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A Mexican jumping bean makes a random walk.

Simulations on a grid

• Some simulations involve changes in position;
• Some simulations consider influences from neighboring points;
• A cellular automaton is an abstract “machine” whose state is a string of 0’s and 1’s, changing
over time;

• Forest fires and diseases can be modeled as a spread to neighbors;
• Percolation is a model of a loosely packed material which might allow or block the flow of a
liquid ;

1 A cellular automaton

Steven Wolfram, the developer of Mathematica has studied a class of 256 cellular automatons. We will think
a cellular automaton as a rule for filling in values in an m × n, given an initial row of 0’s and 1’s, and a
specification for how to use the current row to fill in the next row.

The value to be assigned to cell (i,j) will only depend on three values in the previous row, in positions
(i-1,j-1), (i-1,j) and (i-1,j+1). We also need a rule for what to do with the first and last cells in each row:
(assume an extra 0? or perhaps use wrap-around?)

Wolfram found that some rules quickly produced an entire field of 0’s or 1’s, or made uninteresting patterns.
But one rule, number 30, seemed to produce a wide range of results depending on the initial data. In fact,
he found a way to turn the output of this rule into a random number generator.
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The rule is summarized by listing the three values in the preceding row, and their result:

index neighbors result
0 0,0,0 0
1 0,0,1 1
2 0,1,0 1
3 0,1,1 1
4 1,0,0 1
5 1,0,1 0
6 1,1,0 0
7 1,1,1 0

Note that 00011110 is the binary representation for 30, which is how the rule got its name.

We can experiment with this rule by filling in a sample array using rule 30. We will assume that the cells
on the left and right have an extra “ghost” zero when we are looking for neighbors.

0: 0 0 0 1 0 0 0

1: _ _ _ _ _ _ _

2: _ _ _ _ _ _ _

3: _ _ _ _ _ _ _

4: _ _ _ _ _ _ _

5: _ _ _ _ _ _ _

6: _ _ _ _ _ _ _

7: _ _ _ _ _ _ _

8: _ _ _ _ _ _ _

9: _ _ _ _ _ _ _

Now we can see how to write a program that will fill in the grid associated with a cellular automaton if we
have the rules, and the values in the first row. Assuming we initialized the grid to zero, then we only have
to decide whether to reset a cell value to 1.

Input:

m, n: the number of rows and columns

start[n]: initial value for row 0

Initialize

c = np.zeros ( [ m, n ] )

c[0,:] = start[:]

Compute:

For 1 <= i < m

for 0 <= j < n

jm1 = ( j - 1 ) % n

jp1 = ( j + 1 ) % n

if ( c[i,jm1] == 0 and c[i,j] == 0 and c[i,jp1] = 1 ) or # 001 -> 1

( c[i,jm1] == 0 and c[i,j] == 1 and c[i,jp1] = 0 ) or # 010 -> 1

( c[i,jm1] == 0 and c[i,j] == 1 and c[i,jp1] = 1 ) or # 011 -> 1

( c[i,jm1] == 1 and c[i,j] == 0 and c[i,jp1] = 0 ) # 100 -> 1

c[i,j] = 1

Return c

We can plot the cellular automaton easily. Here, plotting with i and j, I got an upside down plot. Defining
i2=step num-1-i fixed the discrepancy between matrix indices and Cartesian coordinates:
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p l t . c l f ( )

for i in range ( 0 , m ) :
for j in range ( 0 , n ) :

i f ( c [ i , j ] == 1 ) :
c o l = ’ r ’

else :
c o l = ’w ’

i 2 = step num − 1 − i
p l t . f i l l ( [ j , j +1, j +1, j ] , [ i2 , i2 , i 2 +1, i 2+1 ] , c o l o r = co l )
p l t . p l o t ( [ j , j +1, j +1, j , j ] , [ i2 , i2 , i 2 +1, i 2 +1, i 2 ] , ’ k− ’ )

Here, we handled the cells on the boundary by using wraparound. Let’s see what the results would be for a
simple starting arrangement with a single 1:

00000000000000000000000000000000000000010000000000000000000000000000000000000000

00000000000000000000000000000000000000111000000000000000000000000000000000000000

00000000000000000000000000000000000001100100000000000000000000000000000000000000

00000000000000000000000000000000000011011110000000000000000000000000000000000000

00000000000000000000000000000000000110010001000000000000000000000000000000000000

00000000000000000000000000000000001101111011100000000000000000000000000000000000

00000000000000000000000000000000011001000010010000000000000000000000000000000000

00000000000000000000000000000000110111100111111000000000000000000000000000000000

00000000000000000000000000000001100100011100000100000000000000000000000000000000

00000000000000000000000000000011011110110010001110000000000000000000000000000000

00000000000000000000000000000110010000101111011001000000000000000000000000000000

00000000000000000000000000001101111001101000010111100000000000000000000000000000

00000000000000000000000000011001000111001100110100010000000000000000000000000000

00000000000000000000000000110111101100111011100110111000000000000000000000000000

00000000000000000000000001100100001011100010011100100100000000000000000000000000

00000000000000000000000011011110011010010111110011111110000000000000000000000000

00000000000000000000000110010001110011110100001110000001000000000000000000000000

00000000000000000000001101111011001110000110011001000011100000000000000000000000

00000000000000000000011001000010111001001101110111100110010000000000000000000000

00000000000000000000110111100110100111111001000100011101111000000000000000000000

00000000000000000001100100011100111100000111101110110001000100000000000000000000

00000000000000000011011110110011100010001100001000101011101110000000000000000000

00000000000000000110010000101110010111011010011101101010001001000000000000000000

00000000000000001101111001101001110100010011110001001011011111100000000000000000

00000000000000011001000111001111000110111110001011111010010000010000000000000000

Some of the details may be more clear if we use red boxes for the 1 values, and show the outline of the boxes.
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2 Random walks

A random walk seems like a peculiar thing to study. However, it models a real physical situation, “Brownian
motion”, noticed by Robert Brown in 1827, watching grains of pollen suspended in water, that randomly
jiggled.

The puzzle wasn’t fully solved until Albert Einstein explained this by the collision of the pollen with individual
water molecules whose velocities had a random variation.

From this, Einstein was able to show that a particle in Brownian motion would tend to drift away from its
original position with a predictable variation.

3 Staggering Home

Bellefield Robotics has designed a food truck robot named ”BumbleBee” which offers food for sale at the
corners of street blocks along Fifth Avenue. Its home station is at Bellefield Avenue. BumbleBee simply
wanders up and down Fifth Avenue, from block to block, looking for customers. As a safety feature, it shuts
down if it reaches a distance of 10 blocks from home base.
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On Friday morning, BumbleBee starts at Bellefield, and chooses a random direction, east or west, to go to
the next block. Today there are no customers, so after waiting at one block for five minutes, Bumblebee
again randomly moves east or west to another block.

We may reasonably assume that at some point in the day, BumbleBee will randomly reach a distance of 10
blocks, and shut down. On average, when will this happen? Clearly, it takes a minimum of 10 * 5 minutes
to get that far from home base, and obviously, there is theoretically no maximum amount of time that could
be involved. But realistically, would we have to wait two hours, two days, or what?

We can easily simulate one instance of this walk:

def walk 1d ( ) :

d i r e c t i o n s = [ −1, +1 ]
l o c a t i o n = 0
b locks = 0

while ( −10 < l o c a t i o n and l o c a t i o n < 10 ) :
b locks = blocks + 1
l o c a t i o n = l o c a t i o n + np . random . cho i c e ( d i r e c t i o n s )

return b locks

If we simulate BumbleBee’s adventure five times, we see that walks of length 220, 42, 32, 118 or 48 blocks, to
reach a destination that is only 10 blocks away. This is a little irregular and mystifying. The first thing we
need to do is to generate lots of samples of this walk and find the average time it takes to reach a distance
of 1 block, 2 blocks, ..., 10 blocks.

Surprisingly, the average data is very regular, and suggest that to reach d blocks in a random fashion, we
actually typically have to walk d2 blocks. Thus, on average, BumbleBee will shut down after 5×100 minutes,
or a bit more than 8 hours after starting.
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4 Mexican Jumping Beans

Random walks occur in real life. Consider the case of the Mexican jumping bean. A moth lays eggs inside
a bean pod, the bean pod later falls to the ground, the egg hatches as a larva, but is still in the bean pod,
eating and developing. Some of these pods are in direct sunlight, and the larva will die if it overheats.
The larva can try to move the bean pod by making sudden jerking motions. The bean pod flips around in
response. If it lands in a shaded spot, the larva can sense the cooler temperature, and stop the jumping.

See the report Mexican jumping beans use random walk strategy to find shade available at
https://arstechnica.com/science/2023/02/taking-a-walk-on-the-random-side-helps-mexican-jumping-beans-find-
shade/ which includes a link to a short video.

