asum = (n ∗ (nˆ2 + 1)) / 2
A = magic (n)
x = ones (n , 1)
A∗x
A ’ ∗x % Transpose o f A times x
sum (diag (A))
sum (diag (f l i p ud (A))) % Fl ip A ups ide down to get an t i d i agona l

Although we could presumably check magic squares in other ways, we will really wish to be able to use more
sophisticated tools for later numerical calculations.

4 Allocating an n× n list of lists

Assuming we have chosen n=5, the size of our magic matrix, we need to create a numpy array in which to
store our values. We can create such an array, and initialize it to zeros:

3

n = 5
A = np . z e r o s ([n , n])

Our first task is to place a value k=1 in the middle of the top row.

k = 1
i = 0
j = n // 2 # We want i n t e g e r d i v i s i o n here , so 5//2 = 2
A[i , j] = k

To check that we got this right, we can print our updated matrix:

print (A)

5 Implementing the algorithm

Assuming we have set up space for the list of lists that will hold A, the remainder of our Python implemen-
tation is:

k = 1
i = 0
j = n // 2

while (k <= n∗∗2) :

A[i , j] = k

k = k + 1
#
Try to go up one row , and over one column .
#

new i = (i − 1) % n
new j = (j + 1) % n

i f (A[new i , new j]) : # True i f A[new i , new j] i s a l ready s e t
i = i + 1

else :
i = new i
j = new j

return A

But wait, why is new i computed by subtracting 1? Don’t we want to go up? Yes, but in a matrix, going
up a row means decreasing the row number!

6 Verify the Magic

Let’s try to verify that our matrix is magic. Instead of using many individual sum() commands, or multiplying
by a vector of 1’s, we can use the fact that the sum() command can return the sum of rows or columns of a
matrix if we specify the “axis”:

np .sum (A) # sums a l l the en t r i e s
np .sum (A, ax i s = 0) # sums the columns
np .sum (A, ax i s = 1) # sums the rows

It turns out that we can compute the diagonal sum because there is a linear algebra function called trace()

that sums the diagonal elements of a matrix, and numpy() implements it:

4

np . t r a c e (A)

How do we get the antidiagonal sum? There are a number of numpy() functions for flipping a matrix. In
particular, flipud() flips up and down, with the result that what was the antidiagonal of the matrix is now
the diagonal.

np . t r a c e (np . f l i p ud (A))

5

