support_vector_machines
support_vector_machines,
looks at how support vector machines can classify data.
The notes:
Scripts:
-
cvxopt_example.py,
uses cvxopt() to solve an example quadratic programming problem.
-
generator_perceptron.py,
uses gradient descent to solve the perceptron problem for a
set of generators to be classified as "failing(0)" or "working(1)".
-
jet_svm.py,
uses cvxopt() to determine the SVM for the jet data.
-
perceptron_gradient.py,
uses gradient descent to solve a perceptron problem.
Text files:
-
generator_data.txt,
56 records: index, rpm, vibration, fail(0)/active(1)
-
generator_perceptron.txt,
output from generator_percepton.py.
-
gopher_data.txt,
50 records: skull width, skull length, golden(-1)/hopping(1).
-
jet_data.txt,
56 records: index, rpm, vibration, fail(-1)/working(1)
Images:
Last revised on 19 October 2019.