
Creating new functions
Mathematical Programming with Python

https://people.sc.fsu.edu/∼jburkardt/classes/python 2025/functions/functions.pdf

Functions

• A function produces output by operating on input;
• Users can define new functions that carry out useful operations;
• Functions begin def function name (input):

• A return output statement transfers output values to the user;
• A function has a separate memory space; only input and output are seen elsewhere;
• A user function in a separate file and accessed with an import statement.
• Input parameters can be given default values;
• Input parameters can be associated with keywords;

1 What a function looks like

In Python, a function is an object which has a name, accepts input, carries out a calculation that uses that
input, and returns a result as output. The classic way of using a function is something like this:

output = funct ion name (input)

We have already used built-in functions from Python:

from math import f a c t o r i a l , max, s in , s q r t
he ight = s ∗ s i n (ang le)
l ong e s t = max (a , b , c)
area = sq r t (s ∗ (s − a) ∗ (s − b) ∗ (s − c))

1

print (’ Area = ’ , area)
nchoosek = f a c t o r i a l (n) / f a c t o r i a l (n − k) / f a c t o r i a l (k)

A function is a convenient tool for carrying out an operation that we need to access many times. We need
to know how to make new tools for our own special needs.

2 Form of a user-defined function

To create a new function, you essentially have to fill in the missing information in the following simplified
function template:

def name (input) :
indented statements
return output

That is, you choose a name for your function, you give names to the input you expect to receive, you write
out the operations you will perform, and then you return the output.

Here’s a three-line function that evaluates the n-th triangular number:

def t r iangu lar number (n) :
t = (n ∗ (n + 1)) // 2
return t

and here’s one that evaluates the area of a triangle with sides of length a, b, c:

def t r i a n g l e a r e a (a , b , c) :
t r i an g l e a r e a () uses Heron ’ s formula

from math import s q r t
s = (a + b + c) / 2
area = sq r t (s ∗ (s − a) ∗ (s − b) ∗ (s − c))
return area

Notice the indenting rules. After the function def statement, the lines forming the body of the function are
indented. If you are defining the function interactively, then as soon as you enter an unindented line, Python
knows your function definition is complete.

Once we have defined triangular number(), we can test it by

t = tr iangular number (1) # 1
t = tr iangular number (10) # 55
t = tr iangular number (100) # 5050

If we have only defined a function during an interactive session, it will vanish when the session is over. Since
functions can be tricky to type correctly, and are probably useful later, we would prefer to have a way to
keep such functions available.

We could create the function in advance, using an editor, storing it in a separate file called triangu-
lar number.py, or triangle area.py, or we could store both these functions in a common file my library.py. In
that case, when we are doing our programming and need to get one of these functions, we have to use the
import statement, just as we have done to access functions from Python’s math library.

from my l ibrary import tr iangular number , t r i a n g l e a r e a
t = tr iangular number (10)
area = t r i a n g l e a r e a (1 . 0 , 3 . 0 , 2 . 0)

2

3 The BMI function

Hospitals often combine the patient’s height and weight in a formula known as the body-mass-index (BMI).
In metric units, this is defined by the weight in kilograms, divided by the square of the height in meters.
Mathematically, we might write:

bmi =
kg

m2

Unfortunately, using English units, the process is not so simple, as we have to convert to the metric system.
In order to hide this extra work, we can write our own bmi engish() function. The input will be the patient’s
weight in pounds, and height in inches, while the output will be the BMI.

Here is what such a function would look like:

def bmi eng l i sh (we ight lb , h e i gh t i n) :
va lue = (we ight lb / 2 .204) ∗ (39 .370 / h e i gh t i n) ∗∗2
return value

You can demonstrate this function by computing

bmi eng l i sh (100 , 50) = 28.13
bmi eng l i sh (150 , 60) = 29.30
bmi eng l i sh (200 , 70) = 28.70

Using this bmi english() function and a while() statement, determine the maximum weight for which the
BMI is 25, given that a person is 50 inches tall. You can assume that the weight will be an integer value.

4 Adding another function to our library, and accessing it

Since we are on an English units streak, let’s write another function, which converts temperatures in Fahren-
heit to Celsius. The mathematical formula is simply

C◦ =
5

9
(F ◦ − 32)

and the reverse is

F ◦ =
9

5
C◦ + 32

Write functions f to c(f) and c to f(c) which convert between the two temperature scales. Add these two
new functions to your file my library(). Use them in a Python calculation to verify the following interesting
facts in which the Celsius temperature is approximately equal to the Fahrenheit temperature with the digits
reversed:

F C

40 04

61 16

82 28

Your code might begin:

import f t o c from my l ibrary
for f in [40 , 61 , 82] :

. . . more s t u f f

3

Verify that one function is the inverse of the other by taking temperature values and converting them back
and forth.

C -> F -> C

-40 -> -40 -> -40

0 -> 32 -> 0

100 -> 212 -> 100

Note that you can write expressions like

fnew = c t o f (f t o c (f))

to do both steps of the conversion in one line.

5 One function can call another

Aside from the Celsius and Fahrenheit temperature scales, physicists work with the Kelvin temperature.
The temperature in degrees Kelvin, K◦, is related to the Celsius temperature by

K = C − 273.15

You should be able to quickly write two new functions, c to k(c) and k to c(k), which convert back and
forth between these two systems. Add them to my library.py.

