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Preface

“Prediction is hard, especially about the future.”
-attributed to many people including Yogi Berra and Niels

Bohr
To display formal fireworks, which are so much in the centre

of many mathematical treatises–perhaps as a status-symbol by
which one gains admission to the august guild of mathematicians—
was not the primary aim of the book. [Lanczos, in the preface of
his book "Discourse on Fourier Series"]

This book is about using numerical methods to predict the future reliably
and efficiently. Reliability means errors in the prediction are a central concern.
Efficiency means that the second central concern is cost / turnaround time. /
resources required to produce the prediction. The problem we consider, the initial
value problem or IVP, arises as follows. Suppose the state of a system at time t
can be characterized by a collection of N numbers (the vector y(t)) where N is often
quite large. Suppose the state of the system is known today (taken to be t = 0) and
finally that the laws governing the system are known: the way the system changes
depends on the time and on the state of the system

y′ = f(t, y), for all time t > 0 (IVP)

y(0) = y0, at time t = 0.

The initial value problem is then to predict (reliably and efficiently) the future state
of the system: find y(t) for t > 0.

The most basic solution to this problem was devised by the great Leonard
Euler. It (Euler’s method) proceeds as follows: We pick a step size called △t.
The variables tj and yj denote tj = j△t and yj is the approximation we compute
to y(tj):

△t = step size, tj = j△t = jth time step, yj ≈ y(tj).

Euler’s method to find yj is constructive. It is motivated as follows: Suppose
we know y(tj) exactly and want y(tj+1) = y(tj +△t). Expanding y in a Taylor
series at tj gives:

y(tj+1) = y(tj) + y
′(tj)△t+

1

2
y′′(ξ)△t2 , for some ξ, tj < ξ < tj+1.

Now the equation y(t) satisfies is y′(tj) = f(tj , y(tj)). Thus:

y(tj+1) = y(tj) +△tf(tj , y(tj)) +
1

2
y′′(ξ)△t2 , for some ξ, tj < ξ < tj+1.

v
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The last term, 1
2y
′′(ξ)△t2 , is “unknowable” since both y′′ and the point ξ is

unknown but it is small1 if △t is small. Just dropping this last term is Euler’s
method:

Given yj find yj+1 by

yj+1 = yj +△tf(tj , yj) , for j = 0, 1, 2, · · ·.(Euler)

In theory this works: It is easy to program, constructive, convergent

yn → y(tn) as △t → 0.

In practice, Euler’s2 method is nearly completely inadequate. It has low ac-
curacy: on many computers the small amount of roundoff errors always present
accumulates fast enough to overwhelm the methods accuracy. Its error can grow
exponentially fast as more steps are taken even in cases when the true solution
does not. There are also cases where its predictions are fundamentally, qualita-
tively wrong. These are the central concerns in developing methods, inspired by
Euler’s method, of much greater accuracy. Reliability requires the methods func-
tion like expert systems in some respects and select their own time step to produce
target accuracy with minimal work. This approach is called adaptivity and is a cen-
tral contribution of modern numerical analysis and the heart of this book. Without
efficient adaptive methods no further progress is possible as all other issues are lim-
ited by numerical errors. With adaptivity, other important issues can be addressed
with hope.

Some of these other issues include the following:
1. Errors due to uncertain initial conditions or measured parameters

in the model.

Chaos- when the present determines the future but the approxi-
mate present does not determine the approximate future. - Edward
Lorenz

If y(0) or some parameter in f(t, y) are known from measurements, they will
only be known to a few significant digits

y(0) = y0 ± ε.

The correct way to treat this uncertainty is by statistical techniques. Operationally,
a number of systems are solved with random perturbations of the initial conditions
and the results are averaged to obtain the most likely scenario. The spread of
forecasts the also gives a confidence interval for the influence of the initial error. To
get an idea of the costs involved, consider a small problem. If the model has only
100 components in y(t) and each component only 100 different perturbations are
evaluated; this means 1002 = 10, 000 different runs solving the IVP are required. If
the uncertainty arises in f(t, y) these 10, 000 new problems arise each time step.

2. Unknown initial data.
It is also quite common for a complete initial condition to be unknown. Thus

suppose we only know C0y(0) = x0 for C not of full rank. Somehow the missing

1In applied math, something is small usually means that (something)2 is negligable.
2Adapted from the Wikipedia article on him:
Leonhard Euler (1707 — 1783) was a Swiss mathematician who made important discoveries

in many branches of mathematics. He is also known for his work in mechanics, fluid dynamics,
optics, astronomy, and music theory. Euler is held to be one of the greatest scientists in history.
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components of y(0) must be inferred from measurements / observations of the
solution at later times. If we know components of y(T ), so for some other matrix
CT not of full rank, CTy(T ) = ydata(T ), the uncertain components of the initial
data are filled in by solving (backwards in time) the problem

minimize : |C0y(0)− x0|2 + |CT y(T )− ydata(T )|2

subject to: y′ = f(t, y), 0 < t < T.

3. Errors in the model due to measured parameters or to unrepre-
sented processes.

These must be identified from extra solution measurements. Measurements or
observations are averages. Thus, they containing necessarily less information than
y(t). (Otherwise, we would just use the observation as a new initial condition.)
Thus, we have a matrix C which is not of full rank and observations ydata(t) and
want to minimize ydata(t)−Cy(t). Thus the problem becomes:

minimize : |ydata(t)−Cy(t)|2

subject to: y′ = f(t, y), t > 0, & y(0) = y0.

Cases 2 and 3 above are optimization problems with IVP sitting at their center.
Optimization problems are solved by iteration, (in simple form, given a guess of
the unknown data, change it a bit and see if the quantity minimized goes up or
down and use that information to improve the guess of the unknown data) which
requires solving the IVP many times.

It should be clear by now that the cost of using numerical methods to under-
stand phenomena (rather than just solve problems) can be very high when repeated
solves are done to address all these other issues. This high cost has led to four great
streams of ideas in the modern development of numerical methods:

• Adaptivity,
• Parallelism,
• Modularity and
• Hierarchical computations.





PREFACE 1

0.1. The discoverers. ADAPTED FROM WIKIPEDIA:
Edward Norton Lorenz (23 May 1917 — 16 April 2008) was an American math-

ematician, meteorologist, and a pioneer of chaos theory. He introduced the strange
attractor notion and coined the term butterfly effect. Lorenz was born in West
Hartford, Connecticut. He studied mathematics at both Dartmouth College in
New Hampshire and Harvard University in Cambridge, Massachusetts. From 1942
until 1946, he served as a meteorologist for the United States Army Air Corps. Af-
ter his return from World War II, he decided to study meteorology. Lorenz earned
two degrees in the area from the Massachusetts Institute of Technology where he
later was a professor for many years. He was a Professor Emeritus at MIT from
1987 until his death.

During the 1950s, Lorenz became skeptical of the appropriateness of the lin-
ear statistical models in meteorology, as most atmospheric phenomena involved
in weather forecasting are non-linear. His work on the topic culminated in the
publication of his 1963 paper "Deterministic Non-periodic Flow" in Journal of the
Atmospheric Sciences, and with it, the foundation of chaos theory. He states in
that paper:

Two states differing by imperceptible amounts may eventually evolve into two
considerably different states ... If, then, there is any error whatever in observing the
present state–and in any real system such errors seem inevitable–an acceptable
prediction of an instantaneous state in the distant future may well be impossible....In
view of the inevitable inaccuracy and incompleteness of weather observations, pre-
cise very-long-range forecasting would seem to be nonexistent.

His description of the butterfly effect followed in 1969. He was awarded the
Kyoto Prize for basic sciences, in the field of earth and planetary sciences, in 1991,
the Buys Ballot Award in 2004, and the Tomassoni Award in 2008. In his later
years, he lived in Cambridge, Massachusetts. He was an avid outdoorsman, who
enjoyed hiking, climbing, and cross-country skiing. He kept up with these pursuits
until very late in his life, and managed to continue most of his regular activities until
only a few weeks before his death. According to his daughter, Cheryl Lorenz, Lorenz
had "finished a paper a week ago with a colleague." On April 16, 2008, Lorenz died
at his home in Cambridge at the age of 90, having suffered from cancer.
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"All great things are slow of growth." - Epictetus.

More quotes:
Chaos- when the present determines the future but the approximate present

does not determine the approximate future." Edward Lorenz
......
Analysis and algebraic conditions: Theorem 2.2 [Dahlquist equivalence theo-

rem] demonstrates a state of affairs that prevails throughout mathematical analysis.
Thus, we desire to investigate an analytic condition, e.g. whether a differential equa-
tion has a solution, whether a continuous dynamical system is asymptotically stable,
whether a numerical method converges. By their very nature, analytic concepts in-
volve infinite processes and continua, hence one can expect analytic conditions to
be difficult to verify, to the point of unmanageability. For all we know, the human
brain (exactly like a digital computer) might be essentially an algebraic machine.
It is thus an important goal in mathematical analysis to search for equivalent al-
gebraic conditions. The Dahlquist equivalence theorem is a remarkable example of
this: everything essentially reduces to determining whether the zeros of a polyno-
mial reside in a unit disc, and this can be checked in a finite number of algebraic
operations! In the course of this book we will encounter numerous other examples
of this state of affairs. Cast your mind back to basic infinitesimal calculus and you
are bound to recall further instances where analytic problems are rendered in an
algebraic language. [ Arieh Iserles AFCINADE2, p. 25]

....................
Does anyone believe that the difference between the Lebesgue and Riemann

integrals can have physical significance, and that whether say, an airplane would
or would not fly could depend on this difference? If such were claimed, I should
not care to fly in that plane. [Richard W. Hamming, in N. Rose’s Mathematical
Maxims and Minims]

It is frequently claimed that Lebesgue integration is as easy to teach as Riemann
integration. This is probably true, but I have yet to be convinced that it is as easy
to learn. [Thomas William Korner, A Companion to Analysis: A Second First and
First Second Course in Analysis, p. 197]

"In the future, proponents of numerical fluid dynamics should explain the limi-
tations (as well as statistical uncertainties)..." Garrett Birkhoff, p. 29 in: Numerical
Fluid Dynamics, SIAM Review, 25(1983), 1-34.

....................

. . . discrete mathematics is more difficult than continuous mathematics. If
you look at formulas for derivatives of reciprocals and then finite differences for
reciprocals, you see how things are more complicated in the discrete case. . . . The
main point in the theory of difference approximations is to prove stability. To prove
stability is like getting an a priori estimate for the solution of the equation. But to
get those estimates for difference approximations is much more sophisticated than
to get them for a differential equation. [Peter Lax, MAA Focus (May/June 2005)]

"All great things are slow of growth." - Epictetus.
....................
Since a priori estimates lie at the heart of most of his arguments, many of

Leray’s papers contain symphonies of inequalities; sometimes the orchestration is
heavy, but the melody is always clearly audible. [Peter Lax on Jean Leray]
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The equations at which we arrive must be such that a person of any nation, by
substituting the numerical values of the quantities as measured by his own national
units, would obtain a true result.

james clerk maxwell
....................
Through all of scientific computing runs this common theme: Increase the

accuracy at least to second order. What this means is: Get the linear term right.
[GS Gilbert Strang , BAMS, 1993, Wavelet Transforms vs. Fourier Transforms]

....................
The reason is not to glorify "bit chasing"; a more fundamental issue is at

stake here: numerical subroutines should deliver results that satisfy simple, useful
mathematical laws whenever possible . [...] Without any underlying symmetry
properties, the job of proving interesting results becomes extremely unpleasant.
The enjoyment of one’s tools is an essential ingredient of successful work .

donald knuth
....................
The purpose of computing is insight, not numbers. [Richard Hamming]
....................
A computer lets you make more mistakes faster than any invention in human

history - with the possible exceptions of handguns and tequila.
— Mitch Ratliffe
....................
Too many people write papers that are very abstract and at the end they

may give some examples. It should be the other way around. You should start
with understanding the interesting examples and build up to explain what the
general phenomena are. This was your progress from initial understanding to more
understanding. This is both for expository purposes and for mathematical purposes.
It should always guide you.

When someone tells me a general theorem I say that I want an example that is
both simple and significant. It’s very easy to give simple examples that are not very
interesting or interesting examples that are very difficult. If there isn’t a simple,
interesting case, forget it. [Sir Michael Atiyah]

....................
There are many methods for predicting the future. For example, you can read

horoscopes, tea leaves, tarot cards, or crystal balls. Collectively, these methods are
known as "nutty methods." Or you can put well-researched facts into sophisticated
computer models, more commonly referred to as "a complete waste of time."

— Scott Adams, The Dilbert Future
....................
Truth is treason in an empire of lies. [George Orwell, "1984"]
....................
To think, you have to write. If you’re thinking without writing, you only think

you’re thinking. [Leslie Lamport, Thinking for Programmers]
....................
Writing is nature’s way of letting you know how sloppy your thinking is. [Guin-

don]
....................
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To display formal fireworks, which are so much in the centre of many mathe-
matical treatises–perhaps as a status-symbol by which one gains admission to the
august guild of mathematicians—was not the primary aim of the book. [Lanczos, in
the preface of his book "Discourse on Fourier Series"]

....................
numerical analysis is very much an experimental science.
Peter Wynn. "On some recent developments in the theory and application of

continued fractions". Journal of the Society for Industrial and Applied Mathemat-
ics: Series B, Numerical Analysis Volume 1, pages 177—197.

....................
"I rejoice in a belief that intellectual light will spring up in the dark corners of

the earth; that freedom of inquiry will produce liberality of conduct; that mankind
will reverse the absurd position that the many were made for the few." George
Washington, Inaugural Address.

....................
The cancellation in the subtraction only gives an indication of the unhappy

consequence of a loss of information in previous steps, due to rounding of [at least]
one of the operands, and is not the cause of the inaccuracy. [Dahlquist and Bjork,
Numerical Methods in Scientific Computing, Volume 1, p. 17]

....................
Most unfortunately, the habit in the numerical analysis literature is to speak

not of the convergence of these magnificently efficient methods [Adams multistep
integration methods, or other numerical methods for that matter], but of their
error, or more precisely their discretization or truncation error as distinct from
rounding error. This ubiquitous language of error analysis is dismal in tone, but
seems ineradicable. [Llyod Nick Trefethen, Numerical Analysis, PCM]
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There are many methods for predicting the future. For example,
you can read horoscopes, tea leaves, tarot cards, or crystal balls.
Collectively, these methods are known as "nutty methods." Or you
can put well-researched facts into sophisticated computer models,
more commonly referred to as "a complete waste of time."

— Scott Adams, The Dilbert Future

In an initial value problem, the state of a system at time t is described by a
collection of numbers (i.e., a vector) that change with time:

−→y (t) = (y1(t), y2(t), · · ·, yN(t))T .
If the state is one number it is simply y(t) and if it consists of two numbers is
is generally called (x(t), y(t)) instead of (y1(t), y2(t)). The state of the system is
known at some starting time (almost always taken to be t = 0)

−→y (0) = −→y 0 (a known vector).

The laws governing the system are also known and take the general form

d

dt
−→y (t) = −→

f (t,−→y (t)) for t > 0.

This simply says that the system changes ( ddt
−→y (t)) in response to its current con-

dition (
−→
f (t,−→y (t))). This vector notation is shorthand for





y′1(t) = f1(t, y1, y2, · · ·, yN),
y′2(t) = f2(t, y1, y2, · · ·, yN),

· · ·
y′N(t) = fN(t, y1, y2, · · ·, yN)

, for t > 0,

and 



y1(0) = known,
y2(0) = known,

· · ·
yN(0) = known

.

Systems of ODEs often occur from reduction of higher order ODEs and higher
order ODEs often occur through Newton’s laws. For example, a particle’s position
s(t) satisfies (via f = ma) a second order IVP:

s′′(t) = g(t, s(t), s′(t)), t > 0,

s(0) = s0 and s′(0) = s1.

This (and any higher order ODE) can be reduced to a first order system as follows.
Let

y1(t) = s(t) and y2(t) = s′(t).

The first equation is y′1(t) = y2(t) and the second equation is

y′2(t) = s′′(t) = g(t, s(t), s′(t)) = g(t, y1(t), y2(t)).

Thus, this is equivalent to the IVP for system

y′1 = y2
−→y ′ = −→

f (t,−→y )
⇔

y′2(t) = g(t, y1(t), y2(t))
−→y (0) = (s0, s1)T
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where −→y = (y1, y2)T and

−→
f (t,−→y ) = −→

f (t, y1, y2) =

�
y2

g(t, y1(t), y2(t))

�
.

This illustrates that any higher order IVP can be written as an IVP for a first order
system. Thus, methods for solving IVPs for first order systems can be used to solve
any IVP.

E!���"� 1 (Pendulum). The pendulum equation

θ′′ + αθ′ +
g

L
sin θ = 0

naturally takes the form of a single second order equation. Here θ(t) is displacement
from vertical, g is the constant of gravitational acceleration, L the pendulum length
and α an air resistance parameter.

E!���"� 2 (Particle paths). The path −→x (t) taken by a particle in a flow
starting at −→x (0) and with particle velocity −→v is known to satisfy the system

d

dt
−→v (t) =

Cd
St
(−→u (−→x (t), t)− −→v (t)) ,

d

dt
−→x (t) = −→v (t).

Here −→u (−→x , t) is the velocity of the fluid (which is found by a separate calcula-
tion) and Cd, St are coefficients (the Stokes drag coefficient and the Stokes number
respectively). Eliminating −→v (t) gives the second order system

d2

dt2
−→x (t) = Cd

St

�
−→u (−→x (t), t)− d

dt
−→x (t)

�
.

Here is an application where the natural form is a first order system of 6 equations
that is equivalent to a second order system of 3 equations (one for each x, y, z
component of position).

The problem is to predict the future state:

find to high accuracy and with minimal cost −→y (t) for t > 0.

The initial value problem can be scalar (one equation only), a system (i.e.,
more than one equation such as

x′ = f(t, x, y) for −→y (t) = (x(t), y(t))T :
⇔ −→y ′(t) = −→

f (t,−→y (t)),
y′ = g(t, x, y)

first order (y′(t) = f(t, y(t)) as above), second or even higher order (such as
the pendulum equation θ′′(t) + θ(t) = 0), linear, nonlinear and so on. The types
of initial value problems are as broad as the types of phenomena they describe.

We shall begin with the scalar case. Consider

y′ = f(t, y), t > 0,

y(0) = y0 (a known value).

