
Using keras to classify movie reviews
Mathematical Programming with Python

MATH 2604: Advanced Scientific Computing 4
Spring 2025

Monday/Wednesday/Friday, 1:00-1:50pm
Room A202 Langley Hall

https://people.sc.fsu.edu/∼jburkardt/classes/python 2025/keras/keras.pdf

Words used in positive and negative movie reviews.

Classifying with keras

• We start with a set of movie reviews, each one classified as posiive or negative;
• We want to create a neural network able to examine new movie reviews and guess whether they
are also positive or negative;

• We train it on some reviews, and then test it on the remainder.
• This is supervised learning - we want the network to “learn” how to classify reviews like we did.

1 What do we want?

When NetFlix recommends movies to you, it is using an automated system that has classified the movies
in its library, and has also analyzed your own likes and dislikes. It then lists movies that you have not yet
watched, but which most closely fit your apparent preferences.

We are going to experiment with a similar, but simpler task. We have collected the text of many movie
reviews, and labeled them as positive or negative. How we did this is something of a mystery that would be
very hard to express as a computer program. Some (but not all!) of our judgment could be explained simply
by the choice of words in each review. If we encounter the words “miserable”, or “boring” or “stupid”, we
are likely to be reading a negative review.

1

Now suppose we have a pile of movie reviews, and we have read each of them, and assigned them a rating of
“positive” or “negative”. Now imagine we hand the reviews and their ratings to a very intelligent Martian,
who can see the words, but doesn’t know what they mean. The Martian might notice that there is a rough
relationship between the words and the classification: words like great and thilling may indicate a positive
review, while awful would suggest the opposite. However, a bad movie can be called a great disappointment,
so if we decided that great by itself was a sure indication of a positive review, we would soon notice some
problems. To build a good classifier, we would have to review the data, make some tentative rules, test
them, and then adjust our model to try to reduce the errors.

Finding patterns in data is something that the keras package does well. To deal with the movie review
classification problem, we can use keras to build a neural network, apply it to our data to get a model, and
then test the model to see how well it performs on new data.

The movie review dataset is a built-in feature of keras, and so we can take advantage of a large set of data
which has already been labeled. This will allow us to create models and see how effective they are.

2 A reference for keras

You can find an introduction to keras in the book:

Francois Chollet,

Deep Learning with Python,

Second Edition,

Manning, 2021,

ISBN: 9781617296864

https://www.manning.com/books/deep-learning-with-python-second-edition

The IMDB movie review exercise is covered in section 4.1, Classifying movie reviews: a binary classification
example.

3 Where can I run keras?

We have several options for running the movie review example with keras:

1. on your laptop, but you must install keras and some other libraries, see https://keras.io/getting started/;

2. using Google Colab, which has the necessary libraries already, see https://colab.research.google.com/;

4 What is the IMDB data and how is it used?

The Internet Movie Database (IMDB) dataset consists of 50,000 movie reviews and 50,000 labels. Each
review is labeled “0” if it was judged to be negative, or “1” if positive. These labels were supplied by
humans who read the reviews.

Our goal is to come up with a procedure that can automatically produce a label for a movie review, and
which will closely match the behavior of human readers. We are to do this by using a computer procedure
which can see, but not understand, the words of the reviews. In other words, as far as we are concerned,
these reviews could have been written in Polish, or Chinese, or Egyptian hieroglyphics.

A dictionary was created from all the words in all the reviews, and each word in that dictionary was given
a numerical index. Then each review was used to generate a corresponding file of numbers, where each
word was replaced by its index. Now, instead of English, each review can be transformed into a sequence of
numbers, which refer to the words in the dictionary.

2

Thus the text of a movie review is now numeric. For technical reasons, we wish to consider only the 10,000
most common words, so each numeric file is modified to eliminate unusual words. When we actually process
a movie review, we do one last step: we replace the file of numbers by a vector of length 10,000, where entry
i of the vector is set to 1 if word[i] appeared at least once in the review. The reason for doing this is that
the neural network needs to process vectors of a uniform size. We keep the neural network happy by making
every movie review a 10,000 entry vector of 0’s and 1’s. We say that we have vectorized a review in this way.

We divide the data into three sets: training, validation, and testing data. We will build a model with the
training data, and then use it to predict the labels on the validation data. The prediction failures will be
used to adjust the model. We will do this adjustment a fixed number of times (perhaps 10 or 20 “epochs”)
and then declare the model ready for testing.

We now hold the model fixed, and try it out on the testing data. If the training procedure was done well,
then the model should have good accuracy in predicting the labels for the testing data. If the model does
poorly, then we must go back and adjust our model and repeat the entire process.

5 Peeking at the reviews

The movie reviews in the IMDB dataset are no longer humanly readable; they are just lists of numbers.
However, it is possible to use the dataset to decode the numeric review back into a semi-readable version by
replacing each number by the corresponding word. The file imdb decode.py can be used this way, where the
input argument specifies the index of the movie review you want to decode.

python3
from imdb decode import imdb decode
imdb decode (7)

? l a v i s h product ion va lues and s o l i d per formances in t h i s s t r a i gh t f o rwa rd adaption o f jane ?
s a t i r i c a l c l a s s i c about the marr iage game with in and between the c l a s s e s in ? 18 th

century england northam and paltrow are a ? mixture as f r i e n d s who must pass through ?
and l i e s to d i s c ove r that they love each other good humor i s a ? v i r t u e which goes a
long way towards exp l a i n i ng the ? o f the aged source mate r i a l which has been toned down
a b i t in i t s harsh ? i l i k e d the look o f the f i lm and how shot s were set up and i
thought i t didn ’ t r e l y too much on ? o f head shot s l i k e most other f i lm s o f the 80 s and
90 s do very good r e s u l t s

The question marks in the listing indicate unusual words that were not in the top 10,000 most common. You
should be able to guess that this review is labeled 1 positive. We hope that our movie classifier will also
be able to correctly label it.