If you find this example interesting, you can try to simulate a very simple version of it. Suppose a jumping
bean starts at the origin (0,0), and randomly chooses steps north, south, east or west of one unit. On average,
how many steps must be taken before the bean is 0, 1, 2, ..., 10 units away from the origin? Measure distance
by d =

√
i2 + j2. Do about 100 simulations for each distance measurement. Make a plot of the average

number of steps as a function of d, something like the plot we made for the food delivery robot.

If you can make a nice program and plot for this problem, you can turn these in instead of doing assignment
#6.

5 The coughing passenger

Suppose you are a passenger on a plane, and you hear someone two rows ahead of you who is coughing
repeatedly. You might begin to worry, because an airborne disease is most likely to spread to nearby
neighbors of an infected person. If it was a really long flight, and the disease developed really rapidly, then
it might spread first from the coughing passenger to the passenger in front of you, and then to you, taking
two steps of infection.

In a simple model of disease propagation over time and space, we might have an m× n grid of people, who
have agreed not to move during the extent of our experiment. We start with one infected person, at some
random position (i, j). According to our simplified disease model, the other people are “susceptible”, that
is, they aren’t sick, but they could become so. However, a susceptible person can only catch the disease if
they are sitting next to an infected person (left, right, in front or in back). A susceptible person who sits
next to an infected person for an hour has a probability p of getting infected during that time.

Now given what we have said so far, it seems certain that if we wait long enough, everyone in the group must
get infected; the one infected person we start with must eventually infect all their immediate neighbors, who
must eventually infect all their neighbors, and so on.

This is not a very realistic model of disease. So let’s add the idea that an infection only lasts for h hours,
after which the person is no longer sick, and in fact becomes immune. An immune person cannot get sick
again.

So our model starts with three types of people: m× n− 1 susceptibles (S), 1 infective (I), and 0 recovereds
(R). Over time, we expect the value of I to grow, but then it must eventually decreases to zero as the disease
“burns out”. The value of interest, then, is the number of people who became sick versus those who never
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got the disease. So we are interested in the value, at the end of the experiment, for the fractions S
m∗n and

R
m∗n . If everyone got sick, then these values will be 0 and 1, respectively, so the disease swept through the

entire population. Higher values of S
m∗n indicate that the disease was less effective in spreading.

Using this model, and the value of S
m∗n , we could also experiment with small changes to the problem, such as

the location of the initial infected person, or the use of a vaccine to reduce the value of p, the transmissibility
of the disease, or a treatment that reduces h, the duration of the disease, or some means of isolating infected
persons so they can’t transmit the disease to others.

Here is an outline of an algorithm for the SIR model, assuming we are given values for m,n, p, h. The current
status is stored in the array P , where P (i, j) =

• 1, if person (i,j) is susceptible;
• -k, if person (i,j) is infected for k more hours;
• 0, if person (i,j) is recovered;

We continually updated the array P hour by hour until there are no infected persons:

P = ones ( m, n )

i, j = indices of a random location in P.

P(i,j) = -h # negative value; person will recover in h hours

hour = 0

while any P < 0

hour = hour + 1

for (i,j) in the grid

Q = zeros ( m, n )

if ( P(i,j) == 1 )

for north, south, east, west infected neighbor, infect P(i,j) with probability p

if infected, Q(i,j) = -h

else if ( P(i,j) < 0 )

Q(i,j) = P(i,j) + 1

infected person has one less hour to be infected

end

end

replace P by value of Q

end

print hour, duration of epidemic

print sum ( P ) / m / n, proportion of population that did not get sick

Here is a plot of the variation in the values of S, I, R for a model in which at the end of the simulation, S =
0.14 and R = 0.86:
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The behavior of S, I, and R for m = n = 10, p = 0.2, h = 4.

6 A Forest Fire

Let’s consider a simple forest fire model. We assume an m×n grid. In each grid cell we have a measurement
of the height of a single tree, which can be 0, 1, 2, 3 or 4 feet high. (Zero means no tree, of course.) Lightning
strikes a random cell setting a serious fire there. The behavior of the fire is as follows:

• if a tree is on fire, then on the next time step, it is one foot shorter.
• if a tree is not on fire, it might catch fire on the next step. It has a probability of catching fire that is
1/2 * number of burning neighbors.

A neighbor tree is one to the immediate north, south, east or west.

To simplify matters, we also use wrap around. So if tree(i,j) is in row i=m-1, its ”south” neighbor is
tree(0,j), and so on.