The solution is a curve beginning at the y(0) value, e.g.,
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t

y(t)

The starting point for all numerical methods is Euler’s method. It is given as
follows. Select a small time step (denoted variously as △t or k or h) k > 0 (for
example k = 0.01). Let tn = nk and let yn be an approximation to y(tn). Euler’s
method is:

Given yn find yn+1 by solving

yn+1 − yn
k

= f(tn, yn) , for n = 0, 1, 2, · · ·.(Euler again)

Here "solving" is easy it means simply

yn+1 = yn + kf(tk, yj) .

For this method and all methods the fundamental questions that need to be an-
swered are:

• Convergence: Does yn → y(tn) as k → 0? Without convergence the above
method is only a random number generator at best.

• Efficiency: Does |y(tn) − yn| → 0 as fast as possible for the amount of
work (time) required?

• Reliability: How do we calculate an approximation to y(tn) with a desired
number of accurate significant digits (without knowing y(tn))?

The ingredients we shall develop that answer these three meta questions for
numerical ODEs are:

• A theorem that states "stability + consistency => Convergence".
• A theory that evaluates stability for a method by a simple calculation.
• A theory that evaluates consistency for a method by another simple calcu-

lation.
• A algorithmic way to estimate local errors and adapt the time step to

control local errors.
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E!��
��� 1. The following, where F = F (t), G = G(t), is a simplification of
an equation arising in boundary layer theory. Write is an a first order system;

F ′′ − F ′G− F 2 +G2 = 0

G′′ − 2GF = 0

1. Elements of the theory of Initial Value Problems

Consider the scalar IVP:

d

dt
y(t) = f(t, y(t)) for t > 0 and y(0) = y0 (a known vector).

The first question that arises is whether a solution exists.

D�	������� 1 (Lipschitz condition). Let D be an open, connected set D in R2.
f(t, y) satisfies a Lipschitz condition on D if f(t, x) is a continuous function on
D and

|f(t, y1)− f(t, y2)| ≤ K|y1 − y2| for all y1.y2 ∈ D.

The mean value theorem implies

|f(t, y1)− f(t, y2)| ≤ |∂f
∂y
(t, ξ)||y1 − y2|, for some ξ between y1, y2.

Thus if f(t, y) is C1 it satisfies a Lipschitz condition with K = maxD|∂f∂y | if the
latter is finite.

Concerning existence, Euler proved the following.

T������ 1 (Existence of solutions for an IVP). Let f(t, x) satisfy a Lipschitz
condition on D, an open, connected set D in R2. Let (0, y0) be an interior point in
D. Then, there is an ε > 0 such that a unique solution to the IVP exists for the
time interval −ε ≤ t ≤ +ε.

The idea Euler used in his proof was one of the first numerical methods for
IVPs. He replaced y′(t) = f(t, y(t)) by a difference approximation:

yj+1 − yj
△t = f(tj , yj) or, equivalently,

yj+1 = yj +△tf(tj , yj) , for j = 0, 1, 2, · · ·

where △t is the time step size, tj = j△t is the jth time and yj is intended to be an
approximation to the true y(t) at t = tj . Since y0 is known, there is no problem of
existence of these approximations. This gives a sequence of points

(tj , yj), j = 0, 1, 2, · · ·.

For example, the collection of points below
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F����� 1

t

y

The dots are then connected to produce a continuous, piecewise linear curve:
This is then repeated for a sequence of timesteps △t → 0. Euler then showed

that this sequence of curves converged and that the limit curve was a solution of
the IVP. Euler’s existence proof is constructive. The method of construction using
yj+1 = yj +△tf(tj , yj) is now known as "Euler’s method".
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The procedure Euler use was based on a truncated Taylor series. It will be
important to note that since y′(t) = f(t, y(t)), all derivatives of y can be calculated
by taking the total derivative of f(t, y(t)).

T������ 2 (Derivatives of the exact solution y(t)). Let y′(t) = f(t, y(t)) and
suppose f(t, y) is smooth. Then higher derivatives of y(t) are given by

y′(t) = f(t, y(t))

y′′(t) =
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t)) = ft + fyf

y′′′(t) = ftt + 2ftyf + fyyf + fyft + fyfyf

where all derivatives on the RHS are evaluated at (t, y(t)). Thus, for the true
solution we have

y(t+△t) = y(t) +△tf(t, y(t)) + △t2
2

�
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t))

�
+

△t3
3!

�
ftt(t, y(t)) + 2fty(t, y(t))f(t, y(t))+

+fyy(t, y(t))f(t, y(t)) + fy(t, y(t))ft(t, y(t)) + f2y (t, y(t))f(t, y(t))

�

+O(△t4)

P���	. As y′(t) = f(t, y(t)) we have y′′(t) = d
dtf(t, y(t)). By the chain rule

y′′(t) =
d

dt
f(t, y(t)) =

=
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))y′(t) =

=
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t))

Similarly,

y′′′(t) =
d

dt

�
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t))

�
=

=
∂2f

∂t2
(t, y(t)) +

∂2f

∂t∂y
(t, y(t))y′(t)+

+
∂f

∂y
(t, y(t))

�
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t))

�
+

+

�
∂2f

∂t∂y
(t, y(t)) +

∂2f

∂y2
(t, y(t))y′(t)

�
f(t, y(t)) =

=
∂2f

∂t2
(t, y(t)) +

∂2f

∂t∂y
(t, y(t))f(t, y(t))+

+
∂f

∂y
(t, y(t))

�
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t))

�

+

�
∂2f

∂t∂y
(t, y(t)) +

∂2f

∂y2
(t, y(t))f(t, y(t))

�
f(t, y(t))

Collecting terms gives the formula for y′′′(t). The formula y(t+△t) = y(t) + · · · is
simply Taylor’s theorem using the formula for derivatives. �
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R����& 1 (Cost of evaluating derivatives). For the case of a system of equa-
tions the same formula holds (suitable interpreted). However, the scale of the com-
putation changes dramatically. For example, evaluating ∂f

∂y for a scalar function is

one function evaluation. For a system of N equations, ∂f
∂y is the N ×N matrix

�
∂f

∂y

�

i,j entry

=
∂fi
∂yj

, i = 1, · · ·, N, j = 1, · · ·,N.

This requires N2 function evaluations. Similarly ∂2f
∂y2 requires N3 function evalua-

tions as it represents

∂2fi
∂yj∂yk

, i = 1, · · ·,N, j = 1, · · ·, N, k = 1, · · ·,N.

E!��
��� 2. Find a formula for y′′′′(t). For a system of N equations, how
many function evaluations does it require to evaluate.

1.1. The discoverers. adapted from the Wikipedia article:
Rudolf Otto Sigismund Lipschitz ( 1832 — 1903) was a German mathematician

who made contributions to mathematical analysis where he gave his name to the
Lipschitz continuity condition.

2. Some test problems

Too many people write papers that are very abstract and at the end
they may give some examples. It should be the other way around.
You should start with understanding the interesting examples and
build up to explain what the general phenomena are. This was your
progress from initial understanding to more understanding. This
is both for expository purposes and for mathematical purposes.
It should always guide you. When someone tells me a general
theorem I say that I want an example that is both simple and
significant. It’s very easy to give simple examples that are not
very interesting or interesting examples that are very difficult. If
there isn’t a simple, interesting case, forget it. -Sir Michael Atiyah

We record here some test problems3 that are commonly used to compare one
method against another. A good test problemmakes many methods fail by a criteria
that is non-arguable. Thus, solutions of a good test problem should have some easily
observed qualitative features that are not so easily replicated under discretization.
Some of the test problems are presented without exxplanation. These are ones that
I have no experience with.

2.1. "The" test problem. The simple IVP

y′ = λy, t > 0

y(0) = 1,

solution : y(t) = eλt

has the property that

y(t)→ 0 as t → ∞ provided Re(λ) < 0.

3There are several repositories on the web that collect test problems in a standard format,
such as https://archimede.dm.uniba.it/~testset/testsetivpsolvers/.
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Thus, one common test for a numerical method is whether computed solutions
share this property:

Does yn → 0 as n → ∞ when Re(λ) < 0?

If so then the approximate solution shares asymptotic stability with the true
solution.

Also, if Re(λ) >0 the solution grows no faster than exponential

|y(t)| ≤ eαt, α = Re(λ)

so an approximate solution should as well. A method whose approximate solution
has this property is called 0-stable. There are many variations on what is meant by
stability and each can be tested to see which methods satisfy the discrete version
of the specific form of stability.

This becomes a much more interesting test if λ = λ(t) as some methods are
stable for constant but unstable for variable for some patterns of variability.

2.2. A special case of a Ricatti equation. The test problem is

y′ = −1
2
y3, t > 0

y(0) = 1,

solution : y(t) = (t+ 1)−1/2 .

This is a nonlinear analog of "the" test problem where

λ = −1
2
y2.

It is always interesting to see how much can be inferred from linear problems to
nonlinear problems.

2.3. An oscillatory test problem. Many physical problems have solutions
that conserve some total energy. The simplest example of such a problem is the
linear pendulum:

θ′′ + ω2θ = 0, t > 0, where ω is real,

θ(0), θ′(0) both specified.

It is easy to check that
d

dt

	
θ′(t)2 + ω2θ(t)2



= 0

so that the energy E(t) = θ(t)2 + ω2(θ′(t))2 is exactly conserved:

θ′(t)2 + ω2θ(t)2 = θ′(0)2 + ω2θ(0)2 for all t.

Written as a first order system in the usual way (x(t) = θ(t), y(t) = θ′(t)) this gives

x′ = y, y′ = −ω2x
or

d

dt

�
x
y

�
=

�
0 1

−ω2 0

� �
x
y

�
.

The eigenvalues of the above 2× 2 matrix are easily found to be ±ωi (i =
√

−1) so
that the above system is equivalent to test problem 1 with λ = ±ωi.
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This test problem is interesting because of its exact conservation properties. A
perfect numerical solution to the above system should satisfy

y2n + ω
2x2n = y20 + ω

2x20 for all n > 0.

Thus any significant growth or decay is a numerical artifact.
The system is also interesting because it reveals something about timesteps. If

the initial data is x(0) = 1, y(0) = 0, the exact solution is

x(t) = cos(ωt), y(t) = sin(ωt).

For any pth order method, we shall see that the local truncation error takes the
form

LTE = C△tp+1 d
p+1

dtp+1
(cos(ωt), sin(ωt)) so that

|LTE| = C (|ω|△t)p+1 .

Obviously, for ω large, △t must be small enough that

|ω|△t < 1

to hope for even a single digit of accuracy, regardless of the order of the method or
its stability properties. This condition is often interpreted as saying:

wave speed× time step < 1.

Amplitude and Phase Errors. Consider now Euler’s method for

y′ = iωy, y(0) = 1.

One step of the true solution and one step of Euler’s method give respectively

True soln: y(tn+1) = eiω△ty(tn)
Euler Approx.: yn+1 = Ryn

where

R = 1 + iω△t.

Decompose R as amplitude and phase by

R = |R|eiθ,
|R| =

�
1 + (ω△t)2,

tan θ = ω△t.

The amplitude and phase error of 1 step of Euler’s method are, respectively,

Amplitude Error:= 1−
�
1 + (ω△t)2

Phase Error:= ω△t− arctan(ω△t).

Note that |R| > 1 so Euler’s method is asymptotically unstable. Since the
interesting region to study the phase error is |ω|△t < 1 one can simply plot it:
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From this plot and Taylor’s theorem numerous interesting properties can be in-
ferred:

When the phase error is positive the method errs by accelerating
waves/oscillations and when negative by slowing down waves.

One can also develop methods with zero average phase error by taking combi-
nations of methods with positive and negative phase errors, an idea of Fromm. The
phase error is also related to accuracy: we have the following.

P���������� 1. For Euler’s method, over |ω△t| < 1

|Amplitude_Error| ≤ C|ω△t|2,
|Phase_Error| ≤ C|ω△t|3.

The accuracy of a method is related to the order of contact of the phase error
with the horizontal axis at the origin. Since the phase error is small there it is
natural to study instead the relative phase error.

The relative phase error of Euler’s method is

Relative Phase Error:= ω△t−arctan(ω△t)
ω△t = 1− arctan(ω△t)

ω△t .

The relative phase error of Euler’s method is plotted below.
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It is interesting to see what this means in as simple an example as possible. The
following4 is a plot of the Euler solution of pendulum equation with △t = 1/16 and
the true solution. In the plot it is clear that the error in the computer period is
very small while the error in the amplitude is significant (and would take a much
smaller time step to get a good answer). This is consistent with Euler’s method
having higher order phase accuracy than amplitude error.

E!��
��� 3. Strong stability preserving methods take weighted averages of
Euler steps with positive weights. The weight is used to increase accuracy. If the
weights are positive then the averages preserve positivity if the Euler step preserves
positivity. This is one new approach to higher accuracy plus positivity preservation.
One example is as follows: given yn

y1n+1 = yn +△tf(tn, yn), (Method 1)

y2n+1 = y1n +△tf(tn +△t, y1n+1)

yn+1 =
1

2
y1n+1 +

1

2
y2n+1

NOTE: superscript 1 and 2 are NOT exponents. Apply this to the oscillatory test
problem. Plot the amplitude error, phase error and relative phase error. Analyze
all three: what is their order as △tω → 0? What is the average phase error?
Compare the above results to Euler’s method. Consider the following method with
more general weighted (weighting parameter = θ) averages

y1n+1 = yn +△tf(tn, yn), (Method 2)

y2n+1 = yn +△tf(tn +
1

2θ
△t, yn +

1

2θ
△tf(tn, yn))

yn+1 = (1− θ)y1n+1 + θy
2
n+1.

4Provided by Joseph Fiordilino.
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F����� 2. True solution & Euler approximation, △t = 1/16

Repeat the analysis of problem 1 for this method. Here the phase error will be a
function of 2 variables x = △tω and y = θ so the plots will be a surface. Take
advantage of the fact that the weight may be chosen to derive a method with
minimum phase error. Pick one or more test problems with periodic solutions
and a moderate timestep. Compare Euler, Method 1 and Method 2 over many
periods. Draw conclusions. [NOTE: Your goal is NOT to make all the methods
work but to make some work and some fail. The "Test problem", the mode of
"Failure" and size of "moderate" will be up to you to choose. The choice will
require some computational explorations.]

2.4. The discoverers. J.E. Fromm was a researcher at IBM Research Labo-
ratory. One example of this work

Fromm, J. E., Practical Investigation of Convective Difference Approximations
of Reduced Dispersion, Physics of Fluids, 12, II-3-II-12 (1969), DOI:http://dx.doi.org/10.1063/1.1692465

2.5. Another oscillatory test problem. The previous problem becomes
more ineresting when non-autonomous:

θ′′ + ω(t)2θ = 0, t > 0, where ω(t) is real,

θ(0), θ′(0) both specified.
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It is easy to check that

1

2

d

dt

	
θ′(t)2 + ω(t)2θ(t)2



− [ω(t)ω′(t)]θ(t)2 = 0

so that the energy E(t) = θ(t)2 + ω2(θ′(t))2 is no longer exactly conserved:

θ′(t)2 + ω2θ(t)2 − 2
� t

0

[ω(s)ω′(s)]θ(s)2ds = θ′(0)2 + ω2θ(0)2 for all t.

2.6. Yet another switching growth to decay test problem. The test
problem is

y′ = cos(t)y, t > 0

y(0) = 1.

This is a nonautonomous analog of "the" test problem where

λ = −1
2
y2.

It is always interesting to see how much can be inferred from autonomous problems
to nonautonomous problems.

To be very direct. In such a test the goal is never to show that what holds for
the simple case also holds for the complicated case. The goal is always to find cases
when what holds in the simple case fails in the complicated case and then to explain
why and suggest what to do next.

Another, 2D, version of this problem. If we let x(t) = t then x′ = 1.
Thus the following is mathematically equivalent but can produce different numerical
results:

y′ = cos(x)y,

x′ = 1

y(0) = 1, x(0) = 0.

Yet another, 3D, version of this problem. The following is mathemati-
cally equivalent but can produce different numerical results:

y′ = xy,

x′ = −z,
z′ = +x,

y(0) = 1, x(0) = 1, z(0) = 0.

2.7. The λ − ω System. This is an excellent test problem whose solution
behavior changes depending on choice of the functions λ(t), ω(t):



x′

y′


 =



λ(t) +ω(t)

−ω(t) λ(t)





x

y




x(0), y(0) specified.

Its solution can combine growth, decay and oscillation.
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2.8. The Logistic or S-curve Model. The shape of the solution suggests
small timesteps should be taken initially and then the timesteps should keep getting
larger as the curve gets flatter (as t -> infinity):

y′ =
1

4
y(1− 1

20
y), t > 0,

y(0) = 1.

2.9. A Linear (simplified) Chemical Reaction Model. The system is

x′ = −x+ y, x(0) = 2
y′ = x− 2y + z, y(0) = 0,
z′ = y − z, z(0) = 1.

2.10. A Radioactive Decay Chain. Let A denote the 10x10 matrix:



−1 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 0




and let y(t) denote a 10-vector. The radioactive decay chain test problem is

y′ = Ay,

y(0) = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T .

2.11. Another Radioactive Decay Chain. Let A denote the 10x10matrix:



−1 0 0 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0 0 0
0 2 −3 0 0 0 0 0 0 0
0 0 3 −4 0 0 0 0 0 0
0 0 0 4 −5 0 0 0 0 0
0 0 0 0 5 −6 0 0 0 0
0 0 0 0 0 6 −7 0 0 0
0 0 0 0 0 0 7 −8 0 0
0 0 0 0 0 0 0 8 −9 0
0 0 0 0 0 0 0 0 9 0




and let y(t) denote a 10-vector. The radioactive decay chain test problem is

y′ = Ay,

y(0) = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T .
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2.12. The Lorentz equations. The Lorentz5 system have solutions that are
contained in a bounded region but where small errors in initial conditions grow ex-
ponentially until "saturation" (until O(1) apart). Thus this system is very sensitive.
The first and most famous of many Lorentz systems is

x′ = σ(y − x),

y′ = rx− y − xz,

z′ = xy − bx.

Lorentz chose the initial conditions and parameters:

x(0) = 0, y(0) = 1, z(0) = 0,

σ = 10, b = 8/3, r = 28.

Solving this system and plotting its shadow in the x−z plane6 produced the famous
butterfly plot. Typically a method is used to solve the Lorentz system for constant
time steps and the solution compared with a self-adaptive simulation to estimate
the error in the first.

2.13. Robertson’s equations. The following is a simplified chemical reac-
tion system used7 to test methods failure when solutions approach equilibrium very
rapidly

x′ = −αx+ βyz,
y′ = αx− βyz − γy2,

z′ = +γy2.

