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A little more snow than we expected!

1 Analyzing a Random Process

At Michigan Tech, a lot of snow falls each winter. Since 1890, the students have measured and recorded the
yearly totals. In a particular year, the actual amount of snow seems random, but over time, some patterns
can be observed. The snowfall is an example of a random process; our interest is to try to describe the data
usefully, and then perhaps to create a mathematical model that produces similar results.

We can read in the data using Python:

1 import numpy as np
2
3 data = np . l oadtx t ( ’ snow data . txt ’ )
4 year = data [ : , 0 ]
5 snow = data [ : , 1 ]
6 m = len ( snow )

The simplest model of the snowfall replaces all the data by the average value. Also of interest will be the
minimum and maximum values. Finally, we will also request something called the standard deviation:

1 snow mean = np .mean ( snow )
2 snow min = np .min ( snow )
3 snow max = np .max ( snow )
4 snow std = np . std ( snow )

The average tells us the “center” of the data. But we know the data varies a lot. The standard deviation
tells us that “most” of the data is no more than one standard deviation from the average.

To verify this, let’s make a True/False array that is True for each snow record that is in the interval
[mean-std,mean+std], count the number of True values, and convert to a percent:

1 t f = ( snow mean − snow std < snow ) & ( snow < snow mean + snow std )
2 print ( 100 ∗ sum ( t f ) / m, ’ percent o f data with in one std o f mean . ’ )
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Note that the mean is often symbolized by the Greek letter µ (“mu”); the standard deviation by σ (“sigma”).
The square of the standard deviation is known as the variance and is symbolized by σ2.

To picture the data, we will create a histogram, a sort of bar graph where each bar represents a numeric
range. The height of the bar counts the number of times or relative frequency that a data item falls within
its range.

1 import matp lo t l i b . pyplot as p l t
2 p l t . h i s t ( snow , rwidth = 0 .90 , b ins = 25 )
3 p l t . show ( )

A histogram of the snowfall data

Using just the mean and standard deviation, we can try to create a simulation of the snowfall data. One
simple model of a random process is known as the normal distribution. Variables modeled by the standard
normal distribution have a mean of 0 and a standard deviation of 1, and can be computed by writing

1 x = np . random . normal ( )

But if we wish to sample a normal distribution with a given mean and standard deviation, and we want n

such samples, we simply include this information in the call. Using statistics from our snowfall data:

1 import numpy as np
2 snow mean = 176.70
3 snow std = 55.95
4 n = 1000
5 snow sim = np . random . normal ( snow mean , snow std , n )

Here is a histogram of our simulated snowfalls:
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A histogram of the simulated snowfall data

Although our simulation looks good in the center, we have gotten many more low snowfalls than are seen
in the actual records. This suggests that the behavior of the normal random numbers may come close, but
does not fully capture what’s happening in this real life example.

2 Correlated Variables: Cold Hands, Warm Heart

The saying cold hands, warm heart suggests that there is a simple relationship between two seemingly
independent things we can measure. We can even imagine that the colder the hands, the warmer the heart,
and that there is some kind of linear relationship going on here. Because one thing goes down as the other
goes up; we say the temperatures of hand and heart are correlated, but in a negative sense. In contrast,
the saying no pain, no gain suggests that pain and gain must increase or decrease together; this suggests
they are positively correlated variables.

In mathematics, the relationship between two quantities can be completely explained by a linear function.
In electronics, if a conductor has a resistance of R, then the voltage V and current I are related by

V = I ∗R

Assuming we know R already, this suggests a relationship so strong that if we know V , we don’t have to
measure I; its value is completely controlled by the formula.

In life, many variables are related more weakly. Knowing that a child is 7 years old, you can make a good
guess as to the child’s weight. Knowing that a city is 500 miles away, you can make a good guess as to how
many hours it would take you to drive there. You would not expect these estimates to be exact, but you
would expect to be able to predict a reasonable value using a simple linear formula.

Suppose we want to determine to what extent two quantities X and Y have a linear relationship. There are
two common ways to measure the strength of this relationship, the covariance C(x, y) and the correlation
coefficient, f(x, y).

