quadrature_variety
quadrature_variety,
covers a variety of topics involving the estimating of integrals.
The notes:
Scripts and functions:
-
circle_mc.m,
circle_mc(nmax) estimates an integral over the unit circle
using the Monte Carlo method with nmax points.
-
clenshaw_curtis_ab.m,
clenshaw_curtis_ab ( n, a, b ) returns a Clenshaw-Curtis
rule for [a,b] using n points.
-
clenshaw_curtis_m1p1.m,
clenshaw_curtis_m1p1 ( n ) returns a Clenshaw-Curtis
rule for [-1,+1] using n points.
-
gauss_ab.m,
gauss_ab ( n, a, b ) returns a Gauss
rule for [a,b] using n points.
-
gauss_m1p1.m,
gauss_m1p1 ( n ) returns a Gauss
rule for [-1,+1] using n points.
-
hat.m,
hat ( x1, x2, x3, x ) evaluates at x the hat function
defined by nodes x1, x2, x3.
-
hat_integral.m,
hat_integral ( n ) estimates the integral of
phi_i(x) * f(x) where phi_i(x) is a hat function
associated with the i-th node of a mesh of [a,b].
-
hump.m,
hump(x) evaluates the hump() function.
-
hump_int.m,
hump_int(a,b) returns the exact integral of the hump()
function over [a,b].
-
hump_mc.m,
hump_mc(n) estimates the integral of the hump()
function over [0,2] using an n-point Monte Carlo method.
-
hump_simpson.m,
hump_simpson applies a sequence of composite Simpson rules
to estimate the integral of the hump() function over [0,2].
-
quadrature_playoff.m,
quadrature_playoff compares the performance of several
quadrature rules on a single problem.
-
rectangle_gauss.m,
rectangle_gauss(n1,n2) uses an n1 x n2 product Gauss rule
to estimate an integral over a rectangle.
-
rectangle_integral2.m,
rectangle_integral2( ) uses MATLAB's integral2() function
to estimate an integral over a rectangle.
-
sinexp.m,
a 2D test integrand sinexp(x,y)=sin(x)*exp(x+y).
Images:
-
chebyshev_points.png,
illustrates how the chebyshev points are defined.
-
maple_leaf.png,
suggests how the area of an irregular region can be estimated
by a Monte Carlo procedure.
Last revised on 15 October 2019.