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How low can we go?

Minimization (Gradient Descent)

Given a function f(x) with derivative f ′(x), find a value x for which f(x) attain its minimum value.

1 Minimize a quartic function using gradient descent

Consider the example function named quartic whose formula is:

f(x) = 2x4 − 4x2 + x+ 20

Suppose that this function measures a cost, based on the choice of x. We want to choose a value −2 ≤ x ≤ 2
which minimizes the cost f(x).

Random sampling, or plotting, might give us some clues, but we would like to find an automatic procedure
that can minimize a function based on its formula. If we start with some randome point x in the interval,
then we would naturally want to take a small step to the right or left, if only we knew in which direction
the function decreases. But if we have access to the derivative, f ′(x), then that information is computable
too. If f ′(x) is positive, the function decreases to the left, and if negative, it decreases to the right.

For our quartic function, the derivative is

f ′(x) = 8x3 − 8x+ 1

If we started our investigation at x = 1.5, then f(x) = 22.625, and f ′(x) = 16.0 so this tells us that if we
are looking for lower values of f(x), we should look to the left (at lower values of x) - at least in the nearby
neighborhood. We can see that this is so by plotting the function:
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The quartic() function

This suggests a method for moving towards a low point of the plot of f(x). Just take a small step in the
direction opposite to the derivative. Keep doing that until the derivative gets so small that we are evidently
near a critical point, which we can hope is a local minimum. On the other hand, if we take a step in what
should be the direction of decrease, but the function rises, then we may have stepped past a minimizer, and
we should back up and try a smaller step.

This general technique is known as gradient descent.

2 Gradient descent pseudocode for 1D case

Pseudocode for a gradient descent method might look like this,

1 g rad i en t de s c en t1 ( f , df , x , r , dxtol , d f t o l , itmax )
2
3 # grad i en t descent f o r a func t i on o f 1 parameter
4
5 i t = 0
6
7 Loop1 :
8
9 i f | df ( x ) | < d f t o l ) return

10
11 xold = x
12 beta = 1 .0
13 Loop2 :
14 i t = i t + 1
15 i f ( itmax < i t ) return x
16 dx = − beta ∗ r ∗ df ( xold )
17 i f ( | dx | < dxto l ) return
18 x = xold + dx
19 i f f ( x ) < f ( xold ) break Loop2
20 beta = beta / 2
21 Loop2 end
22
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23 Loop1 end
24
25 Return x
26
27 g rad i en t de s c en t1 end

Listing 1: Pseudocode for gradient descent.

The input quantities f and df define the function and its derivative, x is the starting point, r is the learning
rate, a sort of stepsize control, dxtol and dftol are tolerances for the minimum size of the step and derivative,
and itmax limits the number of iterations.

3 Example: Applying gradient descent to quartic()

For our quartic function, we prepare a file quartic.py containing our definitions of f(x) and f ′(x):

1 def qua r t i c ( x ) :
2 f = 2 .0 ∗ x ∗∗ 4 − 4 .0 ∗ x ∗∗ 2 + x + 20 .0
3 return f
4
5 def qua r t i c d f ( x ) :
6 df = 8 .0 ∗ x ∗∗ 3 − 8 .0 ∗ x + 1 .0
7 return df

Listing 2: Definitions of f(x) and f’(x)

and then call gradient descent1():

1 from qua r t i c import qua r t i c
2 from qua r t i c import qua r t i c d f
3 from g rad i en t de s c en t1 import g rad i en t de s c en t1
4 x0 = −1.6309821
5 r = 0.05
6 dxto l = 0.001
7 d f t o l = 0.001
8 itmax = 100
9 x , i t = g rad i en t de s c en t1 ( quart i c , qua r t i c d f , x0 , r , dxtol , d f t o l , itmax )

Listing 3: Calling gradient descent1 for the quartic function.

Our results are:

it x f(x) f’(x)
0 -1.6309821 21.880899 -20.660779
1 -0.5979431 18.227577 4.0732556
2 -0.8016058 17.453904 3.2921312
3 -0.9662124 17.042614 1.5135112
4 -1.0418880 16.972743 0.28709358
5 -1.0562427 16.970507 0.022776196
6 -1.0573815 16.970493 0.0013615096
7 -1.0574496 16.970493 7.9303703e-05

From these results, you can see we ended up on the left side of the plot, because our starting point was
nearest to that local minimum.

4 Exercise: Applying gradient descent to sag()

The example function sag() has the definition:

f(x) = x2 ∗ cos(
x+ 3π

4
)

3



A plot suggests that there is a minimizer between 0 and 10:

The sag() function

Create a file sag.py defining f(x) and f ′(x): and then call gradient descent1() with a starting point
in [0, 10] and see if you can find a value of x for which f(x) is minimized.

5 Gradient Descent in Higher Dimensions

Now let’s consider what happens if we have a function of multiple variables. For simplicity, let’s consider
the two-dimensional case, which we may think of as involving a function f(x1, x2) or f(x, y). An example
of such a function is named hex2(), and has the form

f(x, y) = 2x2 − 1.05x4 + x6/6 + xy + y2

We can ask for a minimizer of this function, which we suspect is somewhere in the range −3 ≤ x, y ≤ +3.
As before, we will use derivative information, known as the gradient, symbolized by ∇f :

∇f =

[
∂f

∂x1
,
∂f

∂x2
, . . .

