Clustering

MATH1900: Machine Learning

Location: http://people.sc.fsu.edu/~jburkardt/classes/ml_2019/clustering/clustering.pdf

Washington

Helena
o

Montana

Minnesota

9
St. Paul

Wyoming

Carson City
°

Ohi
ndiana Coluénbus

ou ta Mi
Cheyenne
° pesoine .
sprngield| "o
Defver s I cianapgie
o
Caloio Topeka ° f
Kansas g
Santa Fe Nashville:
o

Nevada

Tennessee

a City
New Mexico

Using K-means to redefine the United States.

The Clustering Problem

Given data that is not labeled or organized in any way, search for natural groupings into K clusters.

1 The K Means algorithm

When we are given a dataset, and we don’t have any previous knowledge about how the data might be
organized, we can do some simple things to try to analyze it. This includes getting statistics such as the
minimum and mean, using plotting to see if we can spot patterns or structure. Sometimes, we may suspect
that the data naturally has clumps or clusters. Identifying such clusters can be the start to understanding
or compressing the data. A standard technique for clustering is known as the k-means algorithm.

We suppose our data is stored as an m X n numweric array, where each row contains the values of a single
data item. If the data can be thought of as points in the plane, then each row would store the z and y
coordinates of a point.

If we have (x,y) data, and it does have clustering, then our eye would automatically organize a plot of the
data by recognizing these clusters. We are calling the k-means algorithm to do this for us automatically, no
matter how many data points, no matter how many dimensions each data point has.

The k-means algorithm is an iteration, which repeatedly updates two objects: a set of k centroids, and a
cluster assignment for each data item. To start the iteration, the user needs to specify the value of k, and
initial values for the k centroids, each of which should be an n-dimensional value like the data. After that,
the updating is done automatically.



The goal of the iteration is to find a clustering that minimizes the total cost. This cost is the sum of the
squared distance of each point to its cluster center. Each step of the k-means algorithm is guaranteed to
reduce (or at least, never increase) this cost.

On the first step, given the user centroid values, we assign each data item to the centroid that is closest to
it. On subsequent steps:

Replace each centroid by the average location of the cluster data;
Compute the cluster assignment of each data item;

Compute cost of this clustering;

If clustering cost is acceptable, or didn’t decrease much, we are done;
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If no item moved, we are done;

2 Example: The Pizza Truck Problem

The town of Grayville has three pizza trucks, which are painted red, green, and blue. By tradition, every
house in Grayville has always ordered from the same truck, which then sends the delivery by scooter.

The price of gas has risen, and the owner of the pizza trucks asks a consultant if there is a way to save
money.

1. Each house should be served by the nearest pizza truck. Assign each data item to the nearest centroid)
The owner is impressed by this change, which lowers the monthly gas bill. But is that as good as we
can do? It turns out that in this new system, the trucks are not well placed.

2. Each truck should be moved to the center of its service area. (Replace each centroid by the average of
its data items.) That has got to be it, says the owner. No, because when you moved the trucks, you
actually made some houses slightly closer to a different truck than the one they had been assigned.

3. Unless things settled down, go back to step #1
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This simple example suggests how k-means clustering can reorganize data so that it is grouped more tightly.
In this case, the regrouping simply reduces the total travel cost of the deliverers. In other cases, we expect
that the grouping may reflect some meaningful fact about the data.

3 Example: Coding the Pizza Truck Problem

Assume that the arrays x and y contain the coordinates of each house, that s and t contain the coordinates
of each truck, and that rc, gc and bc list the houses served by the red, green, and blue trucks respectively.

Our first improvement is to assign each house to the nearest truck. To do this, we need to compute the
distance of each house to each truck, and update the assignment vectors. We can also compute the current

cost.

rd = np.sqrt ( ( x — 0] )**2 + (y [0] )=*x2 )

gd = np.sqrt ( ( x — 1] )*%2 + ((y — t[1] )=x2 )

bd = np.sqrt ( ( x — s[2] )*x2 + (y — t[2] )=xx2 )

rc = np.where ( (rd < bd ) & ( rd < gd ) )

gc = np.where ( ( gd < bd ) & (gd <rd ) )

bc = np.where ( ( bd < rd ) & ( bd < gd ) )

cost =sum ( bd[bc] ) +sum ( rd[rc] ) + sum ( gd[gc] )

Because we have reassigned some houses, it makes sense to move each truck to the center of its set of houses.

We just have to average all the coordinates:
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Because the trucks have moved, we need to recompute the distances and update the cost.
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These two steps of reassigning houses and moving trucks are repeated until no house has to be reassigned,
or the cost stops changing.

For the example problem in the illustration, here is how the cost changes:

B W - O

181.49 Initial

146.29 Reassign houses

117.08 Move trucks, reassign houses

116.73 Move trucks, reassign houses

116.73 Move trucks, reassign houses, NO CHANGE

You can examine a simple code for this problem in the file pizza_kmeans.py.

