quadrature_gauss
quadrature_gauss,
demonstrates how the integral of a function f(x) can be estimated
using Gauss quadrature.
The notes:
Scripts and functions:
-
cosfrac.m,
a sample integrand, y = 1/(2+cos(x)).
-
cosfrac_composite.m,
uses an m-subinterval n-point composite Gauss rule to
estimate the integral of 1/(2+cos(x)) from 0 to 2pi.
-
cosfrac_int.m,
returns the integral of cosfrac over the interval [0,2pi].
-
expo.m,
a test integrand, y = e^(-x^2).
-
expo_gauss.m,
uses an n-point Gauss rule to estimate the integral of
e^(-x^2) from 0 to b.
-
expo_int.m,
returns the definite integral of e^(-x^2) over [a,b].
-
gauss.m,
returns points and weights for an n-point Gauss quadrature rule
defined on the interval [-1,+1].
-
gauss_ab.m,
returns points and weights for an n-point Gauss quadrature rule
defined on the interval [a,b].
-
gauss_properties.m,
verifies some properties of xi and rho in a Gauss rule.
-
hump.m,
evaluates the hump() function.
-
hump_gauss.m,
hump_gauss(tol) estimates the integral of hump() to within
an estimated error of tol.
-
hump_int.m,
returns the value of the definite integral of hump() from a to b.
-
newton.m,
returns points and weights for an n-point Newton quadrature rule
defined on the interval [-1,+1].
-
newton_ab.m,
returns points and weights for an n-point Newton quadrature rule
defined on the interval [a,b].
-
poly.m,
a sample integrand, the function y = 10*x.^4 - 12*x.^3 + 2*x;
-
poly_gauss.m,
uses Gauss quadrature to estimate the integral of poly(x) over [-1,3].
-
poly_int.m,
returns the integral of y = 10*x.^4 - 12*x.^3 + 2*x over [a,b];
-
quartic.m,
evaluates the quartic() function.
-
quartic_gauss.m,
estimates the integral of the quartic() function over [a,b].
-
quartic_gauss_m1p1.m,
estimates the integral of the quartic() function over [-1,+1].
-
quartic_int.m,
returns the value of the definite integral of quartic() from a to b.
Images:
Last revised on 21 October 2019.