∂f

∂xn

]
For our problem, this information is

[
∂f
∂x ,

∂f
∂y

]
with values:

∂f

∂x
= 4x− 4.2x3 + x5 + y

∂f

∂y
= x+ 2y

6 Gradient descent pseudocode for multiple dimensions

The gradient descent code for multiple dimensions is almost the same, except for two places where we need
to use a norm instead of an absolute value; also x, xold, dx and df() are vectors now, rather than scalars.
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1 g rad i en t de s c en t2 ( f ( ) , d f ( ) , x , r , dxtol , d f t o l , itmax )
2
3 # grad i en t descent f o r a func t i on o f mu l t i p l e parameters
4
5 i t = 0
6
7 Loop1 :
8
9 if ||df(x)|| < dftol ) return

10 xold = x
11 beta = 1 .0
12
13 Loop2 :
14 i t = i t + 1
15 i f ( itmax < i t ) return
16 dx = − beta ∗ r ∗ df ( xold )
17 if ( ||dx|| < dxtol ) break Loop1
18 x = xold + dx
19 i f f ( x ) < f ( xold ) break Loop2
20 beta = beta / 2
21 Loop2 end
22
23 Loop1 end
24
25 Return x , i t
26
27 g rad i en t de s c en t2 end

Listing 4: Pseudocode for gradient descent in multiple dimensions.

7 Example: Applying gradient descent to hex2()

For our hex2() function, we prepare a file hex2.m containing our definitions of f(x) and f ′(x). Notice that
the input quantity x and the output quantity df are now vectors of length 2:

1 def hex2 ( x ) :
2 va lue = 2 .0 ∗ x [ 0 ]∗∗2 − 1 .05 ∗ x [ 0 ]∗∗4 + x [ 0 ]∗∗6 / 6 .0 + x [ 0 ] ∗ x [ 1 ] + x [ 1 ]∗∗2
3 return value
4
5 def hex2 df ( x ) :
6 import numpy as np
7 df = np . array ( [ \
8 4 .0 ∗ x [ 0 ] − 4 .2 ∗ x [ 0 ]∗∗3 + x [ 0 ]∗∗5 + x [ 1 ] , \
9 x [ 0 ] + 2 .0 ∗ x [ 1 ] ] )

10 return df

Listing 5: Definitions of f(x) and f’(x) for hex2().

and then call gradient descent2():

1 import numpy as np
2 from g rad i en t de s c en t2 import g rad i en t de s c en t2
3 x0 = np . array ( [ 2 . 0 , 1 . 5 ] )
4 r = 0 .10
5 dxto l = 0.00001
6 d f t o l = 0.001
7 itmax = 100
8 x , i t = g rad i en t de s c en t2 ( hex2 , hex2 df , x0 , r , dxtol , d f t o l , itmax )

Listing 6: Calling gradient descent2 for hex2().

Our results are:
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it x y f(x) dfdx dfdy
0 2.000000 1.500000 7.116666 7.970000 5.000000
1 1.210000 1.000000 3.410503 0.993186 3.210000
2 1.110681 0.679000 2.397414 1.057327 2.468681
3 1.004948 0.432131 1.741589 1.214253 1.869212
4 0.883523 0.245210 1.277457 1.420986 1.373944
5 0.741424 0.107816 0.901377 1.585770 0.957056
.. ... ... ... ...

41 0.000248 -0.000599 3.340249e-07 0.000393 -0.000950
42 0.000209 -0.000504 2.364863e-07 0.000331 -0.000800

We can see that the function value has been greatly decreased, and that the derivative components are so
small that we do not expect any significant improvement by continuing the computation.

8 Gradient Descent for data fitting

Many machine learning problems start with a mass of data, in which one y is approximately determined by
one or more variables that we think of as x. For instance, we may have n pairs of values (xi, yi). We look
for parameters b and m in a linear model y = b+m ∗ x that approximates our data well.

The numbers b and m are unknown. For any particular i, we will measure the error ei as the square of
the difference between the model’s prediction based on xi, and the actual data yi:

ei(b,m) = (yi − b−mxi)2

Now we want to minimize the sum of all those functions. We call this single function E(b,m):

E(b,m) =

n∑
i=1

ei(b,m)

We want to make this problem this look like a typical case for gradient descent. We start by defining a
single variable bm = [b,m], which packs all our variables into one. Correspondingly, we can now write
f(bm) = f([b,m]) = E(b,m).