6 keras on your laptop

You may find it tricky to install keras on your laptop. However, if you can get it set up, you may prefer to
do your work there. The movie review is large, but not enormous, so it should run fairly quickly for you.

Installation information can be found on the keras website keras.io.

Mac and Linux users can try these install commands:

sudo pip i n s t a l l t en so r f l ow
sudo pip i n s t a l l ke ras

while Windows users may try to install with:

pip i n s t a l l t en so r f l ow
pip i n s t a l l ke ras

3

If your installs are successful, then you should download the file imdb.py from the lab website. Then you
can execute it on your laptop with a command like:

python3 imdb . py

On Mac and Linux, you can save the “interesting” output to a separate text file:

python3 imdb . py > imdb . txt

7 Understanding the code

You will be working with the file imdb.py. The program can be thought of as having these parts:

1. Load the data, and prepare it for use;

2. Describe the model;

3. Create the model;

4. Use the model on training and validation data;

5. Evaluate the model on new test data;

We will not worry about how the data is loaded and prepared, except to note that keras will need to download
the data from the Internet if you are running on your laptop. It will then rearrange and split the data so
that it has the right shape for the neural network, and is divided into training, validation, and test sets.

The model is described as a sequential model, with two hidden layers, each with 16 hidden units, and a relu

activation. The first layer expects an input vector of length 10,000; in other words, one of our movie reviews.
Our output layer uses the sigmoid function, which returns a value between 0 and 1, the probability that
the movie review is negative or positive.

model = models . S equent i a l ()

model . add (l a y e r s . Dense (16 , a c t i v a t i o n = ’ r e l u ’ , input shape = (word num ,)))
model . add (l a y e r s . Dense (16 , a c t i v a t i o n = ’ r e l u ’))
model . add (l a y e r s . Dense (1 , a c t i v a t i o n = ’ s igmoid ’))

The model is created by choosing an optimizer, loss function, and a metric. We have discussed the rmsprop
optimizer in class. The binary crossentropy loss function is a way of measuring the difference between
two probability distributions.

model . compile (
opt imize r = ’ rmsprop ’ ,
l o s s = ’ b ina ry c ro s s en t r opy ’ ,
met r i c s = [’ accuracy ’])

Once the model is created, we apply it to the training and validation data, and save a report in a dictionary
called history:

h i s t o r y = model . f i t (
p a r t i a l x t r a i n ,
p a r t i a l y t r a i n ,
epochs = 20 ,
b a t ch s i z e = 512 ,
v a l i d a t i on da t a = (x val , y va l)))

We can use history to print out the final values of the validation loss and accuracy. The code prints these
values like this:

4

Model l o s s and accuracy on va l i d a t i o n data :
F ina l v a l i d a t i o n l o s s 0.7035827110290528
Fina l v a l i d a t i o n accuracy 0.8651999831199646

Now that the model has been trained, we want to see how well it can handle new data. We carry out this
experiment on the test data, for which we know the correct result, and we report how well our model does:

r e s u l t s = model . eva luate (x t e s t , y t e s t)

for i in range (len (model . metr ics names)) :
print (model . metr ics names [i] , r e s u l t s [i])

The test loss and test accuracy are printed out something like this:

Model l o s s and accuracy on t e s t data :
l o s s 0.3238627934074402
accuracy 0.87308

8 Choose an experiment

The validation accuracy and test accuracy measure how well our classifier performs on data for which it had
not been trained. In the example code, after the 20th epoch, the validation accuracy was about 0.865 and
the test accuracy was about 0.873.

The accuracy of our model is affected by the parameter choices that were made in the program. In each
of the following experiments you are to vary one of the parameters in the model, and note the resulting
validation and test accuracy for each parameter choice.

The list of experiments for you to choose from includes:

1. The example used the command model.add(layers.Dense()) twice, specifying the relu activation
function. Compare using relu versus using the tanh activation function.

2. The example used the command model.add(layers.Dense()) twice, to set up two hidden layers.
Compare using one, two, or three hidden layers.

3. The example used the command model.add(layers.Dense()) with 16 units in the two hidden layers.
Compare using 16, 32, or 64 hidden units in each layer.

4. The example used a model.compile() command in which the optimizer was rmsprop. Compare using
rmsprop versus just one of the other optimizers on this list: sgd, adagrad, adadelta, adamax.

5. The example used a model.compile() command in which the loss function was cross entropy. Com-
pare the results for cross entropy versus using mse.

6. The example used a model.fit() command in which 20 epochs of training were carried out. Compare
your results using 5, 10, and 20 epochs.

9 Computing Assignment

Do two of the experiments from the above list. Write a short report in which you explain:

1. which two experiments you carried out;

2. where you did your experiments: laptop or Google Colab;

3. the validation and test accuracies for your several cases;

Example:

5

MATH 1900 Report for Joe User

I ran experiments #1 and #6.

I ran the experiments on my laptop.

Here are my tables:

Experiment #1:

activation validation test

relu 0.86 0.87

tanh 0.73 0.68

Experiment #6:

epochs validation test

5 0.80 0.71

10 0.82 0.75

20 0.86 0.87

6

