
Using keras to classify movie reviews
MATH1900: Machine Learning

Location: http://people.sc.fsu.edu/∼jburkardt/classes/ml 2019/keras/keras.pdf

Words used in positive and negative movie reviews.

Classifying with keras

Can a machine distinguish good and bad movie reviews?

1 What do we want?

When NetFlix recommends movies to you, it is using an automated system that has classified the movies
in its library, and has also analyzed your own likes and dislikes. It then lists movies that you have not yet
watched, but which most closely fit your apparent preferences.

We are going to experiment with a similar, but simpler task. We have collected the text of many movie
reviews, and labeled them as positive or negative. How we did this is something of a mystery that would be
very hard to express as a computer program. Some (but not all!) of our judgment could be explained simply
by the choice of words in each review.

We can imagine that a very intelligent Martian could make a reasonable guess about our classifications
simply by noting all the words in every review: words like great and thilling may indicate a positive review,
while awful would suggest the opposite. However, a bad movie can be called a great disappointment, so if we
decided that great by itself was a sure indication of a positive review, we would soon notice some problems.
To build a good classifier, we would have to review the data, make some tentative rules, test them, and then
adjust our model to try to reduce the errors.

Finding patterns in data is something that the keras package does well. To deal with the movie review
classification problem, we can use keras to build a neural network, apply it to our data to get a model, and
then test the model to see how well it performs on new data.

1

The movie review dataset is a built-in feature of keras, and so we can take advantage of a large set of data
which has already been labeled. This will allow us to create models and see how effective they are.

2 A reference for keras

You can find an introduction to keras in the book:

Francois Chollet,

Deep Learning with Python,

Manning, 2018,

ISBN: 9781617294433

https://www.manning.com/books/deep-learning-with-python

The IMDB movie review exercise is covered in section 3.4, Classifying movie reviews: a binary classification
example.

3 Where can I run keras?

We have three options for running the movie review example with keras. You can run it

1. on your laptop;

2. at the PSC interactively, using the interact -gpu option;

3. at the PSC noninteractively (“batch mode”), using a SLURM script;

4 What is the IMDB data and how is it used?

The IMDB dataset consists of 50,000 movie reviews and 50,000 labels. Each review is labeled “0” if it was
judged to be negative, or “1” if positive. These labels were supplied by humans who read the reviews. Our
goal is to come up with a procedure that can automatically produce a label for a movie review, and which
will closely match the behavior of human readers.

A dictionary was created from all the words in all the reviews, and each word in that dictionary was given
an index. Then each review was used to generate a corresponding file of numbers, where each word was
replaced by its index.

Thus the text of a movie review is now numeric. For technical reasons, we wish to consider only the 10,000
most common words, so each numeric file is modified to eliminate unusual words. When we actually process
a movie review, we do one last step: we replace the file of numbers by a vector of length 10,000, where entry
i of the vector is set to 1 if word[i] appeared at least once in the review. The reason for doing this is that
the neural network needs to process vectors of a uniform size. We keep the neural network happy by making
every movie review a 10,000 entry vector of 0’s and 1’s.

We divide the data into three sets: training, validation, and testing data. We will build a model with the
training data, and then use it to predict the labels on the validation data. The prediction failures will be
used to adjust the model. We will do this adjustment a fixed number of times (perhaps 10 or 20 “epochs”)
and then declare the model ready for testing.

We now hold the model fixed, and try it out on the testing data. If the training procedure was done well,
then the model should have good accuracy in predicting the labels for the testing data. If the model does
poorly, then we must go back and adjust our model and repeat the entire process.

2

5 Peaking at the reviews

The movie reviews in the IMDB dataset are no longer human readable; they are just lists of numbers.
However, it is possible to use the dataset to decode any review. The file imdb decode.py can be used this
way:

python3
from imdb decode import imdb decode
imdb decode (7)

? l a v i s h product ion va lues and s o l i d per formances in t h i s s t r a i gh t f o rwa rd adaption o f jane ?
s a t i r i c a l c l a s s i c about the marr iage game with in and between the c l a s s e s in ? 18 th

century england northam and paltrow are a ? mixture as f r i e n d s who must pass through ?
and l i e s to d i s c ove r that they love each other good humor i s a ? v i r t u e which goes a
long way towards exp l a i n i ng the ? o f the aged source mate r i a l which has been toned down
a b i t in i t s harsh ? i l i k e d the look o f the f i lm and how shot s were set up and i
thought i t didn ’ t r e l y too much on ? o f head shot s l i k e most other f i lm s o f the 80 s and
90 s do very good r e s u l t s

The question marks in the listing indicate unusual words that were not in the top 10,000 most common. You
should be able to guess that this review is labeled 1 positive. We hope that our movie classifier will also
be able to correctly label it.