Standard values taken in tests are

x(0) = 1, y(0) = 0, z(0) = 0,

α = 0.04, β = 104, γ = 3× 107.

2.14. The van der Pol oscillator.

The purpose of computing is insight, not numbers. [Richard Ham-
ming]

The equation for the van der Pol oscillator is

θ′′ + 10θ′(1− θ) + θ = 0, t > 0,

θ(0) = 1, θ′(0) = 5.

5adapted from the Wikipedia article: Edward Norton Lorenz ( 1917 — 2008) was an Amer-
ican mathematician, meteorologist, and pioneer of chaos theory. His 1963 paper "Deterministic
Nonperiodic Flow" states:

"Two states differing by imperceptible amounts may eventually evolve into two considerably
different states ... If, then, there is any error whatever in observing the present state– and in any
real system such errors seem inevitable– an acceptable prediction of an instantaneous state in the
distant future may well be impossible....In view of the inevitable inaccuracy and incompleteness
of weather observations, precise very-long-range forecasting would seem to be nonexistent."

6The solution curve parameterized by time is (x(t), y(t), z(t)), a curve in 3 dimensions. Its
shadow in the x− z plane can be easily plotted and is the planar curve (x(t), z(t)).

7U. Asher and L. Petzold, Computer Methods for Ordinary Differential Equations and Dif-
ferential Algebraic Equations, SIAM, Philadelphia, 1998.
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F����� 3. The van der Pol relaxation oscillation

This equation undergoes relaxation oscillations to a stable periodic solution. The
solution has a pattern that resembles the teeth on a saw for θ(t) and a series of
large spikes for θ′(t):8

This test problem is interesting in that without adaptivity, most methods re-
quire a small time step to capture the solution. Thus, methods can be compared
based on how small the time step must be to give a faithful approximation. The
van der Pol equation with forcing is also an interesting test problem:

θ′′ + (θ2 − 1)θ′ + θ = 1.3 cos(0.2t),
θ(0) = 1, θ′(0) = 5.

2.15. A Quasi-periodic oscillation problem. The is a simple test problem
without complicated solutions or sharp fronts. The issue here for constant timestep
methods is that for too lartge timesteps weird solutions result while for small enouh
timesteps solutions have reasonable accuracy. Thus: How to select the timestep?

Solve the IVP below written as a first order system

x′′′′ + (π2 + 1)x′′ + π2x = 0, 0 < t < 20,

x(0) = 2, x′(0) = 0, x′′(0) = −(1 + π2), x′′′(0) = 0.

This has exact solution x(t) = cos(t) + cos(πt) , the sum of two periodic functions
with incommensurable periods, quasi-periodic. Start with timestep k = 0.1, toler-
ance TOL = 0.1 .

8This figure is from https://en.wikipedia.org/wiki/File:Vanderpol_mu%3D5.svg
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2.16. A problem with increasing stiffness. Solve over 0 < t < 20

x′ = (1− 2t)x, x(0) = 1.
Take TOL = 0.001. It is useful to plot the solution x(t) = exp

�
t− t2

�

0 2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

x

The solution

.

2.17. Sharp transition regions. Take f(t) = exp
�
− (4.0 + 4.0 sin (x))10

�
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Solve
x′ = λx+ f(t), x(0) = 1, 0 < t < 20, λ = −1 & λ = −1000.
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2.18. A problem with an unstable limit cycle. This problem is almost
impossible to solve correctly without adaptivity except for some odd cases where
the discrere eequations have their own exact limit cycle. Solve x(0) = 1, y(0) =
0, 0 < t < 20

x′ = −x− y + x
�
x2 + y2, 0 < t < 20,

y′ = −y + x+ y
�
x2 + y2, 0 < t < 20,

x(0) = 1,

y(0) = 0.

This has true solution
x(t) = cos(t), y(t) = sin(t)

that goes around and around the unit circle. Any perturbation from any source
makes the solution diverge quickly from this exact solution.

2.19. The Kepler orbit equations. This is a system of 4 equations describ-
ing an orbit with eccentriocity e:

y′1 = y3 , y1(0) = 1− e
y′2 = y4 , y4(0) = 0

y′3 = − y1

(y21+y22)
3/2 , y3(0) = 0

y′4 = − y2

(y21+y22)
3/2 , y4(0) =

�
1+e
1−e

2.20. The Brusselator. The Brusselator is a system of 2 equations proposed
as a theoretical model for an autocatalytic reaction by (Nobel laureate) Ilya Pri-
gogine:

y′1 = A+ y21y2 − (B + 1)y1, y1(0) = 1.5
y′2 = By1 − y21y2, y2(0) = 3.

This has an equilibrium at (A,B/A) which uis unstable for B > 1 + A3. Typical
choices are A = 1, B = 3 for which a stable limit cycle emerges.

2.20.1. The discoverers. Adapted from the Wikipedia article:
Balthasar van der Pol ( 1889 — 1959) was a Dutch physicist. He studied physics

in Utrecht, and in 1920 he was awarded his doctorate. His main interests were
in radio wave propagation, theory of electrical circuits, and mathematical physics.
The van der Pol oscillator, one of the most widely used models of nonlinear self-
oscillation, is named after him. Van der Pol became member of the Royal Nether-
lands Academy of Arts and Sciences in 1949.

2.21. Transport. Oscillations of a pendulum are not a compelling or high
impact application (possibly aside from clock makers). However, the standard test
problem for transport (when something is moved around by a liquid or gas) is

y′ = ±iωy, ω a real number.

To see why we briefly consider the simplest transport problem: for u(x, t) a con-
centration of something that is moves to the right with speed a > 0, u(x, t) satisfies
the partial differential equation

∂u

∂t
+ a

∂u

∂x
= 0,−∞ < x < ∞, t > 0,

u(x, 0) = f(x) , the concentration initially.
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It is easy to check by direct substitution that the exact solution is

u(x, t) = f(x− at)

which is the profile f(x) moving to the right with speed a. The simplest case is
when f(x) is one Fourier mode such as f(x) = cos(nx) + sin(nx) and, as usual we
shall do the calculation with f(x) = einx because it is easier. Then write

u(x, t) = y(t)einx

substitute into ∂u
∂t + a

∂u
∂x = 0 and cancel gives

∂

∂t
(y(t)einx) + a

∂

∂x
(y(t)einx) = 0⇔

y′(t)einx + ay(t)ineinx = 0⇔
y′(t) = −i(na)y

so

ω = na.

Similarly, if the transport is to the left we get y′(t) = +i(an)y. In all cases, faster
transport speed (larger a) means larger ω = na in the test problem y′ = ±iωy.

2.22. A Second order IVP. The following second IVP seems inoffensive

y′′ + 1001y′ + 1000y = 0, t > 0

y(0) = 1 and y′(0) = −1.
However, it has solution (which can be found by standard methods)

y(t) = C1e
−t +C2e

−1000t,

where C1,2 are determined by the initial conditions9. If we write the second order
IVP as one for a first order system in the usual way (y1 = y, y2 = y′ etc.) we get

d

dt

�
y1
y2

�
=

�
0 1

−1000 −1001

� �
y1
y2

�
.

The eigenvalues of the above 2× 2 matrix are easily found to be λ = −1 & −1000.
The stability region of RK4 shows that if this system is approximated by RK4,
it will converge nicely if △t < 0.002 but the approximate solution will blow up
exponentially if △t ≥ 0.003.

This solution exhibits rate constants λ = −1,−1000 which begins to be stiff.
Thus the effect of the e−1000t mode dies out very fast and the solution looks like
e−t. Unfortunately, look what happens with Euler’s method for such a problem.

2.23. Conduction / Diffusion. The IVP for heat conduction in a bar in its
simplest form is a partial differential equation for the temperature u(x, t) at the
point x at time t. The initial temperature u(x, 0) and the temperature at both ends
u(0, t) and u(1, t) are known and the internal temperature satisfies

∂u

∂t
=
∂2u

∂x2
for 0 < x < 1, t > 0.

9y(0) = 1 gives C1+C2 = 1 and y′(0) = −1 gives C1(−1)+C2(−1000) = −1. This is a 2 by
2 linear system for C1, C2.
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F����� 4. The problem of stiffness

To predict the temperature it is converted into an IVP for system of ODEs as
follows. Pick a space mesh width △x = 1/(N + 1) and let

xj = j△x and uj(t) = approximation to u(xj , t).

We approximate

∂2u

∂x2
(xj , t) ≃

uj+1(t)− 2uj(t) + uj−1(t)
△x2 (which has error O(△x2)).

We then have the system of equations for uj(t)

u′1 =
−2u1 + u2

△x2

u′2 =
+u1 − 2u2 + u3

△x2
· · · ·

u′N−1 =
+uN−2 − 2uN−1 + uN

△x2

u′N =
+uN−1 − 2uN

△x2 .

This is written in matrix form as

d

dt




u1
u2
...
uN


 =

1

△x2




−2 +1
+1 −2 +1

ց ց ց
+1 +2







u1
u2
...
uN


 .
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The above matrix is denoted tridiag(+1,−2,+1). We shall see that for this prob-
lem, RK2 is stable if and only if the timestep is very small △t ≤ Const.△x2, an
issue related to stiffness.

2.24. A problem with some aspects of Fluid Flow. This is an example,
capturing some aspects of transition to turbulence, from the thesis of Lionel Walker.
For R > 0 large, 0 < t < 500, δ > 0 take initial condition

(x(0), y(0)) =
δ√
2
(1, 1)

The equation is

d

dt

�
x(t)
y(t)

�
=

�
R−1 1
0 R−1

��
x(t)
y(t)

�
+

+
�
x(t)2 + y(t)2

�
0 1
−1 0

��
x(t)
y(t)

�
.

The solution is visualized by plotting the phase plane (x(t), y(t)).

2.25. A test problem of Orszag related to turbulence. In his notes
"Statistical Theory of Turbulence" S. Orszag suggested the following system of 5
ODEs as an interesting proxy of certain features of turbulence (at infinite Reynolds
number):

d

dt
xi(t) = xi+1xi+2 + xi−1xi−2 − 2xi+1xi−1 for t > 0 and

xi = xi+5 for all i.

It is easy to verify that the solution satisfies

d

dt

5�

i=1

x2i (t) = 0 for t > 0.

He chose the initial conditions below and plotted the 2d shadow traced by (x1(t), x2(t)) :

x1(0) = 0.540323

x2(0) = −1.543569
x3(0) = −0.680421
x4(0) = −1.185361
x5(0) = −0.676307.

3. Stability of Initial Value Problems

There are many different stability concepts for IVPs. We give only a few. Local
stability means simply continuous dependence.

D�	������� 2 (Local Stability / Continuous dependence). The solution y(t) of
the IVP is locally stable if there is an ε > 0 such that for ||δ(x)|| < ε and |�y0| < ε
the solution x(t) of the perturbed IVP

d

dt
x(t) = f(t, x(t)) + δ(x) for t > 0 and

x(0) = y0 + �y0 (a known vector).
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satisfies
max
0≤t≤T

|x(t)− y(t)| ≤ C(T )ε.

E!��
��� 4. Show that of f(t, y) is Lipschitz continuous then the IVP is locally
stable.

Asymptotic stability describes long time behavior with perturbed initial condi-
tions. For an asymptotically stable system, solutions squeezer together as t → ∞.

D�	������� 3 (Asymptotic Stability). Let x(t), y(t) satisfy

d

dt
x(t) = f(t, x(t)) for t > 0 and

x(0) = x0, (a known vector)

and
d

dt
y(t) = f(t, y(t)) for t > 0 and

y(0) = y0 (a known vector).

Then the equation y′ = f(t, y) is asymptotically stable or A-stable if, for any
x0, y0,

|x(t)− y(t)| → 0 as t → ∞.

For the simplest, linear, scalar equation

y′ = ay + f(t)

subtraction shows that w(t) := x(t)− y(t) satisfies

w′ = aw

The solution is w(t) = eatw(0) and thus as t → ∞
w(t)→ 0 if and only if Re(a) < 0

Indeed, if a = α+ iβ, we have

w(t) = eαt [cosβt+ i sinβt]w(0).

and w(t)→ 0 as t → ∞ if and only if α = Re(λ) < 0.





CHAPTER 1

Solving an IVP by Euler’s method

One basic task of computational science is the following. Knowing the
initial state

y(0) = y0 ( y0 is a known number)

and the “laws” governing a system

y′(t) = f(t, y(t)), for 0 < t ≤ Tfinal

predict the future! Specifically:

find y(t) for t > 0.

This could be a single equation (y(t) is a scalar function, y : [0,∞) → R), or
system of equations (so y(t) is a vector function of t, y : [0,∞)→ RN , and f(t, y) :
[0,∞) × R

N → R
N ). The system can also involve higher derivatives. Since the

ideas are all the same, we will first consider a scalar problem.
Naturally, we can’t expect to “solve” for y(t) in closed form. We pick a step

size called variously1 △t, k or h. The variables tj and yj denote tj = j△t and yj is
the approximation we compute to y(tj):

△t =step size, tj = j△t = jth time step, yj ≈ y(tj).

The simplest way to find yj is a method used by Euler to prove that initial
value problems have solutions (i.e., that the future exists!). It’s constructive, so
we can use Euler’s method for calculations. It is motivated as follows: Suppose we
know y(tj) exactly and want y(tj+1) = y(tj +△t). Expanding y in a Taylor series
at tj gives:

y(tj+1) = y(tj) + y
′(tj)△t+

1

2
y′′(ξ)△t2

for some ξ, tj < ξ < tj+1.

Now the equation y(t) satisfies is y′(tj) = f(tj , y(tj)). Thus:

y(tj+1) = y(tj) +△tf(tj , y(tj)) +
1

2
y′′(ξ)△t2

for some ξ, tj < ξ < tj+1.

The last term, 1
2y
′′(ξ)△t2 , is “unknowable” but it is small if △t is small. Just

dropping this last term is Euler’s method:

Given yj find yj+1 by

yj+1 = yj +△tf(tj , yj) , for j = 0, 1, 2, · · ·.

1We shall use △t in the text and h or H in the algorithms. In problems with derivatives in
both space and time, the time step is often called k and the space step h.

31
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It is worthwhile seeing how it works in a simple example.

E!���"� 3 (Euler’s Method for y′ = y). Consider Euler’s method for the
simple IVP

y′(t) = y(t), for t > 0,

y(0) = 1.

The exact solution is

y(t) = et.

Euler’s method for this equation is

y0 = 1 and
yn+1 − yn

△t = yn for n ≥ 0.

This is

yn+1 = (1 +△t)yn
= (1 +△t)(1 +△t)yn−1
= · · · = (1 +△t)n+1.

Note that this means the method converges for fixed t as △t → 0. Indeed, since
tn = n△t, n = tn/△t

yn = (1 +△t)n =

=
�
(1 +△t)1/△t

�tn
→ etn since2

(1 +△t)1/△t → e as △t → 0.

If we take △t = 1/2 (much too large for practical calculation) we get the following
table

n 0 1 2 3 4 5 6
tn 0 1/2 1 3/2 2 5/2 3
yn 1 1.5 2.225 3.375 5.0625 7.59375 11.390625

This has the generally correct behavior (it does grow) but the error (the gap between
the curve below and the points) increases as the calculation progresses. The next
figure plots the true solution and the approximation.
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Notice that the error grows (exponentially). The relative error actually decays as
t increases (exercise below). Thus, while the error in Euler’s method does grow for
this problem, the number of significant digits of accuracy actually improves.

E!���"� 4. Two more important tests. Broadly, there are three types of
generic behavior of solitons to IVPs. Solutions can grow as in the last example,
or decay or oscillate. We complement the last example with two more important
tests of Euler’s method for

Decay: y′ = −100y, y(0) = 1
Oscillation: x′ = y and y′ = −x, x(0) = 1, y(0) = 0.

Their exact solutions are

Decay Solution: y(t) = e−100t

Oscillating solution:
�

x(t) = cos(t)
y(t) = − sin(t)

.

Note that by doing Euler’s method we commit an error O(△t2) every step since

true y(tj+1) = y(tj) +△tf(tj , y(tj)) + 1
2y
′′(ξ)△t2

Euler yj+1 = yj +△tf(tj , yj) .

This is error committed each step called the “local truncation error” = the error
in performing one step of the method starting exactly.

D�	������� 4 (Local Truncation Error). The “local truncation error” of
a method for solving y′(t) = f(t, y(t)) is the error in performing one step of the
method starting exactly. In other words, it is the error := y(tj+1)− yj+1 provided
the exact value of y(tj+1) is used for the method.
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For Euler’s method, the LTE is therefore

LTE = y(t+△t)− [y(t) +△tf(t, y(t))] , where
y(t) = exact solution at time t,

y(t+△t) = true/exact solution at t+△t,
y(t) +△tf(t, y(t)) = one Euler with exact solution y(t).

We calculate the local truncation error of Euler’s method using Taylor’s theorem
as follows:

Local truncation error of Euler’s method =

= y(tj+1)− (y(tj) +△tf(tj , y(tj))) =

=
1

2
y′′(ξ)△t2 = 1

2
y′′(tj)△t2 +O(△t3).

By the equation y′(t) = f(t, y(t)) thus

y′′(t) =
d

dt
(f(t, y(t))) = (by the chain rule)=

=
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))y′(t) =

=
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t))

Thus, we have shown.

P���������� 2. The local truncation error of Euler’s method is

Local truncation error of Euler’s method =

=
1

2

�
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t))

�
△t2 +O(△t3).

To calculate the solution from t = 0 to t = T we take J = T/△t(= O(△t−1))
steps. If errors are additive we thus expect an error in y(T ) of 0(△t). We shall
prove this is true in a later section.

Programming Euler’s method is very simple. Here is an algorithm for it:

A"������� 1. Euler’s method for y′ = f(t, y) over 0 < t < T and y(0) =
y0.

Define the function f(t, y)
Input h = the step size
Input y0 = the initial condition
Input T = the final time
tOLD = 0.0
yOLD = y0

(∗) tNEW = tOLD + h
yNEW = yOLD + hf(tOLD, yOLD)
If (tNEW > T ) STOP
Else yOLD ⇐ yNEW
tOLD ⇐ tNEW pick a new timestep h if necessary and Go To (∗)

The main issues is doing better than Euler’s method are the ones central
to all numerical analysis:



1. SOLVING AN IVP BY EULER’S METHOD 35

• Accuracy: Euler’s method is only O(△t) accurate. Thus it is nearly
impossible to get more than about two significant digits of accuracy with
it in the presence of round off error.