We need to create a procedure to evaluate f(bm), which might look like this:

1 def f o r d f (bm) :
2 b = bm[ 0 ]
3 m = bm[ 1 ]
4 x , y = fo rd data ( )
5 f = np .sum ( ( y − b − m ∗ x ) ∗∗2 )
6 return f

Listing 7: Evaluate f(bm) for Ford data

and a corresponding procedure to evaluate df(bm):

1 def f o r d d f (bm) :
2 b = bm[ 0 ]
3 m = bm[ 1 ]
4 x , y = fo rd data ( )
5 dfdb = − 2 .0 ∗ np .sum ( ( y − b − m ∗ x ) )
6 dfdm = − 2 .0 ∗ np .sum ( ( y − b − m ∗ x ) ∗ x )
7 df = np . array ( [ dfdb , dfdm ] )
8 return df

Listing 8: Evaluate gradient ∇(f) for Ford data
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and now we need to write a function ford data() which returns a copy of our data. The gradient descent
method does not perform well if the variables have very different scales. To be safe, we can always rescale each
column to lie between 0 and 1. However, this means that our values of b and m will apply to the normalized
data. If we want to write the formula in terms of the original data, we have to undo the normalization (a
cleanup task which we will not do here!)

1 def f o rd da ta ( ) :
2
3 data = np . l oadtx t ( ’ f o rd data . txt ’ )
4
5 x = data [ : , 0 ]
6 y = data [ : , 1 ]
7
8 x = ( x − np .min ( x ) ) / ( np .max ( x ) − np .min ( x ) )
9 y = ( y − np .min ( y ) ) / ( np .max ( y ) − np .min ( y ) )

10
11 return x , y

Listing 9: Return the values of the Ford data

After writing these three procedures, we can call gradient descent2() just like we did for the simpler
hex2() problem:

1 import numpy as np
2 from g rad i en t de s c en t2 import g rad i en t de s c en t2
3 bm0 = np . array ( [ 0 . 5 , 0 . 0 ] )
4 r = 0 .01
5 dxto l = 0.001
6 d f t o l = 0.001
7 itmax = 1000
8 bm, i t = grad i en t de s c en t2 ( f o r d f , f o rd d f , bm0, r , dxtol , d f t o l , itmax )

Listing 10: Calling gradient descent2 for the Ford data.

9 Example: Gradient descent to fit Ford data

We run gradient descent2 on the Ford problem, with a starting guess of bm0=[b,m]=[0.5,0.0]. Here is
a sample of the results:

1 f o rd g r ad i en t 2 :
2 Python ve r s i on : 3 . 6 . 8
3 Given mi leage x and p r i c e y for used Fords ,
4 seek (m, b) so that y=b+mx approximates the data .
5 Use g rad i en t descent2 to es t imate best b and m.
6
7 i t : 0 x : [ 0 . 5 0 . ] f ( x ) 2.5773498181818186 df ( x ) [−9.05163636 −1.34333243]
8 i t : 1 x : [ 0 . 59051636 0 .01343332 ] f ( x ) 1.954602113941928 df ( x ) [−4.61119726 0 .68933256 ]
9 i t : 2 x : [ 0 . 63662834 0.00654 ] f ( x ) 1.7798747361978844 df ( x ) [−2.63202845 1 .55273919 ]

10 i t : 3 x : [ 0 .66294862 −0.00898739] f ( x ) 1.6955150280382623 df ( x ) [−1.74111328 1 .90032506 ]
11 . . . . . . more output . . . . . .
12 i t : 117 x : [ 1 .0471238 −0.78465017] f ( x ) 0.5783556887827288 df ( x ) [−0.04539271 0 .09537134 ]
13 i t : 118 x : [ 1 .04757773 −0.78560388] f ( x ) 0.578245646967721 df ( x ) [−0.04415571 0 .09277238 ]
14 i t : 119 x : [ 1 .04801929 −0.78653161] f ( x ) 0.5781415209296815 df ( x ) [−0.04295242 0 .09024424 ]
15
16 Step s i z e | | dx | | l e s s than dxto l = 0.001
17
18 Norm of i n i t i a l e r r o r i s 2.57735
19 Norm of t o t a l e r r o r i s 0.578142

Listing 11: Output for gradient descent2 on Ford data
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Our parameters are b=1.048, m = -0.786. We plot the normalized data:

Linear formula to approximate the normalized Ford data

10 Computing Assignment #5

The file moneyball data.txt contains 15 records. Each record lists a total payroll pay in the hundreds of
millions of dollars, and a winning rate win (between 0 and 1) for a baseball team. We would like to construct
a model that approximately predicts the winning percentage based on the payroll, assuming that more money
means a higher win rate, of the form:

win = b+m ∗ pay

Write a python program hw5.py that estimates b and m using the gradient descent2() function. You might
modify the code ford gradient2.py to do this.

1. include a function moneyball data to set up the moneyball data, split it into pay and win vectors,
normalize both vectors to lie between 0 and 1, and return these as output;

2. include functions moneyball f and moneyball df to evaluate the error function and derivative;

3. set input and call gradient descent2;

4. print the parameters b and m computed by the program, and the norm of the error moneyball f() at
these parameters;

You may need to adjust the starting values for b and m to get the calculation to converge. You should expect
to need less than 1,000 iterations to get a result. Because in this case the data is very scattered, the gradient
descent method might only be able to reduce your initial error norm by a moderate amount.

Email a copy of your program to Dr Schneier mhs64@pitt.edu before Wednesday, 16 October.
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