6 Getting the IMDB data

If you are planning to work on your laptop, then the IMDB example program will automatically use the
Internet to download a copy of the IMDB dataset that it needs, storing it in a location on your machine.

If you are working on the PSC, however, programs running on the computational nodes are not allowed to
use the Internet, so we have to get a copy of the dataset beforehand. I have a copy in my account, and you
can get a copy for yourself by logging into your PSC account and issuing the following commands:

cp ˜ jburkard / imdb copy . sh imdb copy . sh
bash imdb copy . sh

The datafiles will be copied to a hidden subdirectory in your account. If you want to check that they are
there, try this command:

l s . ke ras / da ta s e t s

You should see two files: imdb.npz and imdb word index.json The imdb.npz is binary (not text!) but the
imdb word index.json actually contains the list of words and their assigned indices.

On your PSC account, you could peek at this file by the command:

more . keras / da ta s e t s / imdb word index . j son

which would list the beginning of the file:

{"fawn": 34701, "tsukino": 52006, "nunnery": 52007, "sonja": 16816,

"vani": 63951, "woods": 1408, "spiders": 16115, "hanging": 2345,

"woody": 2289, ...

7 keras on your laptop

You may find it tricky to install keras on your laptop. However, if you can get it set up, you may prefer to
do your work there. The movie review is large, but not enormous, so it should run fairly quickly for you.

3

Installation information can be found on the keras website keras.io.

Mac and Linux users can try these install commands:

sudo pip i n s t a l l t en so r f l ow
sudo pip i n s t a l l ke ras

while Windows users may try to install with:

pip i n s t a l l t en so r f l ow
pip i n s t a l l ke ras

If your installs are successful, then you should download the file imdb.py from the lab website. Then you
can execute it on your laptop with a command like:

python3 imdb . py

On Mac and Linux, you can save the “interesting” output to a separate text file:

python3 imdb . py > imdb . txt

8 keras with an interactive PSC GPU

Copy the file imdb psc.py into your home directory at PSC. There are two ways to do this:

• Download the file from the lab webpage to your own system. Then use sftp to transfer it to PSC;
• OR...;
• Use ssh to log into your PSC account, and copy my version, by typing

cp ˜ jburkard / imdb psc . py imdb psc . py

Assuming you have already copied the IMDB datasets to your PSC account, (see above) you are ready to
run the example.

I assume you are logged in to one of the PSC login nodes. Now request interactive access to a GPU. You
may have to wait some time before you are granted access. Then type something like this:

i n t e r a c t −gpu
module load anaconda3 /2019.03
source a c t i v a t e keras−gpu <−− This l o g s you onto a gpu .
python imdb psc . py <−− You w i l l s e e l o t s o f messages .
python imdb psc . py > imdb . txt <−− Repeat , but save i n t e r e s t i n g output .
e x i t <−− l og o f f from the gpu

You don’t have to run twice; it’s just good to run once and see if the program works at all. Then a second
run allows you to save the output you are interested in.

Also, you don’t actually have to log out right away. You can stay logged in to the interactive GPU, run your
program, modify it with nano, and rerun it, so that you can carry out various experiments. But be sure to
log out when you are done so that the next user can access that GPU.

9 keras with a noninteractive PSC GPU

If you don’t want to wait for access to an interactive GPU, you can run the IMDB example by submitting
it to the PSC job scheduler. Along with the python/keras script, you also need a special job file, which we
have prepared for you, called imdb psc.sh.

Copy the files imdb psc.py and imdb psc.sh into your home directory at PSC. There are two ways to do this:

4

• Download the files from the lab webpage to your own system. Then use sftp to transfer them to PSC;
• OR...;
• Use ssh to log into your PSC account, and copy my versions, by typing

cp ˜ jburkard / imdb psc . py imdb psc . py
cp ˜ jburkard / imdb psc . sh imdb psc . sh

Assuming you have already copied the IMDB datasets to your PSC account (see above), you are ready to
submit your job.

As you are logged in on one of the PSC login nodes, simply type the command

sbatch imdb psc . sh

This will send your job to be executed, and give you a six digit number that identifies the job. You can
check right away that your job has gotten onto the list of things to be executed by typing

squeue −u j o eu s e r

where you want to replace joeuser by your PSC username.

If you want, you can log out now and check on your job later, by logging back in and issuing the squeue

command.