4 Example: The Old Faithful geyser

Timings have been made of the Old Faithful geyser, measuring the lengths of each eruption, and the pause
that follows. We will work with a data file faithful_data.txtof n = 272 pairs of these measurements, hoping
to find patterns.

import numpy as np

data = np.loadtxt ( ’faithful_data.txt’ )
x = data[:,0]

y = data[:,1]

n=1len ( x )
import matplotlib.pyplot as plt
plt.plot ( x, y, ’b.’, markersize = 15 )

plt.show ( )

Listing 1: Get data and plot it

The original x and y data have much different scales. The plot function hides this discrepancy inside an
almost square plot box. When one data axis is really 10 times larger than the other, our clustering will work
much better with normalized data.

xmin = np.min ( x )

xmax = np.max ( X )

ymin = np.min ( y )

ymax = np.max ( y )

x = ( x — xmin ) / ( xmax — xmin )

s =(y— ymin ) / ( ymax — ymin )
plt.plot ( x, y, ’b.’, markersize = 15 )

plt.show ( )

Listing 2: Scale the data

From the plot, we decide that our data naturally falls into K = 2 clusters. To start the k-means algorithm,
we will pick two center points. They should be near the data, and not too near each other. Once we have
picked the centers, we will assign each data item to the nearest center.

bx = 0.4

by = 0.6

rx = 0.6

ry = 0.3

bd = np.sqrt ( ( x — bx )*%2 + ( 'y — by )*x2 )
rd = np.sqrt ( ( x — rx )**2 + ((y — ry )**2 )
bc = np.where ( bd < rd )

re np.where ( rd <= bd )

Listing 3: Assign data to nearest blue or red center
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plt.plot ( x[bc], y[bc], ’b." )
plt.plot ( x[rc], y[rc], 'r.” )
plt.plot ( bx, by, ’bo’ )
plt.plot ( rx, ry, ’'ro’ )
plt.show ( )
Listing 4: Plot our clustering
Old Faithful eruption durations and waits Clusters using two centers
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Data, and first attempt at clustering.

The vectors bc and rc are the indices of points that “belong” to the blue or red cluster now. We evaluate
the goodness of this clustering by computing the total distance. We add the distance of every blue point to
the blue center, and the distance of every red point to the red center.

cost = bd[bc] + rd[rc]

Listing 5: Evaluate cluster cost

Our first step of k-means is done.
Each subsequent step does the following;:

Replace each centroid by the average location of the cluster data;
Recompute the cluster assignment of each data item;

Compute cost of this clustering;

If clustering cost is acceptable, or didn’t decrease much, we are done;

A

If no item moved, we are done;

The only item we need to look at is the update of the centroids:

W N

bx = np.mean ( x[bc] )
by = np.mean ( y[bc] )
rx = np.mean ( x[rc] )
ry = np.mean ( y[rc] )

Listing 6: Updating the cluster centroids.

The k-means algorithm is an iteration, so we expect to repeat this process of updating centroids and updating
cluster membership many times. However, the python library numpy provides us with a function that takes
our data file and returns the centroids and cluster assignments with a single call:
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import numpy as np
from scipy.cluster.vq import kmeans2

data = loadtxt ( ’faithful_data.txt’ )

# We should normalize our data here, as we did abowve...
k =2
¢, label = kmeans2 ( data, k )
plt.plot ( data[label==0,0], data[label==0,2], ’b.’ )
plt.plot ( data[label==1,0], data[label==1,1], ’r.’ )
plt.plot ( c[0,0], c[0,1], ’bo’ )
plt.plot ( ¢[1,0], c¢[1,1], ’ro’ )
plt.show ( )

Here, labels is a vector the same length as data, which contains the index of the cluster assigned to each
item. For our problem, it contains values of 0 or 1.

Clusters using kmeans2()
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Final clustering, courtesy of kmeans2().

You can examine a code for this problem in the file faithful kmeans2.py.

5 Computing Assignment #4

The file ruspini_data.tzt contains the (z,y) coordinates of 75 points, in the range 0 < z < 120,0 <y < 160.
We want to organize the data into a small number K of clusters. Make a plot of the data, and decide what
a natural value for K should be. This value will be more than 2, and not more than 10!

Write a Python program called hwj.py which

1. reads data, the information in ruspini_data.tzt,

2. scales the data in column 0 and in column 1, so each column now ranges from 0 to 1;
3. prints out your choice for k, the number of clusters;

4. calls kmeans2() to determine a clustering;

5. plots your data using k colors to display the clusters.

Email a copy of your program to Dr Schneier mhs64@pitt.edu before Wednesday, 9 October.