• Efficiency: Can we obtain (greater) accuracy with less work?
• Reliability: Can the calculation be performed to have actual error within
some preset tolerance?

Additional issues arise in the numerical solution of initial value problems and
Euler’s method. These include:

• Physical behavior: The types of behavior systems of ODEs posses are
as varied as all the phenomena of nature. Thus, it is highly unlikely that
one method or a small collection of methods would be reasonable choices
for any system of ODEs.

• Long time calculations: Every step in Euler’s method depends on all
the results (and contains their accumulation of errors as well) of all the
previous steps. If a calculation is to proceed over a long time interval,
accumulation of inherited errors can result in the method being, in essence,
a random number generator.

• Parallelism: It is not uncommon for a system to contain many millions
of equations. To obtain accurate answers in a timely way often requires
algorithms that can access parallel capabilities for storing data and com-
puting approximations.

• Instabilities: Since every step depends on all the results in the previous
steps, exponential instabilities can occur.

• Conservation: Some physical systems have an energy that is exactly
conserved. It is often critical that an approximation exactly conserve
some discrete version of the physical energy.

• Software engineering aspects: For complex problems, the very first
step in the above algorithm, "Define the function f(t, y)", can have a
variety of meanings. Often given t, y, the function value f(t, y) is the
result of running another program (often a legacy program) where t, y are
inputs and f(t, y) is the program’s output. This setting yields restrictions
on methods.

The error in Euler’s method can (remarkably!) be calculated inside the
algorithm. Recall that the local truncation error is:

LocalTruncationError =
1

2
y′′(t)△t2 +O(△t3)

=
1

2

�
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t))

�
△t2 +O(△t3)

For very simple (scalar) problems, the global error can be estimated inside
the algorithm by adding a few more lines ( added in BOLD below) to the above
algorithm.

A"������� 2. Euler’s method for y′ = f(t, y) over 0 < t < T . and
y(0) = y0.

Define the function f(t, y)
Define the functions

FT (t, t) := ft(t, y)
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FY (t, t) := fy(t, y)
Y PP (t, y) := FT (t, y) + FY (t, y)f(t, y)

Set: ERREST = 0.0
Input h = the step size
Input y0 = the initial condition
Input T = the final time

A"������� 3. tOLD = 0.0
yOLD = y0

(∗) tNEW = tOLD + h
yNEW = yOLD + hf(tOLD, yOLD)
Calculate: LOCERR = |0.5 ∗ h ∗ h ∗ Y PP (tNEW , yNEW )|

and ERREST ⇐ ERREST + LOCERR
If (tNEW > T ) STOP

A"������� 4. Else yOLD ⇐ yNEW
tOLD ⇐ tNEW ,
pick a new timestep h if necessary and

Go To (∗)
When we are solving a system of equations this is too expensive as FY is an

N × N Jacobi3 matrix. Thus, important questions include: How to calculate an
estimate of the error more efficiently? How can it be used to improve the accuracy
and efficiency of the program as the calculation progresses? The above also is based
in the plausible assumption4 that:

The global error is estimated by the sum of the local errors on all previous steps.

This is realized in the steps where the local error is estimated by LOCERR and
then accumulated (added up) by ERREST <= ERREST + LOCERR.

To think, you have to write. If you’re thinking without writing,
you only think you’re thinking. [Leslie Lamport, Thinking for
Programmers]

Writing is nature’s way of letting you know how sloppy your
thinking is. [Guindon]

E!��
��� 5. Write a program for Euler’s method. Use it to solve an IVP
with a known exact solution. Insert these statements inside the Euler’s method
algorithm at the correct locations and resolve. Compare the estimated error with
the true errors. Next repeat using the alternate estimate of Y PP

Y PP =
yn+1 − 2yn + yn−1

△t2
and compare. Draw a conclusion as to which method of estimating the errors is
more accurate and reliable.

3Adapted from the Wikipedia article:
Carl Gustav Jacob Jacobi (1804 — 1851) was a German mathematician, who made funda-

mental contributions to differential equations. Jacobi was the first Jewish mathematician to be
appointed professor at a German university. One of his maxims was: ’Invert, always invert’ (’man
muss immer umkehren’), expressing that the solution of many hard problems can be clarified by
re-expressing them in inverse form.

4This assumption is useful but incorrect as will be explained subsequently.
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E!��
��� 6. Consider Euler’s method applied to y′ = y, y(0) = 1. Show that
the relative error actually decays as t → ∞ as claimed.

E!��
��� 7. Consider the linear pendulum

θ′′ + θ = 0, θ(0) = π/4, θ′(0) = π/4.

If this is written as a first order system via

x(t) = θ(t) and y(t) = θ′(t),

we obtain:

X ′ = Y,X(0) = π/4

Y ′ = −X,Y (0) = π/4.

Take △t = 1/3 and compute an approximation to θ(1) and θ′(1) using Euler’s
method. Find the error. (Hint: The exact solution takes the form

θ(t) = C1cos(t) +C2sin(t),

where C1,2 depend on θ(0) and θ′(0).)

E!��
��� 8. Repeat the above test for the nonlinear pendulum θ′′(t)+sin (θ(t)) =
0. (The error cannot be calculated explicitly.) Write it as a first order system in
the usual way [x = θ, y = θ′]. Show first that G(x, y) = (1/2)y2 − cosx is con-
stant along solutions. Plot G(x, y) vs. t. Draw conclusions. Next try the equation
θ′′ + sign(θ) = 0. Again, pick the initial conditions so the solution has interesting
behavior.

E!��
��� 9. Consider the leapfrog method for y′ = f(t, y) given by yj+1 =
yj−1 + 2△tf(tj , yj). State the definition of "local truncation error". Analyze its
LTE.

1. The discoverers: Carl Gustav Jacob Jacobi

Adapted from the Wikipedia article:
C��" G����� J�
�� J�
��� (1804 — 1851) was a German mathematician,

who made fundamental contributions to differential equations. Jacobi was the first
Jewish mathematician to be appointed professor at a German university. One of
his maxims was: ’Invert, always invert’ (’man muss immer umkehren’), expressing
that the solution of many hard problems can be clarified by re-expressing them in
inverse form.





CHAPTER 2

More about Euler’s method

He calculated without any apparent effort, just as men breathe, as
eagles sustain themselves in the air. - François Arago

Read Euler: he is our master in everything. - Pierre-Simon
Laplace

He was later to write that he had made some of his best discov-
eries while holding a baby in his arms surrounded by playing chil-
dren. -Richard Mankiewicz, in The Story of Mathematics (2000),
p. 142

Euler’s method is not used for practical calculations. However, it enables us to
introduce in a context that is as simple and clear as possible techniques used for
practical calculations for other methods. In this section we show that

• Solving systems of equations is as easy (in principle) as solving a single
equation.

• Roundoff error can be controlled through a technique called ’partial
double precision accumulation’.

• Convergence of the approximate solution to the true solution can be
reduced to verifying two separate conditions of stability and consistency.

• Stability can be reduced to the problem of stability of the method for
the scalar problem y′ = λy.

1. Systems of equations

Euler’s method for a single scalar equation reads as follows.

A"������� 5 (Euler for one equation). Euler’s method for y′ = f(t, y)
over 0 < t < T . and y(0) = y0.

Define the function f(t, y)
Input h = the initial step size

Input y0 = the initial condition
Input T = the final time
tOLD = 0.0
yOLD = y0

(∗) tNEW = tOLD + h
yNEW = yOLD + hf(tOLD, yOLD)
If (tNEW > T ) STOP
Else yOLD ⇐ yNEW

tOLD ⇐ tNEW
if desired pick a new stepsize h

and Go To (∗)

39
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R����& 2 (Printing every step is not a good idea). At some point the ap-
proximate solution needs to be sent to some sort of output to be viewed, analyzed or
evaluated. The simplest is to just print the approximate solution at each step. How-
ever, putting a print statement like "PRINT tNEW , yNEW " inside the loop where
the calculations are done (here and below) is not generally a good idea. Arithmetic
occurs at the speed of electrons. On some systems, the program will stop at that
step for the printer to print that line. If the timestep is small, this statement will
also yield tens of thousands of lines of output. In a real program, only the solution
at times where it is needed will be stored (at that line). After the calculations are
done, a new loop occurs where the results are sent to the output device). The exact
implementation depends on the operating system and what information is needed.

Suppose we have a system of N equations. For the system, Euler’s method is
a minor change from the case of scalar equations.

A"������� 6 (Euler’s Method for Systems). Euler’s method for −→y ′ =−→
f (t,−→y ) over 0 < t < T . and −→y (0) = −→y 0.

Define the functions fj(t, y1, y2, · · ·, yN), j = 1, · · ·, N
Input h = the initial step size
For j = 1, · · ·, N : Input yj,0 = the initial condition
Input T = the final time
tOLD = 0.0
For j = 1, · · ·, N : yj,OLD = yj,0

(∗) tNEW = tOLD + h
For j = 1, · · ·, N :

yj,NEW = yj,OLD + hfj(tOLD, y1,OLD, y2,OLD, · · ·, yN,OLD)
If (tNEW > T ) STOP
Else: For j = 1, · · ·, N: yj,OLD ⇐ yj,NEW

tOLD ⇐ tNEW
if desired pick a new stepsize h

and Go To (∗)
Sometimes a system means only two equations. For two equations we usually

write the system as

x′(t) = f(t, x(t), y(t)) for t > 0 and x(0) = x0

y′(t) = g(t, x(t), y(t)) for t > 0 and y(0) = y0.

In that case Euler’s method becomes the following.

A"������� 7 (Eulers method for two equations). Euler’s method for
x′(t) = f(t, x(t), y(t)), y′(t) = g(t, x(t), y(t)),

y(0) = y0, x(0) = x0
Define the functions f(t, x, y), g(t, x, y)
Input h = the initial step size
Input x0, y0 = the initial conditions
Input T = the final time
tOLD = 0.0
xOLD = x0
yOLD = y0

(∗) tNEW = tOLD + h
xNEW = xOLD + hf(tOLD, xOLD, yOLD)
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yNEW = yOLD + hg(tOLD, xOLD, yOLD)
If (tNEW > T ) STOP
Else xOLD ⇐ xNEW and yOLD ⇐ yNEW

tOLD ⇐ tNEW
if desired pick a new stepsize h

and Go To (∗)

2. Controlling roundoff by partial double precision accumulation

A computer lets you make more mistakes faster than any invention
in human history - with the possible exceptions of handguns and
tequila. — Mitch Ratliffe

The cancellation in the subtraction only gives an indication
of the unhappy consequence of a loss of information in previous
steps, due to rounding of [at least] one of the operands, and is not
the cause of the inaccuracy. - Dahlquist and Bjork, Numerical
Methods in Scientific Computing, Volume 1, p. 17.

Every step of Euler’s method performs: given yn,

Step 1: Evaluate f(tn, yn)
Step 2: Add yn +△tf(tn, yn) to give yn+1

Note that most of the cost occurs in Step 1’s functions evaluation(s). However, in
Step 2 we add yn = O(1) to △tf(tn, yn) = O(△t), that is, adding a large number
to a small number. Thus, most of the roundoff error occurs in Step 2. One
standard tool to control roundoff error in calculations which have the structure that
they can be split into a numerically stable step where most of the computational
work is performed followed by an inexpensive step where most of the roundoff error
occurs is called:

partial double precision accumulation.

It proceeds as follows:
(i) each yn is stored in extended (e.g., double) precision.
(ii) △tf(tn, yn) is computed in lower precision then converted to extended pre-

cision.
(iii) The sum yn+1 = yn +△tf(tn, yn) is performed in double precision.
This procedure is economical (costing only 1 double precision sum per step)

and minimizes the roundoff error arising from adding large to small at every
step.

3. Convergence of Euler’s method

Consider Euler’s method for the scalar IVP

y′(t) = f(t, y), (IVP)
yn+1 − yn

△t = f(tn, yn). (Euler)

The following convergence theorem holds.
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T������ 3 (Error estimate for Euler’s method). Suppose y′′(t) and fy(t, y(t))
are bounded:

|y′′(t)| ≤ Y (< ∞)����
∂f

∂y
(t, y)

���� ≤ L (< ∞).

Then the error in Euler’s method satisfies

|y(tn)− yn| ≤ △tY e
Ltn − 1
2L

.

This implies that the error is O(△t) and suggests that there are cases where
the error increases exponentially as tn increases. This last effect occurs but
not always. We will give a detailed proof.

3.1. Proof of the convergence theorem. We give a detailed proof of the
convergence theorem. It is based on two main ideas: consistency and stability.

Step 1: Use consistency to derive a difference equation for the error.
The true solution satisfies

y(tn+1) = y(tn) +△ty′(tn) +
1

2
△t2y′′(ξ), for some ξ: tn < ξ < tn+1.

As y′ = f(t, y) this means

y(tn+1) = y(tn) +△tf(tn, y(tn)) +
1

2
△t2y′′(ξ), for some ξ: tn < ξ < tn+1.

R����& 3 (An equivalent approach). The systematic way to perform this step
is to write the IVP as Euler’s method plus a residual term then expand the residual
term in a Taylor series as: Start with y′ = f(t, y). Rewrite it as Euler + Residual

y(tn+1) = y(tn) +△tf(tn, y(tn)) +R
R = whatever it needs to be for the above to be correct, i.e., reduce to 0 = 0,

R = y(tn+1)− [y(tn) +△tf(tn, y(tn))]
Expanding R in a Taylor series we then find

R = y(tn+1)− [y(tn) +△tf(tn, y(tn))] =

= y(tn+1)− [y(tn) +△ty′(tn)] = · · · = 1
2
△t2y′′(ξ)

Now write the above and Euler’s method and subtract to get an exact dif-
ference equation for the error en := y(tn)− yn

y(tn+1) = y(tn)+ △tf(tn, y(tn))+ 1
2△t2y′′(ξ)

yn+1 = yn+ △tf(tn, yn)
− − −− − − −− − − − − − − −− − − − − −
en+1 = en+ △t [f(tn, y(tn))− △tf(tn, yn)] +1

2△t2y′′(ξ)
Step 2. Convert the difference equation to a linear, constant coeffi-

cient difference inequality.
We begin with

en+1 = en +△t [f(tn, y(tn))− △tf(tn, yn)] +
1

2
△t2y′′(ξ).



3. CONVERGENCE OF EULER’S METHOD 43

From the assumptions of the theorem we have

|y′′(ξ)| ≤ Y and

|f(tn, y(tn))− f(tn, tn)| ≤ L|f(tn, y(tn))− f(tn, yn)| = L|en|
Thus, we have the difference inequality

|en+1| ≤ (1 +△tL)|en|+
1

2
△t2Y

Indeed, step by step gives

en+1 = en +△t [f(tn, y(tn))− △tf(tn, yn)] +
1

2
△t2y′′(ξ)

⇒

|en+1| ≤ |en|+△t|f(tn, y(tn))− f(tn, yn)|+
1

2
△t2|y′′(ξ)| ≤ |en|+△tL|en|+

1

2
△t2Y

|en+1| ≤ (1 +△tL)|en|+
1

2
△t2Y.

R����& 4 (What this looks like). This difference inequality can be rewritten
as

|en+1| − |en|
△t ≤ L|en|+

1

2
△tY

which resembles Euler’s method for

y′ = Ly +
1

2
△tY

The next step will be to analyze stability or Euler’s method for this constant
coefficient IVP.

Step 3: Use stability to bound |en| by O(△t) terms.
We have

|e0| = 0 and

|en+1| ≤ (1 +△tL)|en|+
1

2
△t2Y.

There are two methods to use stability to bound |en|.
Method 1: Direct Assault! Backsolving the difference inequality gives

|en+1| ≤ (1 +△tL)|en|+
1

2
△t2Y and

|en| ≤ (1 +△tL)|en−1|+
1

2
△t2Y, thus

|en+1| ≤ (1 +△tL)
�
(1 +△tL)|en−1|+

1

2
△t2Y

�
+
1

2
△t2Y.

Simplifying the last line gives

|en+1| ≤ (1 +△tL)2|en−1|+ [1 + (1 +△tL)] 1
2
△t2Y

As |en−1| ≤ (1 +△tL)|en−2|+ 1
2△t2Y we can continue one more step backwards

|en+1| ≤ (1 +△tL)3|en−2|+
	
1 + (1 +△tL) + (1 +△tL)2


 1
2
△t2Y.
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This is repeated1 all the way down to n = 0, giving

|en+1| ≤ (1 +△tL)n+1|e0|+

+
	
1 + (1 +△tL) + (1 +△tL)2 + · · ·+ (1 +△tL)n


 1
2
△t2Y.

Since |e0| = 0 and shifting back one we then have

|en| ≤
1

2
△t2Y

n−1�

l=0

(1 +△tL)l

Notice that the sum is a geometric series and will be summed exactly.
Method 2: Majorization.This gives the same bound as Method 1 so we will

sketch the steps. Viewing the difference inequality

|en+1| ≤ (1 +△tL)|en|+
1

2
△t2Y

suggests we consider the difference equation:

φn+1 = (1 +△tL)φn +
1

2
△t2Y, n ≥ 0,

φ0 = |e0|
This is exactly Euler’s method for the linear, constant coefficient IVP

φ′(t) = Lφ(t) +
1

2
△tY, t > 0, and φ(0) = |e0|.

Next we prove that the solution to the difference equality majorizes the difference
inequality solution.

L���� 1. We have
φn ≥ |en|. for every n.

P���	. This is a very simple induction argument. �

Now all that remains is to solve the difference equality. Its solution is

φn = (1 +△tL)n|e0|+
1

2
△t2Y

n−1�

l=0

(1 +△tL)l = 1
2
△t2Y

n−1�

l=0

(1 +△tL)l.

Thus, as before,

|en| ≤ φn =
1

2
△t2Y

n−1�

l=0

(1 +△tL)l.

Step 4: Put the error estimate in a form that is easy to understand.
Consider the error bound

|en| ≤
1

2
△t2Y

n−1�

l=0

(1 +△tL)l

The geometric series can be summed exactly to give

|en| ≤
1

2
△t2Y

�
(1 +△tL)n − 1

△tL

�
= △t Y

2L
((1 +△tL)n − 1) .

1A stickler for formal proof would insert an induction argument at this point.
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There is a standard way to make the term (1+△tL)n more comprehensible. Recall
that the Taylor series

e△tL = 1 +△tL+ (△tL)
2

2!
+
(△tL)3
3!

+ · · ·

has all positive terms. Thus, dropping (positive) terms gives

e△tL ≥ 1 +△tL which implies

(1 +△tL)n ≤
�
e△tL

�n
= e(n△t)L = eLtn .