If the job doesn’t show up in the queue anymore, it has run. At the very least, you will have a file imdb psc.log,
which will mostly contain uninteresting system messages, and which we will only check if your job did not
run properly. If your job did run, you will also have a file imdb psc.txt, which will contain the printed output
from your keras example. You can examine this using the command

more imdb psc . txt

or you can use the nano editor to view it. Another option is to start an sftp session on your laptop and
then request that a copy be brought back to your home system:

get imdb psc . txt

10 Understanding the code

You will be working with the file imdb.py, or, if you are running on the PSC, the slightly different file
imdb psc.py. In both cases, the program can be thought of as having these parts:

1. Load the data, and prepare it for use;

2. Describe the model;

3. Create the model;

4. Use the model on training and validation data;

5. Evaluate the model on new test data;

We will not worry about how the data is loaded and prepared, except to note that keras will need to download
the data from the Internet (if you are running on your laptop), or will expect to find the data in your home
directory (if you are running at the PSC). It will then rearrange and split the data so that it has the right
shape for the neural network, and is divided into training, validation, and test sets.

The model is described as a sequential model, with two hidden layers, each with 16 hidden units, and a relu

activation. The first layer expects an input vector of length 10,000; in other words, one of our movie reviews.
Our output layer uses the sigmoid function, which returns a value between 0 and 1, the probability that
the movie review is negative or positive.

5

model = models . S equent i a l ()

model . add (l a y e r s . Dense (16 , a c t i v a t i o n = ’ r e l u ’ , input shape = (word num ,)))
model . add (l a y e r s . Dense (16 , a c t i v a t i o n = ’ r e l u ’))
model . add (l a y e r s . Dense (1 , a c t i v a t i o n = ’ s igmoid ’))

The model is created by choosing an optimizer, loss function, and a metric. We have discussed the rmsprop

optimizer in class. The binary crossentropy loss function is a way of measuring the difference between
two probability distributions.

model . compile (
opt imize r = ’ rmsprop ’ ,
l o s s = ’ b ina ry c ro s s en t r opy ’ ,
met r i c s = [’ accuracy ’])

Once the model is created, we apply it to the training and validation data, and save a report in a dictionary
called history:

h i s t o r y = model . f i t (
p a r t i a l x t r a i n ,
p a r t i a l y t r a i n ,
epochs = 20 ,
b a t ch s i z e = 512 ,
v a l i d a t i on da t a = (x val , y va l)))

We can use history to print out the final values of the validation loss and accuracy. The code prints these
values like this:

Model l o s s and accuracy on va l i d a t i o n data :
F ina l v a l i d a t i o n l o s s 0.7035827110290528
Fina l v a l i d a t i o n accuracy 0.8651999831199646

Now that the model has been trained, we want to see how well it can handle new data. We carry out this
experiment on the test data, for which we know the correct result, and we report how well our model does:

r e s u l t s = model . eva luate (x t e s t , y t e s t)

for i in range (len (model . metr ics names)) :
print (model . metr ics names [i] , r e s u l t s [i])

The test loss and test accuracy are printed out something like this:

Model l o s s and accuracy on t e s t data :
l o s s 0.3238627934074402
accuracy 0.87308

11 Choose an experiment

The validation accuracy and test accuracy measure how well our classifier performs on data for which it had
not been trained. In the example code, after the 20th epoch, the validation accuracy was about 0.865 and
the test accuracy was about 0.873.

The accuracy of our model is affected by the parameter choices that were made in the program. In each
of the following experiments you are to vary one of the parameters in the model, and note the resulting
validation and test accuracy for each parameter choice.

The list of experiments for you to choose from includes:

6

1. The example used the command model.add(layers.Dense()) twice, specifying the relu activation
function. Compare using relu versus using the tanh activation function.

2. The example used the command model.add(layers.Dense()) twice, to set up two hidden layers.
Compare using one, two, or three hidden layers.

3. The example used the command model.add(layers.Dense()) with 16 units in the two hidden layers.
Compare using 16, 32, or 64 hidden units in each layer.

4. The example used a model.compile() command in which the optimizer was rmsprop. Compare using
rmsprop versus just one of the other optimizers on this list: sgd, adagrad, adadelta, adamax.

5. The example used a model.compile() command in which the loss function was cross entropy. Com-
pare the results for cross entropy versus using mse.

6. The example used a model.fit() command in which 20 epochs of training were carried out. Compare
your results using 5, 10, and 20 epochs.

12 Computing Assignment #11

Do two of the experiments from the above list. Write a short report in which you explain:

1. which two experiments you carried out;

2. where you did your experiments: laptop, interactive gpu, noninteractive gpu;

3. the validation and test accuracies for your several cases;

Example:

MATH 1900 Report for Joe User

I ran experiments #1 and #6.

I ran the experiments on my laptop.

Here are my tables:

Experiment #1:

activation validation test

relu 0.86 0.87

tanh 0.73 0.68

Experiment #6:

epochs validation test

5 0.80 0.71

10 0.82 0.75

20 0.86 0.87

Email your report to Dr Schneier mhs64@pitt.edu before Wednesday, 4 December.

7