We shall also write two more functions, f to k(f) and k to f(k), which convert between Fahrenheit and
Kelvin. However, we can take a shortcut, since we already know how to get from F to C, and then from C
to K. So the function f to k(f) could be written something like this:

def f t o k (f) :
c = convert f to c # Replace by the cor r ec t func t i on c a l l
k = convert c to k # Replace by the cor r ec t func t i on c a l l
return k

and the function k to f(k) should be just as easy.

Using these new functions, verify the following:

F -> K -> F

-40 -> 233 -> -40

32 -> 273 -> 32

212 -> 373 -> 212

6 The double factorial function

You are familiar with the factorial function of a nonnegative integer n, written n!, and defined by

n! =

{
1 if n = 0

1 ∗ 2 ∗ ... ∗ n otherwise

For certain mathematical applications, there is a related function known as the double factorial, symbolized
by n!!, and defined for nonnegative integers n by:

n!! =


1 if n = 0

1 ∗ 3 ∗ 5 ∗ ... ∗ n− 2 ∗ n if n is odd

2 ∗ 4 ∗ 6 ∗ ... ∗ n− 2 ∗ n if n is even and greater than 0

4

For instance, 5!! = 1∗3∗5 = 15 and 8!! = 2∗4∗6∗8 = 384. There are several ways to program this function.
The definition might seem messy, but think about it this way. Start with value = 1. If n is greater than 1,
multiply value by n, reduce n by 2, and repeat. Can you see how a while() statement will let you express
this idea?

Python Jeopardy time: Someone needs to come up front and create this function!

Let’s assume this function is called double factorial(n), and is added to our library file my library.py.

7 Integrating a product of cosines and sines

Suppose your work involves evaluating definite integrals of a certain form, and that you have a formula for
the value: ∫ π

2

0

cosm θ sinn θdθ =

{
(m−1)!!(n−1)!!

(m+n)!!
π
2 m and n are both even

(m−1)!!(n−1)!!
(m+n)!! otherwise

Here, we require 1 < m, and 1 < n.

Suppose you need to evaluate this integral for a variety of pairs of values m,n. We can write a function
cosm sinn() to do this, but of course we will want to call on our double factorial() function for help.

def cosm sinn (m, n) :

from math import pi
from my l ibrary import d o ub l e f a c t o r i a l

back s l a sh l e t s us s p l i t the f o l l ow i n g long l i n e

value = doub l e f a c t o r i a l (m − 1) ∗ d o ub l e f a c t o r i a l (n − 1) \
/ d o ub l e f a c t o r i a l (m + n)

i f ((m % 2 == 0) and (n % 2 == 0)) :
va lue = value ∗ pi / 2 .0

return value

We can test our two functions by constructing a table of integral values:

from my l ibrary import cosm sinn

for m in range (2 , 5) :
print (’ ’)
for n in range (2 , 5) :

print (m, n , cosm sinn (m, n))

Because we mention it in our code, we have to import cosm sinn(). However, even though this means we
will also need double factorial(), we don’t have to import that, because we didn’t use it directly in our
code; Python will find it for us.

8 A function that returns an array

A polynomial of degree n can be described by an n+1 vector of coefficients that multiply successive powers
of a parameter x:

p(x) = c0 + c1x+ c2x
2 + ...+ cnx

n

5

Suppose we know the vector of coefficients c of p(x), and we wish to compute the vector of coefficients d of

the derivative of the polynomial, p′(x) = dp(x)
dx . We can read off the values of d from the formula for p′(x):

p′(x) = d0 + d1x+ d2x
2 + ...+ dn−1x

n−1

= c1 + 2c2x+ 3c3x
2 + ...+ n cnx

n−1

In other words, if we are given a vector c of length n + 1, we want to compute a vector d of length n with
values:

d0 = c1

d1 = 2 ∗ c2
...

dn−1 = n ∗ cn

Can we write a Python function of the form poly dif (c) which computes and returns this vector? This
is an unfair question, since we still don’t know how to handle vectors, lists or arrays. You might have some
idea from some hints we have seen already, or else from your experience with other languages. So, as a
preview of how our functions can deal with lists, let’t give it a try.

Consider the tasks you must carry out:

• Given only the list c, the number of entries is len(c), or n+ 1;
• We want to create a new list d of length n: A = [0] * n

• A for() loop computes each value d[i] from c[i+1];
• return d

def p o l y d i f (c)
np1 = len (c)
n = np1 − 1

#
Here i s an ug ly way to crea t e a l i s t o f 0 ’ s o f l en g t h n .
When we learn numpy , we w i l l have a b e t t e r way to do t h i s !
#

d = [0] ∗ n
for i in range (0 , n) :

d [i] = i ∗ c [i +1]
return d

Consider the following polynomial:

p(x) = 100 + 50x+ 25x2 + 10x3 + 5x4 + 2x5 + 6x6

for which the coefficient vector c is defined as the following list:

c = [100 , 50 , 25 , 10 , 5 , 2 , 6]

Use the poly dif() function to determine the coefficients of p′(x).

Now compute the coefficients of p′′(x).

6