This gives

|en| ≤
1

2
△tY

�
eLtn − 1

L

�
, .

which completes the proof.

R����& 5. Let us consider again the difference equation

φn+1 = (1 +△tL)φn +
1

2
△t2Y

The following can be shown.

T������ 4. The general solution to the above difference equation can be writ-
ten

φn = φGn + φ
P
n

where φGn is the general solution to the homogeneous difference equation

φn+1 = (1 +△tL)φn
and φPn is and particular solution to the inhomogeneous difference equation

φn+1 = (1 +△tL)φn +
1

2
△t2Y.

R����& 6. We can find φPn by guessing that is φPn = K constant (independent
of n). The motivation for this guess is that 1

2△t2Y is independent of n. This guess
gives and equation for K:

K = (1 +△tL)K + 1
2
△t2Y , and thus

φPn = K =
1

2△tL△t2Y.

The general solution to φn+1 = (1+△tL)φn is found by guessing φGn = CRn. This
gives

Rn+1 = (1 +△tL)Rn so R = (1 +△tL).
This yields the solution

φn = C(1 +△tL)n + △tY
2L

.

E!��
��� 10. Adapt the 6 steps of the proof to the backward Euler method and
prove a convergence theorem for it.





CHAPTER 3

A General Theory

"In theory there is no difference between theory and practice. In
practice there is." - Yogi Berra

The theorem on convergence of Euler’s method is a special case of a general
theory in numerical ODEs that uncouples convergence into two separate conditions
of stability and consistency that are more easily verified. The general theorem
below is that stability plus consistency implies convergence. We begin by filling in
the definitions needed

1. Consistency

Through all of scientific computing runs this common theme: In-
crease the accuracy at least to second order. What this means is:
Get the linear term right. [G.S. Gilbert Strang , BAMS, 1993,
Wavelet Transforms vs. Fourier Transforms]

Suppose we have a general k−step method (suppressing t dependence) of the
form

(G�����" &-����) yn+1 = Φ(yn+1, yn, · · ·, yn−k;△t).
Let the IVP have a smooth solution. Then the method (G�����" &-����) is
consistent of order l if, inserting the true solution y(t) into the method, we have

y(tn+1)−Φ(y(tn+1), y(tn), · · ·, y(tn−k);△t) = O(△tl+1).
E!���"� 5 (Consistency is evaluated by Taylor series). For example,

for Euler’s method
yn+1 − yn

△t = f(tn, yn)

first rewrite it in the above form (G�����" &-����)

yn+1 = yn +△tf(tn, yn)
so that

Φ(yn+1, yn, · · ·, yn−k;△t) = yn +△tf(tn, yn).
now insert the true solution. Expand all in a Taylor series and cancel terms

y(tn+1)− (y(tn) +△tf(tn, y(tn))) = O(△t2).
E!��
��� 11. Find the methods of the following form that have minimum local

truncation error:

ayn+1 + byn + cyn−1 = △tf(tn+1, yn+1),
ayn+1 + byn + cyn−1 = △tf(tn, yn),
ayn+1 + byn + cyn−1 = △tf(tn−1, yn−1).

47
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E!��
��� 12 (Consistency error in BDF2). Consider the difference approxi-
mation used in BDF2

D2yn :=
3yn − 4yn−1 + yn−2

2△t .

Use Taylor’s theorem with integral remainder to show that

D2y(tn) = y′(tn) +

+
1

2△t

� tn

tn−2

�
2(t− tn−1)

2
+ − 1

2
(t− tn−2)

2

�
y′′′(t)dt,

where : (t− tn−1)+ := max{(t− tn−1), 0}.
Use this formula to estimate the consistency error in BDF2.

E!��
��� 13 (Consistency error in AB2). Consider the extrapolation used in
AB2

E(y) := 2yn−1 − yn−2.

Use Taylor’s theorem with integral remainder to show that

E(y(t)) = y(tn) +

+
1

2△t

� tn

tn−2

[2(t− tn−1)+ − (t− tn−2)] y
′′(t)dt,

where : (t− tn−1)+ := max{(t− tn−1), 0}.
Use this formula to show that the extrapolation error is O(△t2).

1.1. Brook Taylor FRS (18 August 1685 — 29 December 1731). Adapted
from Wikipedia:

B���& T��"�� FRS (18 August 1685 — 29 December 1731) was an English
mathematician who is best known for Taylor’s theorem and the Taylor series. He
entered St. John’s College, Cambridge, as a fellow-commoner in 1701, and took
degrees of LL.B. and LL.D. in 1709 and 1714, respectively. Having studied math-
ematics under John Machin and John Keill, in 1708 he obtained a remarkable
solution of the problem of the "centre of oscillation," which, however, remained
unpublished until May 1714, when his claim to priority was disputed by Johann
Bernoulli. Taylor’s Methodus Incrementorum Directa et Inversa (1715) added a
new branch to higher mathematics, now called the "calculus of finite differences".
Among other ingenious applications, he used it to determine the form of movement
of a vibrating string, by him first successfully reduced to mechanical principles. The
same work contained the celebrated formula known as Taylor’s formula, the impor-
tance of which remained unrecognized until 1772, when J. L. Lagrange realized its
powers and termed it "the main foundation of differential calculus".

In his 1715 essay Linear Perspective, Taylor set forth the true principles of the
art in an original and more general form than any of his predecessors; but the work
suffered from the brevity and obscurity which affected most of his writings, and
needed the elucidation bestowed on it in the treatises of Joshua Kirby (1754) and
Daniel Fournier (1761).

Taylor was elected a fellow of the Royal Society early in 1712, and in the same
year sat on the committee for adjudicating the claims of Sir Isaac Newton and
Gottfried Leibniz, and acted as secretary to the society from 13 January 1714 to
21 October 1718. As a mathematician, he was the only Englishman after Sir Isaac
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Newton and Roger Cotes capable of holding his own with the Bernoullis, but a
great part of the effect of his demonstrations was lost through his failure to express
his ideas fully and clearly.

2. 0−Stability
Analysis and algebraic conditions: Theorem 2.2 [Dahlquist equiva-
lence theorem] demonstrates a state of affairs that prevails through-
out mathematical analysis. Thus, we desire to investigate an ana-
lytic condition, e.g. whether a differential equation has a solution,
whether a continuous dynamical system is asymptotically stable,
whether a numerical method converges. By their very nature, an-
alytic concepts involve infinite processes and continua, hence one
can expect analytic conditions to be difficult to verify, to the point
of unmanageability. For all we know, the human brain (exactly
like a digital computer) might be essentially an algebraic machine.
It is thus an important goal in mathematical analysis to search for
equivalent algebraic conditions. The Dahlquist equivalence theo-
rem is a remarkable example of this: everything essentially reduces
to determining whether the zeros of a polynomial reside in a unit
disc, and this can be checked in a finite number of algebraic opera-
tions! In the course of this book we will encounter numerous other
examples of this state of affairs. Cast your mind back to basic
infinitesimal calculus and you are bound to recall further instances
where analytic problems are rendered in an algebraic language. -
Arieh Iserles

There are many different types of stability. The most basic (without which the
numerical method is nonsense) is zero stability / 0-stability.

D�	������� 5 (0-Stability). The method (G�����" &-����) is 0-stable if,
when it is applied to

y′ = Ly, with L constant,
the solution satisfies

|yn| ≤ eCtn |y0|,
where C is a constant independent of tn,△t but dependent on L.

The connection with the analysis of Euler’s method is that if a method is
0−stable for y′ = L then it can be shown that it is also 0−stable for y′ = Ly + F ,
as required in the convergence analysis of Euler’s method. This is quite general; if
a linear multistep method is stable for F = 0 then it is stable for any F non-zero.

We shall see examples how stability is analyzed for methods in a section to
come.

T������ 5 (Stability+Consistency⇒Convergence). For a numerical method
for a well posed IVP, 0-stability (over 0 < t ≤ T (< ∞)) plus consistency (local
truncation error of order l > 1) implies convergence as △t → 0 over 0 < t ≤ T .

Analysis of 0−stability for a 1 step method is particularly easy. Any one step
method applied to y′ = Ly yields a difference equation of the form

yn+1 + a(△tL)yn = 0 whence

yn = Rny0, with R = a(△tL).
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Therefore the following holds.

P���������� 3. A 1−step method yn+1 + a(△tL)yn = 0 is zero stable if and
only if R = a(△tL) satisfies

|R| ≤ 1 + α△t
for some α > 0 independent of △t (but dependent on L).

P���	. We prove the "if" part. If |R| ≤ 1 + α△t then
yn = |Rny0| ≤ (1 + α△t)n |y0|

≤
�
1 + α△t+ 1

2!
(α△t)2 + 1

3!
(α△t)3 + ...

�n
|y0|

≤
�
eα△t

�n |y0| = eαn△t|y0| = eαtn |y0|.
The "only if" part is an exercise in calculus inequalities. �

E!���"� 6 (The midpoint rule). The midpoint rule is: given yn

k1 = △tf(tn, yn)

k2 = △tf(tn +
1

2
△t, yn +

1

2
k1),

yn+1 = yn + k2.

Set f(y) = Ly. Then, simplifying we have

yn+1 − yn = △tL(1 +△tL)yn
Thus

R = 1 +△tL+ 1
2
(△tL)2

so that we have

|yn| = |y0|
�
1 +△tL+ 1

2
(△tL)2

�n
≤ |y0|

�
e△tL

�n

≤ |y0|eLtn

and the midpoint rule is 0-stable.

E!���"� 7. Oscillatory problems have consistency restrictions. To illus-
trate, consider the linear pendulum:

θ′′ + ω2θ = 0, t > 0, where ω is real,

θ(0), θ′(0) both specified.

Written as a first order system in the usual way (x(t) = θ(t), y(t) = θ′(t)) this gives

x′ = y, y′ = −ω2x
or

d

dt

�
x
y

�
=

�
0 1

−ω2 0

� �
x
y

�
.

The eigenvalues of the above 2× 2 matrix are easily found to be ±ωi (i =
√

−1) so
that the above system is equivalent to y′ = λy with λ = ±ωi. If the initial data is
x(0) = 1, y(0) = 0, the exact solution is

x(t) = cos(ωt), y(t) = sin(ωt).
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For any pth order method, the local truncation error takes the form

LTE = C△tp+1 d
p+1

dtp+1
(cos(ωt), sin(ωt)) so that

|LTE| = C (|ω|△t)p+1 .
Obviously, for ω large, △t must be small enough that

|ω|△t < 1
to hope for even a single digit of accuracy, regardless of the order of the method or
its stability properties. This condition is often interpreted as saying:

wave speed × time step < 1.

E!��
��� 14. Prove the "only if" part by filling in the following steps. First
show that it is equivalent to showing

ex ≤ 1 + ax
for 0 < x ≤ α and for some a that can depend on α. Next, use calculus to analyze
the sign of the function f(x) = 1 + ax − ex. In all such calculus inequalities,
sketching f(x) is very helpful.

3. Solving difference equations

. . . discrete mathematics is more difficult than continuous mathe-
matics. If you look at formulas for derivatives of reciprocals and
then finite differences for reciprocals, you see how things are more
complicated in the discrete case. . . . The main point in the theory
of difference approximations is to prove stability. To prove stability
is like getting an a priori estimate for the solution of the equation.
But to get those estimates for difference approximations is much
more sophisticated than to get them for a differential equation. -
Peter Lax, MAA Focus (May/June 2005).

Next, consider multi-step methods. A k−step method applied to y′ = Ly leads
to a linear, constant coefficient, homogeneous difference equation of the general
form

yn+k + a1yn + a2yn−1 + · · ·+ akyn = 0,
where each coefficient depends on the product △tL. To seek solutions we set
yn = Rn. This is a solution if and only of R is a root of the characteristic equation

Rk + a1R
k−1 + a2R

k−2 + · · ·+ ak = 0.
This has k roots counting multiplicity, R1, · · ·, Rk. The general solution when these
roots are distinct is

yn = C1R
n
1 + · · ·+CkRnk .

Thus one simple conclusion is as follows.

P���������� 4. If the characteristic equation

Rk + a1R
k−1 + a2R

k−2 + · · ·+ ak = 0.
has k distinct roots and each root satisfies

|Ri| ≤ 1 + α△t, i = 1, ..., k,
then the method is zero stable.
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There are cases when the general solution

yn = C1R
n
1 + · · ·+CkRnk .

needs to be modified or supplemented. The most common two cases a
Case 1: A complex conjugate pair of roots: R1,2 = α± βi. In this case

R1,2 = α± βi = re±iθ,

where

r =

�
α2 + β2, θ = arctan(

β

α
),

e±iθ = cos θ ± i sin θ.

Then

C1R
n
1 +C2R

n
2 = rn (C1[cosnθ + i sinnθ] +C2[cosnθ − i sinnθ])

= �C1rn cosnθ + �C2rn sinnθ.
Thus, the complex powers C1Rn1+C2R

n
2 and be replaced by �C1rn cosnθ+ �C2rn sinnθ

which is real if �C1, �C2 are real.
Case 2: Multiple roots. If R1 = R2 is a double root, then C1Rn1 + C2Rn2

does not contain two linearly independent constants. It can be easily verified that
in this case Rn1 , nR

n
1 are linearly independent solutions of the difference equation.

therefore a double root contributes terms

C1R
n
1 +C2nR

n
1

to the general solution.
Other root configurations are elaborations of these cases and handled in the

expected way.

4. 0−Stability of Linear Multistep Methods

Dahlquist gave a simple and powerful condition for 0−stability of linear multi-
step methods.

D�	������� 6 (linear multi-step method). The general k−step method

yn+1 = Φ(yn+1, yn, · · ·, yn−k;△t)
is a linear multi-step method if Φ(yn+1, yn, · · ·, yn−k;△t) is a linear combination of
f(tj , yj) and yj.

We begin with an example. The linear multi-step method BDF2 is

3yn+1 − 4yn + yn−1 = 2△tf(tn+1, yn+1).
When this is applied to y′ = Ly we get

3yn+1 − 4yn + yn−1 = 2△tLyn+1.
Seeking a solution yn = Rn yields the quadratic equation

3R2 − 4R+ 1 = 2△tLR
which has a part (the LHS) independent of △tL and another (the RHS) with a
multiplier △tL. This pattern holds generally. The characteristic equation of a
linear multistep method always takes the form

ρ(R) =△tLσ(R)
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where ρ(R), σ(R) are polynomials independent of △tL. Dahlquist1 proved the
following simple necessary and sufficient condition for 0−stability.

T������ 6 (The root condition for 0-stability). A linear multistep method is
zero stable if and only ρ(R) (the characteristic polynomial when △t = 0) satisfies
the root condition which is:

1. All roots of ρ(R) = 0 satisfy |R| ≤ 1, and
2. If a root satisfies |R| = 1 then R is a simple root.

P���	. We will not prove this theorem but only indicate the idea. The idea
is the Newton-Puiseux theorem. �

T������ 7. P���	. Theorem. [Newton-Puiseux theorem] Let R
be a root of p(x) = 0 where the coefficients of p(x) depend analytically upon some
small parameter (such as h) called ε so that R = R(ε) depends on ε as well. If R
is a simple root then R(ε) is an analytic function of ε. If R is a double root then
R(ε) is an analytic function of

√
ε ( and so on). �

P���	. The idea of the proof is now this. To prove 0-stability it is necessary
only to show that the roots of ρ(R) = △tLσ(R) satisfy |R| ≤ 1 + c△t for △t small
enough. The roots of ρ(R) = 0 are the roots R(△t)|△t=0 of ρ(R) = △tLσ(R). In
the above cases 1 and 2, if the root of |R|<1 of ρ(R) = 0 then clearly by the above
theorem the roots of ρ(R) = △tLσ(R) satisfy |R| ≤ 1 + c△t for △t small enough
by analyticity. �

We consider 3 examples. In these examples note that for a 2 step method

ρ(R) = (R−R1)(R−R2) = R2 − (R1 +R2)R+R1R2.
Thus if

ρ(R) = R2 −AR+B

A = R1 +R2

B = R1R2

E!���"� 8. The method

yn+1 + 4yn − 5yn−1 =△t (4f(tn+1, yn+1) + 2f(tn, yn))
is not 0-stable.

Indeed, we find

ρ(R) = R2 − (−4)R+ (−5)
−5 = R1R2

so one of them must be larger than 1 in magnitude,

1Adapted from Wikipedia:
Germund Dahlquist (1925 — 2005) was a Swedish mathematician known for his contributions

to the theory of numerical analysis of differential equations.
Dahlquist studied mathematics at Stockholm University in 1942 at the age of 17, where the

Danish mathematician Harald Bohr was a profound influence. He then worked with Carl-Gustaf
Rossby on early numerical weather forecasts.

Dahlquist completed his Ph.D., “Stability and Error Bounds in the Numerical Solution of
Ordinary Differential Equations" in 1958. In 1959 he moved to the Royal Institute of Technology
(KTH) and became Sweden’s first Professor of Numerical Analysis in 1963.
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E!���"� 9. The method (known as an Adams2-Bashforth3 method)

yn+1 − yn =△t (2f(tn, yn)− f(tn−1, yn−1))

is 0-stable.
Indeed,

ρ(R) = R2 −R

R1 = 0, R2 = 1.

E!���"� 10. The leapfrog method

yn+1 − yn−1 = 2△tf(tn, yn)

is 0-stable.
Indeed,

ρ(R) = R2 − 1
R1 = −1, R2 = +1.

Dahlquist also proved the following which is the first of the Dahlquist barriers.

T������ 8 (A Dahlquist barrier). The local truncation error O(△tp+1) of a
0−stable linear multi step method with k steps is limited to

(i) p ≤ k + 2 if k is even.
(ii) p ≤ k + 1 if k is odd.
(iii) p ≤ k if the method is explicit.

E!��
��� 15. Consider the leapfrog method for y′ = f(t, y) given by yj+1 =
yj−1+2△tf(tj , yj). Show that Leapfrog is 0−stable. Classify its approximate solu-
tion behavior as tn → ∞.

E!��
��� 16. Find the method of minimum consistency error of the form

a1yn+1 + a2yn + a3yn−1 =△t (b1f(tn+1, yn+1) + b2f(tn, yn) + b3f(tn−1, yn−1)) .

Analyze its 0-stability.