Here is a plot suggesting the initial situation in the forest. The darkest green spots are the tallest trees, and
the red spot is where the fire starts.
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Here is how we might implement the status of the forest over one step.

def f o r e s t upda t e ( f o r e s t ) :

import numpy as np

m, n = f o r e s t . shape

new fo r e s t = f o r e s t . copy ( )

for i in range ( 0 , m ) :
for j in range ( 0 , n ) :

#
# Burning t r e e g e t s 1 s t ep c l o s e r to zero :
#

i f ( f o r e s t [ i , j ] < 0 ) :

n ew fo r e s t [ i , j ] = f o r e s t [ i , j ] + 1
#
# Nonburning t r e e with burning ne ighbors might catch f i r e .
#

e l i f ( 0 < f o r e s t [ i , j ] ) :

im1 = ( i − 1 ) % m
ip1 = ( i + 1 ) % m
jm1 = ( j − 1 ) % n
jp1 = ( j + 1 ) % n

s = ( f o r e s t [ im1 , j ] < 0 ) + ( f o r e s t [ ip1 , j ] < 0 ) \
+ ( f o r e s t [ i , jm1 ] < 0 ) + ( f o r e s t [ i , jp1 ] < 0 )

i g n i t e = np . random . random ( )

i f ( i g n i t e < 0 .50 ∗ s ) :
n ew fo r e s t [ i , j ] = − new fo r e s t [ i , j ]
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f o r e s t = new fo r e s t . copy ( )

return f o r e s t

If we keep following the updating rules, then the fire will eventually die out. We can ask questions such as
how many trees are likely to survive, and what would happen if the direction of the wind influenced the fire
spread.

Here is what the forest might look like after 10 steps of burning:

7 Percolation

Oil drillers are familiar with peculiar structures of underground rock. Often, they are drilling through a
material that is a jumbled combination of rock and hollowed-out cavities which might contain oil, gas, or
water. Depending on the size, density, and frequency of these cavities, a particular underground “lake” of
oil might extend for a few hundred feet, or for miles.

As another example, we might consider an object composed of two metals, one conducting and one not.
We suppose the object involves many separate regions of each metal, which are touching, but not melted
together. We know the approximate size of a typical “cell” or clump of each metal, and the proportion of the
two metals. We ask for the probability that an electical signal can pass from the top to the bottom of the
object. This will happen only if there is a some path, formed entirely of the conducting metal, that reaches
from top to bottom.

John Hammersley proposed an approach for studying such problems. He imagined a porous stone such as
pumice, which is made from volcanic activity. Suppose such a stone is submerged in a bucket of water. Would
the center of the stone end up wet or dry? This depends on whether there is at least one microscopic channel
between the surface and the center. If the water reaches the center, we say it has done so by percolation. This
is the same word used to describe one method of making coffee, by having boiling water percolate through
a layer of coffee grounds.
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A simple 2d model of percolation can be constructed by setting up an m × n grid of square cells. We will
allow some cells to be obstructions (filled, or nonconducting, or solid) and others to be channels (open,
conducting, or hollow). We will be looking for the existence of a path from top to bottom. To be a realistic
model, the number and size of these cells would have to approximate those of a physical structure. For our
learning purposes, though, we will be satisfied with rather coarse grids. We will look at several factors to
vary in our problems:

• the total number of cells m× n;
• the aspect ratiom

n ;
• the probability p that a given cell is conducting;

Once we have chosen m,n, p, we can randomly set the status of each grid cell. The hard part now is to figure
out whether the resulting pattern of conducting cells forms a path from top to bottom. If we plot the grid,
we can usually spot a path if it exists, at least for our small example grids. We have to come up with a way
for the computer to do the same thing, without the benefit of eyes.

The raw occupation grid, and the clustering pattern. m = n = 32, p = 0.60.

In the illustration on the left, we can see that a path exists. On the right, each connected “cluster” of cells
is given its own color, and we can observe that there is an enormous group of blue cells which do indeed
include a path from top to bottom. The idea of clustering will be the key to helping the computer to identify
such connecting paths.

An interesting feature of these mathematical percolation simulations is that, if we fix the values of m and n,
then as we vary p we observe a fairly sudden transition in behavior. Below a critical value of p, we almost
never get a connecting path, which above it, such a path almost always exists. By analogy with how ice
changes to water, mathematicians describe this behavior as a phase transition. A variety of other numerical
problems have this behavior, include something known as the subset sum problem, in which a set of integers
must be divided into two sets of equal sum.

For our example with m = n = 32, the phase transition seems to happen at about p = 0.60. The example
program percolation.py can be used to investigate this phenomenon further.
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