Suppose we have n measurements of X and Y , which we stored in the variables x and y. The first thing we
need to do is subtract off the means, µx and µy. Then the covariance is

C(x, y) =

∑n
i=1(xi − µ(x))(yi − µ(y))

n

3



You may also see covariance defined with a divisor of (n−1) instead of n. This minor difference arises when
considering data sampled from a larger, unknown set. The correlation coefficient divides by the standard
deviations of the two variables:

r(x, y) =

∑n
i=1(xi − µ(x))(yi − µ(y))

nσ(x)σ(y)

The advantage of the using the correlation coefficient is that the resulting value has a very simple interpre-
tation. The value of r(x, y) will always be a number between -1 and 1, with meaning:

r(x, y) =



near -1, strongly anticorrelated

near -1/2, moderately anticorrelated

near 0, not related

near +1/2, moderately related

near +1, strongly related

Here, “anticorrelated” means that as one variable goes up, the other goes down. ”Moderately correlated”
means that the relationship can only be partially explained by a linear formula. Not related at all means
that the two variables seem to have no relationship.

3 Example: Some simple numeric lists

To get a feeling for what correlation is telling you, let’s look at some tiny datasets. Suppose that we have
n = 3 observations of some quantities at times t = 1, 2, and3. Using the formula, we can compute the
correlation of the value of t with each variable:

t 1 2 3 r(t,t) = 1

y1 10 20 30 r(t,y1) = 1

y2 100 200 300 r(t,y2) = 1

y3 100 120 140 r(t,y3) = 1

y4 50 45 40 r(t,y4) = -1

y5 2.4 4.7 5.8 r(t,y5) = 0.98

y6 4 0 4 r(t,y6) = 0.0

y7 1 -2 1 r(t,y7) = 0.0

y8 np.random.rand(3) r(t,y8) = -0.27 (depends on results!)

In cases of t and y1 through y3, an exact linear relationship is easy to see. For y4 the relationship is
also linear, but with a negative correlation: y4 = 55 − 5 ∗ t. For y5, the relationship y5 = 2 ∗ t is a
good approximation. For the remaining cases, the correlation coefficient indicates that a linear relationship
explains little or none of the behavior of the data.

Instead of doing the arithmetic ourselves, we can use the numpy function C=np.corrcoef(x,y) to compute
the correlation between two sets of data, or the command C=np.corrcoef(A) to compute the correlation
between the rows of the data matrix A.

The output C=np.corrcoef(x,y) will be a 2 × 2 matrix:

r(x,x) r(x,y)

r(y,x) r(y,y)

so that the entry C[0,1] is the only “interesting” result, the value of r(x, y).

In the case of a data matrix, the output C=np.corrcoef(A) will be an m×m matrix comparing the rows:
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r(row0,row0) r(row0,row1) ... r(row0,rowm-1)

r(row1,row0) r(row1,row1) ... r(row1,rowm-1)

... ... ... ...

r(rowm-1,row0) r(rowm-1,row1) ... r(rowm-1,rowm-1)

Given a correlation matrix like this, any off-diagonal entries near to +1 or -1 are revealing two variables that
are closely related.

4 Example: Pets and Owners

A survey of dog owners has recorded the weight in pounds of the dog and the owner, the yearly pay of the
owner, and the size of the owner’s yard in square feet. The data in dog data.txt is:

1 Dog Owner Pay Yard
2 −−− −−−−− −−−−−− − −−−−
3 89 180 80000 8000
4 55 147 95000 4500
5 110 125 70000 15000
6 60 210 60000 7000
7 12 153 145000 200
8 16 105 110000 5000
9 40 220 95000 8000

10 23 173 120000 2500
11 76 162 105000 9000
12 14 137 152000 1000

Is there a correlation between the weight of the dog, and any of the other variables?