2Adapted from Wikipedia:
John Couch Adams FRS (1819 — 1892) was a British mathematician and astronomer. His

most famous achievement was predicting the existence and position of Neptune, using only math-
ematics. The calculations were made to explain discrepancies with Uranus’s orbit and the laws of
Kepler and Newton. At the same time, but unknown to each other, the same calculations were
made by Urbain Le Verrier. He was Lowndean Professor in the University of Cambridge from 1859
until his death. Neptune’s outermost known ring and the asteroid 1996 Adams are named after
him. He was "extraordinarily uncompetitive, reluctant to publish imperfect work to stimulate
debate or claim priority, averse to correspondence about it, and forgetful in practical matters".

3Adapted from Wikipedia:
Francis Bashforth ( 1819 - 1912) was a British applied mathematician. Between 1864 and

1880 he undertook some systematic ballistics experiments that studied the resistance of air. He
also studied liquid drops and surface tension. The Adams—Bashforth method was used the method
to study drop formation in 1883.
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4.1. The discoverers. Adapted from Wikipedia:
Germund Dahlquist (1925 — 2005) was a Swedish mathematician known for

his contributions to the theory of numerical analysis of differential equations.
Dahlquist studied mathematics at Stockholm University in 1942 at the age

of 17, where the Danish mathematician Harald Bohr was a profound influence.
He then worked with Carl-Gustaf Rossby on early numerical weather forecasts.
Dahlquist completed his Ph.D., “Stability and Error Bounds in the Numerical So-
lution of Ordinary Differential Equations" in 1958. In 1959 he moved to the Royal
Institute of Technology (KTH) and became Sweden’s first Professor of Numerical
Analysis in 1963.

John Couch Adams FRS (1819 — 1892) was a British mathematician and
astronomer. His most famous achievement was predicting the existence and posi-
tion of Neptune, using only mathematics. The calculations were made to explain
discrepancies with Uranus’s orbit and the laws of Kepler and Newton. At the same
time, but unknown to each other, the same calculations were made by Urbain Le
Verrier. He was Lowndean Professor in the University of Cambridge from 1859
until his death. Neptune’s outermost known ring and the asteroid 1996 Adams are
named after him. He was "extraordinarily uncompetitive, reluctant to publish im-
perfect work to stimulate debate or claim priority, averse to correspondence about
it, and forgetful in practical matters".

Francis Bashforth ( 1819 - 1912) was a British applied mathematician. Be-
tween 1864 and 1880 he undertook some systematic ballistics experiments that
studied the resistance of air. He also studied liquid drops and surface tension. The
Adams—Bashforth method was used the method to study drop formation in 1883.





CHAPTER 4

It is easy to generate new methods for IVPs

“Imagination is everything. It is the preview of life’s coming at-
tractions.” Albert Einstein

Part of the richness of the theory of numerical methods for IVP comes from
the complexity of the phenomena the methods are used to understand. Part comes
from the great diversity of methods. We illustrate next that is it very easy to
generate new methods for the IVP

(0.1) y′ = f(t, y), for t > 0 and y(0) = y0.

Newmethods means only new ways to take the IVP and generate a table of numbers.
The central question is whether these numbers are faithful representations of the
IVP’s solution? Existence of hundreds of methods for IVPs also means that the
role of a useful theory must be to find the simplest possible problems that separates
(and explains) the behavior of the different methods. Such a theory will answer the
question of how to pick a method for a given IVP that will solve it accurately.

In describing methods, it is useful to have a taxonomy. Consider a general
method of the form

(0.2) yn+1 = Φ(△t, tn, yn+1, yn, yn−1, · · ·, yn−k).

D�	������� 7. The method (0.2) is

• a one step method if Φ = Φ(△t, tn, yn+1, yn),
• a multi-step method if Φ = Φ(△t, tn, yn+1, yn, yn−1, ···, yn−k) where k ≥ 1,
• explicit if Φ = Φ(△t, tn, yn, yn−1, · · ·, yn−k), i.e. Φ is independent of yn+1,
• implicit if Φ = Φ(△t, tn, yn+1, yn, yn−1, · · ·, yn−k), i.e. Φ depends on yn+1.

As examples of each we have the following.

E!���"� 11. Euler: yn+1 = yn + △tf(tn, yn) is a one step method since
Φ = yn +△tf(tn, yn) only depends on yn+1, yn and not previous values.

E!���"� 12. Leapfrog: yn+1 = yn−1 + 2△tf(tn, yn) is a multistep method
with k = 2 (a 2 step method to be precise) since Φ = yn−1 + 2△tf(tn, yn), depends
on yn+1, yn and yn−1.

E!���"� 13. Backward Euler: yn+1 = yn +△tf(tn+1, yn+1) is an implicit
method since Φ = yn+△tf(tn+1, yn+1) depends on yn+1. Each step requires solving
a nonlinear equation (or system) for the new value.

E!���"� 14. Euler: yn+1 = yn+△tf(tn, yn) is also an explicit method since
Φ = yn+△tf(tn, yn) does not depend on yn+1. Each step requires only one function
evaluation for the new value.

57
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In deriving methods, we shall see there are twin goals of accuracy and stability.
Accuracy is measured by the local truncation error and the LTE of a method is
evaluated by Taylor series.

D�	������� 8 (Local Truncation Error). Let y(t) be the exact solution to

y′ = f(t, y)

and consider the method (0.2). The Local Truncation Error of (0.2) is the residual
of the true solution in the discrete method:

LTE := y(tn+1)−Φ(△t, tn, y(tn+1), y(tn), y(tn−1), · · ·, y(tn−k)).
If the local truncation error is O(△tp+1) as △t → 0 then the method is said to be
a pth order method.

1. The Taylor series of the true solution gives methods

The true solution of the IVP satisfies

y(t+△t) = y(t) +△tf(t, y(t)) + △t2
2

�
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t))

�
+

△t3
3!

�
ftt(t, y(t)) + 2fty(t, y(t))f(t, y(t))+

+fyy(t, y(t))f(t, y(t)) + fy(t, y(t))ft(t, y(t)) + f2y (t, y(t))f(t, y(t))

�

+O(△t4).
Denote by

fn : = f(tn, yn), f
n
t :=

∂f

∂t
(tn, yn), f

n
y :=

∂f

∂y
(tn, yn)

and so on for higher derivatives.

Then we have the following first three examples of the family of Taylor series
methods:

yn+1 = yn +△tfn, (1st order TS = Euler)

yn+1 = yn +△tfn + △t2
2

	
fnt + f

n
y f

n


, (2nd order TS method)

yn+1 = yn +△tfn + △t2
2

	
fnt + f

n
y f

n



(3rd order TS method)

+
△t3
3!

	
fntt + 2f

n
tyf

n + fnyyf
n + fny f

n
t + f

n
y f

n
y f

n


,

and so on to all orders.

Taylor series methods are not used because they are far too expensive for systems
of equations. Better methods of comparable accuracy are available.

E!��
��� 17. Write out explicitly the second order Taylor series method for
the 2× 2 system:

x′(t) = f(t, x(t), y(t)) for t > 0 and x(0) = x0

y′(t) = g(t, x(t), y(t)) for t > 0 and y(0) = y0.

E!��
��� 18. For a system of N equations, count one scalar function evalu-
ation and one work unit. Calculate the work involved per step for TS methods of
order 1,2 and 3 as a function of N .
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1.1. The discoverers. Adapted from Wikipedia:
Brook Taylor FRS ( 1685 — 1731) was an English mathematician best known

for Taylor’s theorem and the Taylor series. Taylor’s Methodus Incrementorum
Directa et Inversa (1715) added the "calculus of finite differences". He used it to
determine the form of movement of a vibrating string. The same work contained the
celebrated formula known as Taylor’s formula, the importance of which remained
unrecognized until J. L. Lagrange realized its powers and termed it "the main
foundation of differential calculus".

2. Implicit methods are quite acceptable

Julius Sextus Frontinus
Inventions have long since reached their limit, and I see no

hope for further development.
—Highly regarded engineer in Rome, 1st century A.D.

For examples, consider the Backward or Implicit Euler Method:

y′(tn+1) =
y(tn+1)− y(tn)

△t +O(△t)

this gives

yn+1 − yn
△t = f(tn+1, yn+1).

and all the BDF methods. These methods are implicit, meaning every step requires
solving a nonlinear equation.

D�	������� 9 (Implicit and Explicit methods). An implicit method for y′ =
f(t, y) is one wherein every step requires solving a nonlinear equation of system.
Equivalently, it is one that has yn+1 as an argument of f(·, ·) somewhere. An
explicit method is one that is not implicit; calculating yn+1 requires only function
evaluations.

Generally, solving nonlinear equations for each step is not so difficult for initial
value problems. For example, for the backward Euler method, given yn, we must
solve for yn+1 :

yn+1 − △tf(tn+1, yn+1) = yn.

The simplest way to solve is by simple iteration taking advantage of the time step
being small and requiring only repeated evaluations of f(t, y):

Guess: yold = yn

Until satisfied: ynew − △tf(tn+1, yold) = yn

When satisfied set: yn+1 = ynew.

"Satisfaction" is measured as usual by small residual

|ynew − △tf(tn+1, yold)− yn| small

and small update
|ynew − yold| small.

Convergence of the simple iteration for small enough time step follows from the
contraction mapping theorem1.

1Contraction Mapping Theorem. If y∗ = G(y∗), G(y) is C1 and |G′(y∗)| < 1 then the
simple iteration ynew = G(yold) converges locally to y∗.
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P���������� 5. Let f(t, y), fy(t, y) both be continuous. If △t|fy(tn+1, yn+1)| <
1 then the simple iteration ynew −△tf(tn+1, yold) = yn converges to yn+1 provided
the initial guess is close enough.

3. Any finite difference approximation to y′ gives a method

We give a few examples.

3.1. Euler’s Method. Euler’s method arises from the difference approxima-
tion

y′(tn) =
y(tn+1)− y(tn)

△t +O(△t)

this gives

yn+1 − yn
△t = f(tn, yn) or

yn+1 = yn +△tf(tn, yn).

This is an explicit, single step method.

D�	������� 10 (Single step and multi-step methods). A single step method
is one wherein the formula for yn+1 involves only the y value yn . A multi-step
method is one wherein the formula for yn+1 involves more past y values than just
yn .

3.2. BDF2 (backward differentiation formula, order 2) Method. The
second order backward approximation to y′(t) is

y′(tn+1) =
3y(tn+1)− 4y(tn) + y(tn−1)

2△t +O(△t2)

This gives

(BDF2)
3yn+1 − 4yn + yn−1

2△t = f(tn+1, yn+1)

Euler’s method is an explicit single step method. In contrast, BDF2 is an implicit
multi-step method. The formula for yn+1 involves more y values than just yn
and a nonlinear system must be solved each step too get the new approximation.

3.3. BDF3 (backward differentiation formula, order 3) Method. This
is based on the difference quotient

y′(tn+1) =
y(tn+1)− (18/11)y(tn) + (9/11)y(tn−1)− (2/11)y(tn−2)

(6/11)△t +O(△t3).

This gives

(BDF3)
yn+1 − (18/11)yn + (9/11)yn−1 − (2/11)yn−2

(6/11)△t = f(tn+1, yn+1)

In this way BDF methods of any order can be generated. The BDF methods of
order 4,5,6 are:
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BDF4 : yn+4 − (48/25)yn+3 + (36/25)yn+2 − (16/25)yn+1 + (3/25)yn(BDF456)

= (12/25)△tf(tn+4, yn+4)(3.1)

BDF5 : insert : yn+5 − ()yn+4 + ()yn+3 − ()yn+2 + ()yn+1 + ()yn
= ()△tf(tn+5, yn+5)(3.2)

BDF6 : insert : yn+6 − ()yn+5 − ()yn+4 + ()yn+3 − ()yn+2 + ()yn+1 + ()yn
= ()△tf(tn+6, yn+6)(3.3)

Those of order ≤ 6 are very good methods and used frequently. Those with order
> 6 are unstable and not used.

E!��
��� 19. Find the precise timestep condition required for simple iteration
to converge for the nonlinear equation arising from BDF2 and BDF3.

E!��
��� 20. Analyze 0-stability of BDF2 and BDF3.

3.4. Leapfrog Method. The LF method is

y′(tn) =
y(tn+1)− y(tn−1)

2△t +O(△t2)

this gives

yn+1 − yn−1
2△t = f(tn, yn).

The leapfrog method is useful for a few very specific problems of the form

y′ +Λy = f(t) where Λ is skew symmetric

but is otherwise unstable. It also has issues with non-autonomous systems and
variable timesteps.

To see why it is useful for those specific systems, consider

x′ = y

y′ = −x
This has the exact conservation property that

x2(t) + y2(t) = x2(0) + y2(0).

The leapfrog approximation has a similar and related exact conservation property
that

x2n + y
2
n + x

2
n−1 + y

2
n−1 +△t (xnyn−1 − xn−1yn) = x21 + y

2
1 + x

2
0 + y

2
0 +△t (x1y0 − x0y1)

for all n>1.

E!��
��� 21. Prove the claimed exact conservation property for Leapfrog.

3.4.1. Variable time-step extensions of Leapfrog. For variable time-steps sta-
bility of LF is not clear and has been proven to fail in several realizations of the
variable step scheme. Indeed, work of Calvo and Sanz-Serna 1993 and Skeel and
Gear 1992 concluded that

"Variable time-steps seriously degrades symplectic integrators."
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Several ideas have been proposed. Consider

y′ +Λy = f(t) where Λ is skew symmetric.

Let

kn+1 : = tn+1 − tn,

kn : = tn − tn−1, and

ωn+1 =
tn+1 − tn
tn − tn−1

=
kn+1
kn

.

1. Huang and Leimkuhler, 1997, proposed adapting by stretching the time-step.
They apply variants of LF to the coupled system

dy

ds
=

1

R(y)
Λy and

dt

ds
=

1

R(y)
where

0 < min△t ≤ R(y) ≤ max△t < ∞.

2. Centering the scheme at t∗ = (tn+1+ tn−1)/2 we have another variable step
CNLF method

yn+1 − yn−1

kn+1 + kn
= Λ

�
1 + ω

2
yn +

1− ω

2
yn−1

�

where ω = ωn+1.

Here yn is an approximation to y(tn) and not at t∗.
3. Note that

1

kn+1

�
1

1 + ω
yn+1 − (1− ω)yn − ω2

1 + ω
yn−1

�
=

=
1
ωy

n+1 + (1− ω − 1
ω )y

n − ωyn−1

kn+1 + kn
=

= y′(tn) +O(k
2).

LF can be centered at tn by

1

kn+1

�
1

1 + ω
yn+1 − (1− ω)yn − ω2

1 + ω
yn−1

�
= Λ(yn)

where ω = ωn+1.

4. The simple but first order accurate extension:

yn+1 − yn−1

kn+1 + kn
= Λ(yn) .

This is first order accurate when the stepsize varies.
5. The Variable Step CNLF of Wang[2005]. In his MS thesis, equation (2.17)

page 8, in 2005 Dong Wang derived the variable step CNLF scheme:

1

kn+1

�
1

1 + ω
yn+1 − (1− ω)yn − ω2

1 + ω
yn−1

�
= Λ(yn)

where ω = ωn+1.

The analysis of any of these extensions seems to be an open problem.
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3.5. A Method for second order IVPs. Consider the second order IVP:

s′′(t) = g(t, s(t), s′(t)), t > 0

s(0), s′(0) known.

This can be solved by writing it as a first order system but also as a single, scalar
second order equation using the difference approximations:

s′′(tn) =
s(tn+1)− 2s(tn) + s(tn−1)

△t2 +O(△t2),

s′(tn) =
s(tn)− s(tn−1)

△t +O(△t).

This gives the method: given s0, s1 for n ≥ 1 :
sn+1 − 2sn + sn−1

△t2 = g(tn, sn,
sn − sn−1

△t )

To solve it as a first order system we write

x = s

y = s′

so that x′ = y, y′ = s′′ which is known from the equation. This gives the system

x′ = y,

y′ = g(t, x, y)

x(0), y(0) known.

Euler’s method for the first order system would then be
xn+1 − xn

△t = yn,

yn+1 − yn
△t = g(tn, xn, yn).

E!��
��� 22. In the above Euler method for the equivalent first order system
xn+1 − xn

△t = yn,

yn+1 − yn
△t = g(tn, xn, yn).

Eliminate yn by replacing it in the second equation everywhere by xn+1−xn
△t . Simplify

and compare the resulting method to
sn+1 − 2sn + sn−1

△t2 = g(tn, sn,
sn − sn−1

△t )

4. Any numerical integration formula gives a method

If we integrate y′ = f(t, y) over some time interval [a, b] we get

y(b)− y(a) =

� b

a

f(t, y(t))dt.

A numerical integration method replaces the RHS by a weighted sum of function
values. There results a method to advance in time from t = a to t = b. A few
examples are given next.
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4.1. Revisiting Leapfrog. The midpoint rule (the 1 point Gauss rule)
yields the leapfrog method. Indeed,

y(tn+1)− y(tn−1) =

� tn+1

tn−1

f(t, y(t))dt

≃ f(tn, y(tn)) · (tn+1 − tn−1) +O(△t2).
which yields, as tn+1 − tn−1 = 2△t, the leapfrog method

(LeapFrog)
yn+1 − yn−1

2△t = f(tn, yn).

4.2. The trapezoid rule. The trapezoid rule yields an especially interesting
method. We approximate the integral with the usual trapezoid rule by

y(tn+1)− y(tn) =

� tn+1

tn

f(t, y(t))dt

≃ (tn+1 − tn)
f(tn+1, y(tn+1)) + f(tn, y(tn))

2
+O(△t2).

This yields, as tn+1 − tn = △t, the method know by various names including the
trapezoid rule, trapezium rule, the 1−1 Padé method, the Crank-Nicolson method2

...

(Trapezoid Rule)
yn+1 − yn

△t =
1

2
f(tn+1, yn+1) +

1

2
f(tn, yn).

4.2.1. About the discoverers. from : http://www-history.mcs.st-andrews.ac.uk/Biographies/Pade.html
Henri Padé was born in Abbeville which is a town northwest of Amiens in

the Picardy region of northern France. He attended school in his home town and
obtained his baccalaureate in 1881 at the age of seventeen. He then went to Paris to
continue his education at the Lycée St. Louis where he spent two years preparing
to sit the university entrance examinations.

From http://www-history.mcs.st-andrews.ac.uk/Obits2/Crank_Telegraph.html:
Professor John Crank, who died on October 3 aged 90, was a leading figure

in computational mathematics and mathematical modelling, best-known for his
work with Phyllis Nicolson on the numerical solution of the heat equation.

By the time he went to Brunel in 1957 he was already a recognized expert
in the numerical solution of partial differential equations, particularly the heat
equation, which stretches back two centuries to J.B.J. Fourier, one of Napoleon’s
mathematicians.

