quadrature_trapezoid
quadrature_trapezoid,
demonstrates how the integral of a function f(x) can be estimated
using the trapezoid rule.
The notes:
Scripts and functions:
-
decrease_h.m,
look at the error when a single trapezoid is used,
and the interval size decreases.
-
hump.m,
evaluates the hump() function.
-
hump_adapt.m,
adaptively estimates the integral of hump() over [0,2].
-
hump_int.m,
returns the definite integral of hump() over [a,b].
-
hump_trap.m,
11 estimates of the integral of hump() over [0,2],
using T1, T2, T4, ..., T1024.
-
roedder.m,
evaluates the roedder() function.
-
roedder_int.m,
returns the definite integral of roedder() over [0,2pi].
-
t2_minus_t1.m,
estimates the error in integration by comparing
T1 and T2 estimates for the integral of exp(x).
-
trap_adapt.m,
uses adaptive trapezoidal quadrature.
Text files:
Images:
-
esin.png,
a plot of the esin() function y=exp(x)*sin(x).
-
hump.png,
a plot of the hump() function.
-
pnc_tower.png,
the shape of Pittsburgh's PNC tower suggests a trapezoid.
Last revised on 07 October 2019.