1 import numpy as np
2 data = np . l oadtx t ( ’ dog data . txt ’ )
3
4 dog = data [ : , 0 ]
5 dog mean = np .mean ( dog )
6 dog std = np . std ( dog )
7
8 own = data [ : , 1 ]
9 own mean = np .mean ( own )

10 own std = np . std ( own )
11
12 pay = data [ : , 2 ]
13 pay mean = np .mean ( pay )
14 pay std = np . std ( pay )
15
16 yard = data [ : , 3 ]
17 yard mean = np .mean ( yard )
18 yard std = np . std ( yard )
19
20 n = len ( dog )
21
22 r = np . dot ( dog − dog mean , own − own mean ) / dog std / own std / n
23 print ( ’ dog weight / owner weight c o r r e l a t i o n i s ’ , r )
24 r = np . dot ( dog − dog mean , pay−pay mean ) / dog std / pay std / n
25 print ( ’ dog weight /owner pay c o r r e l a t i o n i s ’ , r )
26 r = np . dot ( dog − dog mean , yard − yard mean ) / dog std / yard std / n
27 print ( ’ dog weight / y a r d s i z e c o r r e l a t i o n i s ’ , r )

To get a feeling for the results of this analysis, we can make plots of the dog weight versus owner weight,
pay, and yardsize:

1 import matp lo t l i b . pyplot as p l t
2
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3 p l t . p l o t ( dog , own , ’ bo ’ )
4 p l t . t i t l e ( ’Dog weight vs owner weight ’ )
5 p l t . show ( )
6
7 p l t . p l o t ( dog , pay , ’ ro ’ )
8 p l t . t i t l e ( ’Dog weight vs owner pay ’ )
9 p l t . show ( )

10
11 p l t . p l o t ( dog , yard , ’mo ’ )
12 p l t . t i t l e ( ’Dog weight vs yard s i z e ’ )
13 p l t . show ( )

Dog weight positively correlates with yard size

5 Example: Baseball wins and payrolls

It is often argued that a baseball team can buy a championship, that a team with a high payroll has bought
the best players and will win the most games. Can we estimate whether there is a relationship?
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Total payroll and winning percentage seem to be correlated

The file moneyball.txt contains a list of winning percentages and total payroll for teams over the first half of
a season. We can compute the correlation between payroll and winning percentage by commands like this:

1 import numpy as np
2 data = np . l oadtx t ( ’ moneybal l data . txt ’ )
3
4 wins = data [ : , 0 ]
5 wins mean = np .mean ( wins )
6 wins s td = np . std ( wins )
7
8 pay = data [ : , 1 ]
9 pay mean = np .mean ( pay )

10 pay std = np . std ( pay )
11
12 n = len ( wins )
13
14 r = np . dot ( wins − wins mean , pay − pay mean ) / wins s td / pay std / n
15 print ( ’ p ay r o l l /winning c o r r e l a t i o n i s ’ , r )

which results in a value of r ≈ 0.48, which says that there is a positive correlation between the two quantities:
more money and more wins seem to go together. Because the value of r is not extremely close to 1, we can
also conclude that there are many underlying factors that are involved.

6 Computing Assignment #2

Let’s take some data from recent house sales, in which 9 separate variables were measured. The most
interesting variable is the final selling price. We’d like to see which other variables are most strongly related
to the price. These will be variables whose correlation coefficient is closer to -1 or +1 than to 0.

The file homes data.txt records:

• 0: sel, the selling price ($)
• 1: ask, asking price ($)
• 2: liv, living area (square feet)
• 3: rms, rooms (#)
• 4: bed, bedrooms (#)
• 5: bat, bathrooms (#)
• 6: age, age (years)
• 7: lot, lot size (acres)
• 8: tax, taxes ($)

Write a Python program called hw2.py which

1. reads data, the information in the file homes data.txt;

2. copies columns 0, 6, and 7 of data as variables sel, age and lot;

3. computes and prints the correlation between sel and age;

4. computes and prints the correlation between sel and lot;

5. computes and prints the 9×9 matrix of all correlations by the commands C=corrcoef(data.transpose())
and print(C).

Email a copy of your program to Dr Schneier mhs64@pitt.edu before Friday, 13 September.

For your consideration: You may notice, in the matrix of correlations C, that some entries are 1, others are
very close to 1. This tells you that these pairs of data are strongly related. Think about why this is so.
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A negative value suggests that increasing one variable tends to decrease the other. Think about why this
might make sense.
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