In the 1940s the calculations required to solve this, the most common of partial
differential equations, were carried out on simple mechanical desk machines, and
required an enormous amount of the most exacting work. Crank said that to "burn
a piece of wood numerically" in those days — without computers — could take a
week.

His work with Phyllis Nicolson, a near contemporary of his as a student at
Manchester University, on the numerical solution of the heat equation sprang from
a method for solving this problem which had been proposed by LF Richardson in
1910.

2from: J Crank and P Nicolson. A practical method for numerical evaluation of solutions
of partial differential equations of the heat-conduction type, Proc. Cambridge Philos. Soc. 43
(1947). 50-67.
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Richardson’s method yielded a numerical solution which was very easy to com-
pute, but which was numerically unstable and thus useless. The instability was
not recognized until lengthy numerical computations were carried out by Crank,
Nicolson, and others. Crank and Nicolson devised a method which is numerically
stable and which turned out to be so fundamental and useful that it is a cornerstone
of every discussion of the numerical solution of partial differential equations.

Since its inception, it has been used routinely in computer codes, with appli-
cations ranging from options pricing and oceanography to pattern formation and
petrology.

John Crank was born on February 6 1916 at Hindley, Lancashire, the only
son of a carpenter’s pattern-maker. He studied at Manchester University, where
he gained his B.Sc. and M.Sc. At Manchester he was a student of the physicist
Lawrence Bragg, the youngest-ever winner of a Nobel prize, and of Douglas Hartree,
a leading numerical analyst.

Crank was seconded to war work during the Second World War, in his case to
work on ballistics. This was followed by employment as a mathematical physicist
at Courtaulds Fundamental Research Laboratory from 1945 to 1957. He was then,
from 1957 to 1981, professor of mathematics at Brunel University (initially Brunel
College in Acton).

Crank published only a few research papers, but they were seminal. Even more
influential were his books. His work at Courtaulds led him to write The Mathemat-
ics of Diffusion, a much-cited text that is still an inspiration for researchers who
strive to understand how heat and mass can be transferred in crystalline and poly-
meric material. He subsequently produced Free and Moving Boundary Problems,
which encompassed the analysis and numerical solution of a class of mathematical
models that are fundamental to industrial processes such as crystal growth and
food refrigeration.

As a specialist in numerical mathematics, Crank was a figure of particular
importance at a time when that area was often regarded by the mathematical
establishment as being rather slight, and he attracted a cadre of devoted students
and young collaborators. He was a founder member of the Institute of Mathematics
and its Applications, and a key player in the setting up of the Royal Institution
Mathematics programme.

Crank was a fine raconteur and a good listener, with a kindly sense of humour,
admired and respected by his colleagues and loved by his many students.

He met his wife, Joan, to whom he was married for 63 years, on a Holiday
Fellowship walking holiday. They retained an enthusiasm for walking and were also
keen gardeners.

His retirement gift to Brunel was a garden; and recently the university named
a building after him. Joan Crank died in 2005; he is survived by their two children.

From http://www-history.mcs.st-andrews.ac.uk/Biographies/Nicolson.html:
Phyllis Nicolson’s maiden name was Lockett. She was educated at Stockport

High School and received the degrees of B.Sc. (1938) and M.Sc. (1939) and Ph.D.
in Physics (1946) from Manchester University and was a research student (1945-46)
and research fellow (1946-49) at Girton College, Cambridge. In 1942 she married
Malcolm Nicolson. She had a strong wish to have her first child before reaching
thirty, and she achieved this ambition with a day to spare. After her husband’s
untimely death in a train crash in 1952, she was appointed to fill his lectureship in
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Physics at Leeds University. In 1955 she married Malcolm McCaig, who was also
a physicist.

During the period 1940-45 she was a member of a research group in Manchester
University directed by Douglas Hartree, working on wartime problems for the Min-
istry of Supply, one being concerned with magnetron theory and performance.
Phyllis Nicolson is best known for her joint work with John Crank on the heat
equation, where a continuous solution u(x, t) is required which satisfies the second
order partial differential equation

ut − uxx = 0
for t > 0, subject to an initial condition of the form u(x, 0) = f(x) for all real

x. They considered numerical methods which find an approximate solution on a
grid of values of x and t, replacing ut(x, t) and uxx(x, t) by finite difference approx-
imations. One of the simplest such replacements was proposed by L. F. Richardson
in 1910. Richardson’s method yielded a numerical solution which was very easy to
compute, but alas was numerically unstable and thus useless. The instability was
not recognized until lengthy numerical computations were carried out by Crank,
Nicolson and others. Crank and Nicolson’s method, which is numerically stable, re-
quires the solution of a very simple system of linear equations (a tridiagonal system)
at each time level.

Nicolson died of breast cancer in 1968

5. Methods can be combined in different ways to give new methods

A few examples.

5.1. Extrapolation can be used to generate new methods. For example,
linear extrapolation to the new time is

f(tn+1) = 2f(tn)− f(tn−1) +O(△t2).

If the trapezoid rule is used, a nonlinear equation must be solved every time step.
If the above extrapolation is used to replace f(tn+1, yn+1) for the RHS we get

yn+1 − yn
△t =

1

2
f(tn+1, yn+1) +

1

2
f(tn, yn)

≃ 1

2
(2f(tn, yn)− f(tn−1, yn−1)) +

1

2
f(tn, yn).

This gives the method known as AB2 = second order Adams-Bashforth

(AB2)
yn+1 − yn

△t =
3

2
f(tn, yn)−

1

2
f(tn−1, yn−1).

There exists a whole family of AB methods of different orders.
Since extrapolation is easily done on non-uniform points, AB2 has an easy

extension to variable timestep:
(Variable Step AB2)

yn+1 = yn +
△tn
2

�
(2 +

△tn
△tn−1

)f(tn, yn)−
△tn

△tn−1
f(tn−1, yn−1)

�
.
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5.2. CN-AB2. AB2 is commonly used with the trapezoid rule. This com-
bination (another IMEX = Implicit-Explicit method) is used in some applications
when the system takes the form

y′ = f(t, y(t)) + g(t, y(t)).

The combination is called CN-AB2 and not TR-AB2 because in the applications
where it is commonly used the trapezoid rule is called the CN = Crank-Nicolson
method. CN-AB2 is then

yn+1 − yn
△t =

1

2
f(tn+1, yn+1) +

1

2
f(tn−1, yn−1) +

3

2
g(tn, yn)−

1

2
g(tn−1, yn−1).

5.3. CNLF. Combining the Trapezoid rule3 with doubled timestep
with Leapfrog. This combination (known as an IMEX= Implicit-Explicit method)
is commonly used in some applications when the system takes the form

−→y ′ = −→
f (t,−→y (t)) + Λ−→y (t),

where Λ is skew symmetric, i.e., ΛT = −Λ.
The combination CNLF is then

(CNLF)
yn+1 − yn−1

2△t =
1

2
f(tn+1, yn+1) +

1

2
f(tn−1, yn−1) + Λyn.

5.4. Predictor-Corrector methods. For example, the trapezoid rule reads

yn+1 − yn
△t =

1

2
f(tn+1, yn+1) +

1

2
f(tn, yn).

Each step requires the solution of a nonlinear system since f(tn+1, yn+1) contains
yn+1. If yn+1 is replaced by its value predicted by Euler’s method we have

(Heun’s Method)
Predict:

yPn+1−yn
△t = f(tn, yn)

Correct: yn+1−yn
△t = 1

2f(tn+1, y
P
n+1) +

1
2f(tn, yn)

In this form is is sometimes called Heun’s method. If yPn+1 is eliminated (replace
yPn+1 by its value yPn+1 = yn +△tf(tn, yn)) we get

(RK2)
yn+1 − yn

△t =
1

2
f(tn+1, yn +△tf(tn, yn)) +

1

2
f(tn, yn),

which is the second order Runge-Kutta method (RK2).
If the correction is performed twice,

Predict:
yPn+1−yn

△t = f(tn, yn)

Correct twice:
yCn+1−yn

△t = 1
2f(tn+1, y

P
n+1) +

1
2f(tn, yn)

yn+1−yn
△t = 1

2f(tn+1, y
C
n+1) +

1
2f(tn, yn)

instead of once as above, then a new method results. Changing the number of
correction steps gives a new method.

3It is called CNLF and not TRLF because in the applications where it is commonly used the
trapezoid rule is called the CN = Crank-Nicolson method.
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5.4.1. About the discoverers. Adapted from Wikipedia:
Karl Heun ( 1859 - 1929 ) was a German mathematician who introduced

Heun’s equation, Heun functions, and Heun’s method. He received his Habilitierung
in 1886 in Munich with the thesis Über lineare Differentialgleichungen zweiter Ord-
nung, deren Lösungen durch den Kettenbruchalgorithmus verknüpft sind.

Carl David Tolmé Runge ( 1856—1927) was a German mathematician, physi-
cist, and spectroscopist. He was codeveloper of the Runge—Kutta method. In 1880,
he received his Ph.D. in mathematics. His interests included mathematics, spec-
troscopy, geodesy, and astrophysics.

Martin Wilhelm Kutta ( 1867 — 1944) was a German mathematician. Kutta
was born in Pitschen, Upper Silesia (today Byczyna, Poland). In 1901, he code-
veloper the Runge-Kutta method. He is also remembered for the Zhukovsky-Kutta
airfoil, the Kutta-Zhukovsky theorem and the Kutta condition in aerodynamics.

5.5. Weighted averages of methods give new methods. For example,
for forward and backward Euler

yn+1 − yn
△t = f(tn, yn), (Forward Euler)

yn+1 − yn
△t = f(tn+1, yn+1). (Backward Euler)

Pick θ between 0 and 1 and take the weighted average θ × Euler + (1 − θ) ×
(Backward−Euler) gives the method known as the θ−Method

yn+1 − yn
△t = θf(tn, yn) + (1− θ)f(tn+1, yn+1).

Parameters can be picked for accuracy, stability or other reasons.

5.6. Other combinations are possible. For example, for the system of two
equations

x′ = f(t, x, y),

y′ = g(t, x, y),

Combinations of Euler and backward Euler can be used for equations 1 and 2: given
xn, yn

xn+1 − xn
△t = f(tn, xn, yn), (Forward Euler)

yn+1 − yn
△t = g(tn+1, xn+1, yn). (Backward Euler)

This combination is explicit when done in the above order. This sort of stepping
through the individual equations in a system can be done in many different ways.
For example, the above combination of FE BE can be performed in both orders of
x− y equations giving two different approximations to each variable that are then
averaged.
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6. Runge Kutta Methods

Runge-Kutta methods are among the most successful general purpose methods
so we shall devote considerable time to their development. The first RK methods
are (surprisingly) due to Heun who viewed them as extending Simpson’s rule from
y′ = f(t) so that

y(tn+1) = y(tn) +

� tn+1

tn

f(t)dt

to y′ = f(t, y(t)). Runge had a different and clearer development for scalar prob-
lems while Kutta extended the methods to systems and to include the methods
Heun was developing. The general idea is that, just as evaluating f(t, y) gives y′,
evaluating f(·, ·) at several points gives information on how y′ changes, i.e., on
higher derivatives of y(t).

Undetermined parameters can be inserted in various places in a formula. The
formula expanded in a Taylor series which is matched as far as possible to the
Taylor series of the true solution. This is a simple process but more detailed. As an
example, theRK2 method can be derived as follows. Introduce 4 free parameters,
a, b, α, β and write

yn+1 = yn +△t [af(tn, yn) + bf(tn + α△t, yn + β△tf(tn, yn))] .

The local truncation error (LTE) of the above method is

LTE := y(t+△t)− (y(t) +△t [af(t, y(t)) + bf(t+ α△t, y(t) + β△tf(t, y(t)))]) ,

where y(t) is the true solution. The 4 free parameters in the scheme are chosen
to maximize accuracy (by minimizing the local truncation error). The above RHS
can be expanded in a Taylor series and the free parameters chosen to minimize the
methods local truncation error.

6.1. Derivation of RK2. Indeed, we have previously calculated the Taylor
series of the true solution

y(t+△t) = y(t) +△tf(t, y(t)) + △t2
2
[ft(t, y(t)) + fy(t, y(t))f(t, y(t))]+

△t3
3!

�
ftt(t, y(t)) + 2fty(t, y(t))f(t, y(t))+

+fyy(t, y(t))f(t, y(t)) + fy(t, y(t))ft(t, y(t)) + f2y (t, y(t))f(t, y(t))

�(Exact TS)

+O(△t4).

Another Taylor expansion gives

f(t+ α△t, y(t) + β△tf(t, y(t))) = f(t, y(t))

+α△tft(t, y(t)) + β△tf(t, y(t)))fy(t, y(t))+

△t2
�
α2

2
ftt(t, y(t)) + αβf(t, y(t)))fty(t, y(t)) +

β2f(t, y(t))2

2
fyy(t, y(t))

�

+O(△t3)
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Inserting this expansion in the RHS of the methods LTE gives

LTE := y(t+△t)− (y(t) +△t [af(t, y(t)) + bf(t+ α△t, y(t) + β△tf(t, y(t)))]) =

= y(t+△t)−



y(t) +△t



af(t, y(t)) + b





f(t, y(t)) + α△tft(t, y(t))+
+β△tf(t, y(t)))fy(t, y(t))+

+α2△t2
2 ftt(t, y(t))+

+α△tβ△tf(t, y(t)))fty(t, y(t))+
+β2(△tf(t,y(t))))2

2 fyy(t, y(t))+
+O(△t3)











Collecting terms and simplifying where possible (including suppressing all the ar-
guments (t, y(t)) of f and all its partial derivatives)gives

LTE :=

= y(t+△t)− y(t)−
�

(a+ b)△tf + b△t2(αft + βffy)+
+b△t3(α22 ftt + αβffty +

β2

2 fyyf)) +O(△t4)

�

The LTE can be minimized by picking the 4 free parameters so that the above
expansion matches the Taylor expansion of the true solution ((Exact TS) above) as
far out as possible. We compare his expansion to the expansion of the true solution
below:

True
Solution:

y(t+△t)− y(t)−
'

△tf + △t2
2 (ft + fyf)+

△t3
3!

�
ftt + 2ftyf + fyyf + fyft + f2y

�
+O(△t4)

(

Local
Truncation

error:
y(t+△t)− y(t)−

�
(a+ b)△tf + b△t2(αft + βffy)+

b△t3(α22 ftt + αβffty +
β2

2 fyyf)) +O(△t4)

�

Tominimize the local truncation error (maximize accuracy) we must choose a, b, α, β
to satisfy

(Order Conditions) a+ b = 1 and bα =
1

2
and bβ =

1

2
.

This is three equations for four variables. There are an infinite number of solutions
and any solution is an RK2 method. One commonly use solution is

a = b =
1

2
and α = β = 1.

These values are so commonly used that it is often (incorrectly) called "the" RK2
method and also Heun’s method.

6.2. The standard RK2 method. This standard RK2 method (with
a = b = 1

2 and α = β = 1) is usually written in stages (as it is programmed) as:

given : yn (RK2 in stages)

k1 = △tf(tn, yn)
k2 = △tf(tn +△t, yn + k1)

yn+1 = yn +
1

2
k1 +

1

2
k2.

RK2 is second order accurate (the LTE isO(△t3)), explicit and costs only 2 function
evaluations per step.
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One commonly use solution is

a = b =
1

2
and α = β = 1.

These values are so commonly used that it is often (incorrectly) called "the" RK2
method.

6.3. The Ralston rule. The Ralston Rule RK2 method is another solu-
tion of the RK2 equations. Ralston4 derived it by finding an estimate of the error
in the general RK2 method and then minimizing it with respect to the method’s
parameters. His analysis gave a concrete method and numerical tests cobnfirmed
that it is indeed generally the most accurate RK2 method, sometimes by a little
and sometimes by a lot. Here is a simplified idea of hios approach. Suppose we
apply the general RK2 method to the IVP

y′ = t2, y(0) = 1

true solution : y(t) =
1

3
t3.

The general RK2 method (where a+ b = 1 and bα = 1
2 and bβ = 1

2) is:

given : yn

k1 = △tf(tn, yn)
k2 = △tf(tn + α△t, yn + βk1)

yn+1 = yn + ak1 + bk2.

with f(t) = t2

given : y0 = 1, t0 = 0, f(t, y) = t2

k1 = △t · t20 = 0
k2 = △t(t0 + α△t)2 = △t3α2

y1 = y0 + ak1 + bk2 = 0 + 0 + b△t3α2.
If we pick the parameters so that y1 = true− value= 1

3(△t)3 we must have

bα2 =
1

3
in addition to

a+ b = 1 and bα =
1

2
and bβ =

1

2
.

The solution to these equations is a = 1
4 , b =

3
4 and α = β = 2

3 . This gives the
Ralston rule for RK2.

Written in stages it is:

given : yn (Ralston Rule in stages)

k1 = △tf(tn, yn)

k2 = △tf(tn +
2

3
△t, yn +

2

3
k1)

yn+1 = yn +
1

4
k1 +

3

4
k2.

4A. Ralston, Runge-Kutta methods with minimum error bounds, Math. Comp., 16 (1962),
431-437
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The Ralston rule corresponds to the solution:

a =
1

4
, b =

3

4
and α = β =

2

3
.

These values do indeed satisfy the second order conditions:

a+ b = 1 and bα =
1

2
and bβ =

1

2
,(Ralston rule Order Conditions)

a+ b =
1

4
+
3

4
= 1 and bα =

3

4

2

3
=
1

2
and bβ =

3

4

2

3
=
1

2
.

Interestingly, in his 1960 paper Ralston also derives maximally accurate RK3 and
RK4 methods but the above simple, second order one seems to be the one that
persisted in the literature attached to his name.

E!��
��� 23. Do 1 step with the general RK4 method (with a + b = 1 and
bα = 1

2 and bβ = 1
2) for the problem

y′ = f(t), f(t) = 6t5,

y(0) = 0,

sol : y(t) = t6.

Find the values of the RK4 parameters that give the exact answer after 1 step.
Check Ralston’s paper and see if your parameters agree with the ones he found.

6.4. The general RK method. An s-step RK method takes the general
form: given yn,

ki = △tf(tn + ci△t, yn +
s�

j=1

aijkj) for i = 1, · · ·, s.

yn+1 − yn =△t
s�

i=1

biki

Thus, an RK method is determined by specifying the parameters bi, ci, aij . This
was Heun’s great idea: to determine the unknown parameters aij , ci, bi to maximize
accuracy. He was motivated by Gauss’s idea for numerical integration where free
parameters are inserted and then optimized to derive the Gauss rules.

