
Introductory hump analysis with scipy()

Mathematical Programming with Python
MATH 2604: Advanced Scientific Computing 4

Spring 2025
Monday/Wednesday/Friday, 1:00-1:50pm

https://people.sc.fsu.edu/∼jburkardt/classes/python 2025/humps/humps.pdf

1 A Python library for scientific computation

The scipy library adds functions that are needed for computations across fields such as biology, chemistry,
engineering, physics, statistics.

In most cases, scipy work with arrays from numpy and hence are vectorized. They often rely on underlying
code compiled in Fortran, C, or C++, and hence are highly optimized.

Today we will demonstrate some scipy functions by working on a test examples made famous by MATLAB,
known as humps(x). This function is defined mathematically as:

y(x) =
1

(x− 0.3)2 + 0.01
+

1

(x− 0.9)2 + 0.04
− 6

1

The humps(x) function for 0 ≤ x ≤ 2.

We will generally focus on this function over the interval 0 ≤ x ≤ 2.

We will try to use scipy to investigate properties of this function. From a plot, we can see that the function
seems to have a zero near x = 1.25, a local minimum near x = 0.6370, and two local maximum values near
x = 0.3 and x = 0.9. The function values at the endpoints are y(0) = 5.1764... and y(2) = −4.8551.... The
integral of the function over [0, 2] is approximately 29.3262... We will now look at how, instead of guessing
from a plot, we could determine this information by calling the appropriate scipy functions.

The file humps.py will contain functions we will find useful during this work:

• humps antideriv(x): antiderivative function;
• humps deriv(x): first derivative;
• humps deriv2(x): second derivative;
• humps fun(x): evaluates humps(x);
• humps ode(x,y): like humps deriv(), but includes y as second argument.

2 Where does humps(x) have a local minimum?

The scipy.optimize function minimize scalar() is given a function f(x) of a single variable, and seeks
a value x for which f(x) attains a locally minimum value. The search may be restricted to an interval, or

2

allowed to wander outside an initial pair of starting values.

We will seek the location and value of the local minimum of humps(x) within the interval 0.3 ≤ x ≤ 0.8.

Here is a brief code that sets up the problem and requests a minimizer:

def humps local min () :

from humps import humps fun
from s c ipy . opt imize import min im i z e s ca l a r
import numpy as np

r e s u l t = min im i z e s ca l a r (humps fun , bounds = [0 . 3 , 0 . 8])
x = r e s u l t . x
y = humps fun (x)
print (’ Minimizer x = ’ , x)
print (’ Minimum value humps(x) = ’ , y)
return

3 Where does humps(x) have a local maximum?

From the plot, we can see that humps(x) attains two local maximums in our interval of interest, near x = 0.3
and x = 0.9. Unfortunately, scipy does not include a corresponding “maximize scalar()” function, so we
have to improvise. The local maximum of a function f(x) is a local minimum of the function −f(x), so all
we have to do is adjust our intervals, and define a Python function humps minus fun() which returns the
negative of the original function. You have to be a little careful when you do this. Once you’ve got things
correct, you should be able to locate both maximizers and the maximum values attained.

4 Given humps(x) data, interpolate a full curve

The scipy.interpolate library is given a list of pairs of data values {xi, yi}, and is asked to construct an
interpolating function f(x) such that f(xi) = yi. The interpolating function may be a spline, a piecewise
function whose parts are of degree 0, 1, 2, or 3, or a polynomial. Interpolation can also be done in higher
dimensions, where, for example, a function f(x, y) = z is desired which matches data triples {xi, yi, zi}.

The function interp1d() will be used to illustrate a few of the options for spline interpolation in the 1D case.
We only supply 8 values of the humps() function as data. We then request interpolants of type ‘nearest’,
’linear’, and ’cubic’, and plot them as well as our known function.

def humps interp () :

from humps import humps fun
from s c ipy . i n t e r p o l a t e import i n te rp1d
import matp lo t l i b . pyplot as p l t
import numpy as np

x = np . l i n s p a c e (0 . 0 , 2 . 0 , 8)
y = humps fun (x)

humps nearest = inte rp1d (x , y , kind = ’ nea r e s t ’)
humps l inear = inte rp1d (x , y , kind = ’ l i n e a r ’)
humps cubic = inte rp1d (x , y , kind = ’ cubic ’)

x2 = np . l i n s p a c e (0 . 0 , 2 . 0 , 101)

p l t . p l o t (x , y , ’ o ’ , l a b e l = ’ data po in t s ’)
p l t . p l o t (x2 , humps fun (x2) , l a b e l = ’ exact ’)
p l t . p l o t (x2 , humps nearest (x2) , l a b e l = ’ nea r e s t ’)

3

p l t . p l o t (x2 , humps l inear (x2) , l a b e l = ’ l i n e a r ’)
p l t . p l o t (x2 , humps cubic (x2) , l a b e l = ’ cubic ’)
p l t . g r i d (True)
p l t . l egend ()
p l t . show ()
return

4