These parameters are determined by the twin constraints of high consistency
and desired stability. RK methods are thus codified by presenting these parameters
are an array called the "Butcher array" or "Butcher tableau" due to the work of
Butcher in 1964: 


−→c | A
_ | _

| −→
b T


 =



ci | Aij
_ | _

| bTj


 .

As an example, Heun’s standard RK2, above, is

b1 = b2 =
1

2
,

c1 = 0, c2 = 1

a11 = 0, a12 = 0

a21 = 1, a22 = 0.
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This corresponds to the Butcher array

0| 0 0
1| 1 0

| 1
2

1
2

.

Indeed, rewriting RK2 as follows (and using subscripts to indicate where in the
array each number goes) gives:

k1 = △tf(tn + 0(c1)△t, yn +
�
0(A1,1)k1 + 0(A1,2)k2

�
)

k2 = △tf(tn + 1(c2)△t, yn +
�
1(A2,1)k1 + 0(A2,2)k2

�
)

yn+1 = yn +

�
1

2

�

(b1)

k1 +

�
1

2

�

(b2)

k2.

Written this way, it is clear that in k1, if A1,1 �= 0 one must solve a nonlinear
equation or system of equations for k1 and similarly for solving for k2 in step 2. If
A1,2 �= 0 then the nonlinear system is twice as large as the nonlinear equations for
k1 and k2 are coupled.

6.4.1. About the discoverers. Adapted from Wikipedia:
John Charles Butcher ONZM (born 1933) is a New Zealand mathemati-

cian who is a leader in the development of numerical methods for the solution
of ordinary differential equations. Butcher works Runge-Kutta and general lin-
ear methods. The Butcher group and the Butcher tableau are named after him.
Butcher was awarded the Jones Medal from the Royal Society of New Zealand in
2010, for his "exceptional lifetime work on numerical methods for the solution of dif-
ferential equations and leadership in the development of New Zealand mathematical
sciences."

Adapted from Wikipedia:
Karl Heun (born 3 April 1859, Wiesbaden; died 10 January 1929, Karlsruhe)

introduced Heun’s equation, Heun functions, and Heun’s method. He studied math-
ematics in Göttingen and Halle.

Adapted from: http://history.computer.org/pioneers/ralston.html; see also http://history.siam.org/oralhisto
Anthony Ralston (born 1930, New York City) received his PhD in math-

ematics from MIT in 1956. He worked at Bell Labs, the University of Leeds in
England, the American Cyanamid Corporation, Stevens Institute of Technology
and (for most of his career) the State University of New York at Buffalo. Ralston
was the first chair of the Committee on Scientific Freedom and Human Rights of
the ACM.

6.5. The explicit midpoint method. The explicit midpoint method is a
second order RK method. If we choose a = 0, b = 1, α = β = 1/2 the method also
satisfies the Order Conditions for second order accuracy

a+ b = 1

bα = bβ =
1

2
.
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It becomes

given : yn (Explicit Midpoint)

k1 = △tf(tn, yn)

k2 = △tf(tn +
1

2
△t, yn +

1

2
k1)

yn+1 = yn + k2.

This is known as the explicit midpoint method.
Obviously, matching more terms simply requires more parameters. Thus, by

including enough free parameters, RK methods of every order of accuracy can be
constructed.

6.6. The implicit midpoint method. The implicit midpoint method is an
implicit, second order RK method. It is

given : yn solve for yn+1 (Implicit Midpoint)

yn+1 − yn = △tf( tn + tn+1
2

,
yn + yn+1

2
).

This is known by many names including the implicit midpoint method, the one leg
trapezoid rule.

6.7. An RK3 method. There is also an infinite family of RK3 methods. One
popular RK3 method (part of the Bogacki-Shampine embedded RK pair) is

given : yn (RK3 in stages)

k1 = △tf(tn, yn)

k2 = △tf(tn +
1

2
△t, yn +

1

2
k1)

k3 = △tf(tn, yn +
3

4
k2)

k4 = △tf(tn +
2

9
△t, yn +

2

9
k1 +

1

3
k2 +

4

9
k3)

yn+1 = yn +
7

24
k1 +

1

4
k2 +

1

3
k3 +

1

8
k4.

E!��
��� 24. Write the Butcher tableau for the explicit midpoint rule, the
implicit midpoint method and RK3.

6.8. The Calahan DIRK method. RK methods can also be implicit. One
common example is the Calahan Diagonally Implicit Runge Kutta, DIRK, method.
The Calahan DIRK is given by the Butcher tableau

α | α 0
1− α| 1− 2α α

| 1
2

1
2

The Calahan DIRK.

This method is A0 stable and generally second order accurate. For the special value

α =
3 +

√
3

6
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it is third order accurate. Written out in stages it is:

given : yn(Calahan DIRK)

Solve nonlinear eqn. for k1:

k1 = △tf(tn + α△t, yn + αk1)
Solve nonlinear eqn. for k2:

k2 = △tf(tn + (1−)△t, yn + (1− 2α)k1 + αk2)

yn+1 = yn +
1

2
k1 +

1

2
k2.

6.9. The Fourth Order Runge-Kutta Method. One commonly used RK
method is the fourth order method called RK4, given by

given : yn (RK4 in stages)

k1 = △tf(tn, yn)

k2 = △tf(tn +
1

2
△t, yn +

1

2
k1)

k3 = △tf(tn +
1

2
△t, yn +

1

2
k2)

k4 = △tf(tn +△t, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) .

Like RK2, there are an infinite number of RK4 methods. The above is simply
the one with simple (easy to remember) parameter values. RK4 is fourth order
accurate ( LTE is O(△t5)), explicit and costs 4 function evaluations per step.

E!��
��� 25. Consider the linear pendulum

θ′′(t) + θ(t) = 0, t > 0

θ(0) = π/4, θ′(0) = π/4.

For the linear pendulum the following is constant
1

2

	
θ′(t)2 + θ2(t)



=
1

2

	
θ′(0)2 + θ2(0)



for all time.

Write as an IVP for a first order system of two equations. Solve using every
explicit method introduced. Take △t = 1/10, 1/20 and 1/30. Take the final time
long enough to see 10 complete periods. For each calculate the above (appropriate)
invariant and see if it grows or decays. Compare and draw conclusions.

E!��
��� 26. Repeat the past problem for the nonlinear pendulum IVPs

θ′′(t) + sin θ(t) = 0, t > 0

θ(0) = π/4, θ′(0) = π/4.

For it, the following is constant
1

2

��
θ′(t)

�2 − cos θ(t)
�
=
1

2

��
θ′(0)

�2 − cos θ(0)
�

for all time.

Write as an IVP for a first order system of two equations. Solve using every
explicit method introduced. Take △t = 1/10, 1/20 and 1/30. Take the final time
long enough to see 10 periods. For each calculate the above (appropriate) invariant
and see if it grows or decays. the linear pendulum. Compare and draw conclusions
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E!��
��� 27. Pick some method to adapt the time step in Euler’s method.
Repeat problem 1 for Euler’s method with adaptive timestep selection. Also look at
what happens to the timestep size as the calculation progresses.

E!��
��� 28. Solve the equation below with RK2 and RK4 [pick initial condi-
tions so something interesting happens in the solution]. Plot and draw conclusions

θ′′ + (θ2 − 1)θ + θ = 1.3 cos(0.2t).
E!��
��� 29. Analyze the accuracy and stability of the explicit midpoint method

yn+1 = yn +△tf(tn +
1

2
△t, yn +

1

2
△tf(tn, yn)).

E!��
��� 30. Compare the explicit midpoint method with RK2. You may
choose the test problem and criteria for comparison but pick one that will show
a difference between the 2 methods.

E!��
��� 31. If the 2d wave equation under zero BCs on the unit square is
discretized in space by the usual method for the discrete Laplacian on N ×N mesh,
one arrives at a system of second order ODEs to be solved in time:

d2

dt2
−→u (t) = −c2A−→u (t), A = matrix from usual discrete − △h

a. What are the eigenvalues of A? [No proof necessary-just look up the formula].
Methods for IVPs start by writing it as a first order system in time by −→v (t) =
d/dt−→u (t) then

(ODEsystem)
d

dt

�
u
v

�
=

�
0 1

−c2A 0

��
u
v

�
, let A :=

�
0 1

−c2A 0

�

Find the block matrix eigenvalues λ(A) explicitly (using those of the 2, 1 block λ(A)).
b. Pick an appropriate ODE method to be used to solve (ODEsystem) based on its
stability and your answer to part a. Explain your choice briefly. c. For your chosen
method, can the artificial variable v be eliminated to get a method for the original
second order in time ODE system? Explain.

6.10. Strong Stability Preserving Methods. The Idea of SSP methods is
as follows. Suppose stability in a very strong sense in some important norm || ∗ ||:

||yn+1|| ≤ ||yn||
can be proven for Euler’s method

xn+1 − xn
△t = f(tn, xn)

under some timestep condition

△t ≤ Ccritical.

The idea is to take a weighted combination with no negative weights of Euler steps
and pick the weights to maximize accuracy. Doing so means the higher order
methods, so constructed, will preserve (under the same timestep condition) the
same strong stability property.

These were developed by Gottleib and Shu. We give a few examples for an
autonomous equation x′ = f(x):
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A two stage, second order SSP method: Given xn,

x1n+1 = xn +△tf(xn),
x2n+1 = x1n+1 +△tf(x1n+1)

xn+1 =
1

2
(xn + x

2
n+1).

A 3 stage, third order SSP method: Given xn,

x1n+1 = xn +△tf(xn),

x2n+1 =
3

4
xn +

1

4
{x1n+1 +△tf(x1n+1)}

x3n+1 = x2n+1 +△tf(x3n+1)

xn+1 =
1

3
xn +

2

3
x3n+1.

A 4 stage, third order SSP method of Ruuth and Spiteri: Given xn,

x1n+1 = xn +
△t
2
f(xn),

x2n+1 = x1n+1 +
△t
2
f(x1n+1)

x3n+1 = x2n+1 +
△t
2
f(x2n+1)

x4n+1 =
2

3
xn +

1

3
x3n+1

xn+1 = x4n+1 +
△t
2
f(x4n+1).

These schemes are as good or as bad as the explicit Euler step. Thus, the
formulation of the problem must be made at the very start so that the explicit
Euler method’s solution preserves the required stability property.





CHAPTER 5

Adapting the timestep

Truth is treason in an empire of lies. -George Orwell, 1984

The goal of adaptivity is for the algorithm to function nearly as an expert
system so as to compute a solution whose accuracy is within a user-supplied pre-
scribed tolerance at minimal or near minimal work. Adapting the timestep is built
on the 4 pillars:

1. An assumption that allows localization of errors.
The most basic assumption used is that

Global error =
�

all_previous_steps

Local error.

This assumption leads to the local error condition: Adapt time step to make

|local_error|
△t < global_error_tolerance.

2.A method for estimating the local error committed going from tn
to tn+1.

For the estimation step we say that an estimator is reliable if

|TrueError| ≤ EST

and pessimistic if reliability is obtained by having at times

|TrueError| << EST

. A pessimistic estimator results in an adaptive method that is not efficient.
3. A strategy for changing the timestep in response to the estimated

error.
Multi-step methods require a third pillar for adaptivity:
4. Interpolation or restarting with a 1 step method to provide the

unknown previous values yn−j when changing the timestep △t.

1. Estimating local errors

Knowledge has three degrees–opinion, science, and illumination.
The means or instrument of the first is sense; of the second, dialec-
tic; of the third, intuition. This last is absolute knowledge founded
on the identity of the mind knowing with the object known. -
Plotinus

We give two methods for estimating local errors. The error estimators we
present are easy to implement, inexpensive and work reasonably well.

79
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1.1. Method 1: Timestep halving and doubling. As a concrete example,
consider Euler’s method. We do one step from tn to tn+1 giving y

low_order
n+1

then halve △t and do two steps giving yn+1. This gives two approximations of
different accuracy. Their difference must be rescaled appropriately and is taken
as the estimator. To see why re-scaling is needed, suppose a method of accuracy
O(△tp) is used. The local error (starting exactly from the previous step) is then
O(△tp+1). If we:

assume the error at the previous step is under good control,

i.e., assume that the approximate value there is essentially exact yn ≡ y(tn),
this means that the error in the next step is exactly the local truncation error of
that step. This assumption localizes the problem of estimating errors since it means

y
low_order
n+1 = y(tn+1) + τn△tp+1 +O(△tp+2)

yn+1 = y(tn+1) + 2τn

�△t
2

�p+1
+O(

�△t
2

�p+2
).

The leading order error term (which is the term we need to estimate to get the
first significant digit in the error correctly) is 2τn (△t/2)p+1. Thus, we subtract
and solve for this term:

y
low_order
n+1 − yn+1 = [2

p − 1]2τn
�△t
2

�p+1
+O(△tp+2).

Thus, the leading order error term, 2τn (△t/2)p+1, is (to leading order)

local error =

���ylow_order
n+1 − yn+1

���
2p − 1 + Higher Order Terms.

For Euler’s method, p = 1, so 2p− 1 = 1. If a second order method is used, we

have 2p − 1 = 3. Thus, simply using
���ylow_order
n+1 − yn+1

��� overestimates the error by

a factor of 3. This leads to doing 3× too much work!
For Euler’s method, error estimation proceeds by:

Set: p = 1

y
low_order
n+1 = yn +△tf(tn, yn)

Then :

yn+ 1
2
= yn +

△t
2
f(tn, yn)

yn+1 = yn+ 1
2
+

△t
2
f(tn, yn+ 1

2
)

Then :

EST = |yn+1 − y
low_order
n+1 |/(2p − 1)

This strategy works for all methods.

1.2. Method 2: Two methods of different accuracy. Suppose we have
methods of order O(△tp) and O(△tq) where q > p. Then

y
low_order
n+1 = y(tn+1) + τn△tp+1 +O(△tp+2)

yn+1 = y(tn+1) + �τn△tq+1 +O(△tq+2).
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Subtraction gives

y
low_order
n+1 − yn+1 =

	
τn − �τn△tq−p



△tp+1 +O(△tp+2)

= τn△tp+1 + Higher Order Terms.

Thus,

EST = |ylow_order
n+1 − yn+1|

is an accurate estimator for the lower order approximation. To get an accurate
estimator for the higher order approximation we redo the calculation:

y
low_order
n+1 − yn+1 =

�
τn△t−(q−p) − �τn

�τn

�
�τn△tq+1 +O(△tp+2).

An accurate estimator would then be

EST =
|ylow_order
n+1 − yn+1|�
τn△t−(q−p)−�τn

�τn

�

This obviously requires considerable detailed information about the methods local
truncation error. Nevertheless, it has been made to work. Given the two alterna-
tives, often the simpler estimator is used for the more accurate approximation and
the lack of efficiency accepted as the cost of obtaining reliability.

E!���"� 15. The most economical estimator of this type is the combination
of Euler and RK2 since the function evaluations needed for RK2 include the one
needed for Euler’s method:

given : yn

k1 =△tf(tn, yn)
k2 =△tf(tn +△t, yn + k1)

yEulern+1 = yn + k1(Euler and RK2)

yn+1 = yn +
1

2
k1 +

1

2
k2,

EST = |yn+1 − yEulern+1 |
△t = adapted based on EST and proceed.

E!���"� 16. With BDF2 and BDF3 this strategy would proceed by:

Solve for yBDF2n+1 :

yBDF2n+1 − 2
3
△tf(tn+1, yBDF2n+1 ) =

4

3
yn − 1

3
yn−1

Then : Solve for yn+1 :

yn+1 − 6

11
△tf(tn+1, yn+1) =

18

11
yn − 9

11
yn−1 +

2

11
yn−2

Then : EST = |yn+1 − yBDF2n+1 |
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2. Stepsize control

Local adaptivity in IVPs is usually1 built on a "spherical cow assumption2"
that makes everything afterward simple:

(Spherical Cow) Error at tn = sum of local errors on previous steps.

With this assumption, making the error at the time tN smaller than the tolerance
ε requires making the sum of the local error/unit step smaller than Nε. Indeed,
this is � local_error

△t ≤ Nε .

Thus, the strategy is to keep the estimate of the local error per unit stepsize below
some preset tolerance by cutting the timestep if EST is too big and increasing it
(for greater efficiency) is EST is too far below the set tolerance.

The simplest implementation is by mesh halving and doubling. Suppose we are
using a pth order method so the local error is O(△tp+1). Thus, when the mesh is
halved or doubled, the local error is changed by 1/2p+1 and 2p+1, respectively.
To avoid flip flopping (time step halve then double then halve etc.) the upper
and lower decision points must thus be set at least 2p+2 apart. Given a preset,
user-supplied tolerance TOL, we seek to maintain

TOL

2p+2
<
EST

△t < TOL.

Given, yn an adaptive algorithm computes yn+1 and from that EST , an estimate
of the local error at that step. There is then three cases:

Case 1: Error just right:

TOL

2p+2
<
EST

△t < TOL.

In this case we accept the more accurate approximation yn+1, keep the same stepsize
△t and move to the next step.

Case 2: Error too big:

EST

△t ≥ TOL.

The error is too large. In this case we return to (tn, yn), cut △t in half, △t ⇐ △t/2,
and recompute yn+1.

Case 3: Error too small:
EST

△t <
TOL

2p+2
.

The error is much smaller than the sought accuracy. Thus the program is doing
much more work then necessary. In this case we accept yn+1 but double △t ,
△t ⇐ 2△t, for the next step.

For the Euler-RK2 pair the full algorithm is as follows.

1Note the word "usually". Since this is a heuristic it is modified when more is known about
the problem. For example, if it is known that the solution approaches and equilibrium value
rapidly as t → ∞ then it is usually modified to be based on the assumption that errors do not
accumulate. Thus it is assumed that Error at a step = local error at that step. The algorithmic

realization is to adapt to make:
local_error

△t
≤ ε.

2There is a classic science/math joke with many variations whose punchline is "Assume a
spherical cow".
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Input : TOL ; Set : p = 2

given : yn

k1 = △tf(tn, yn)
k2 = △tf(tn +△t, yn + k1)

yEulern+1 = yn + k1

(Adaptive RK2)

yn+1 = yn +
1

2
k1 +

1

2
k2,

EST = |yn+1 − yEulern+1 |
IF TOL/2p+2 < EST/△t < TOL THEN proceed to next step

IF EST/△t ≥ TOL THEN △t ⇐ △t/2 and recompute this step

IF EST/△t < TOL/2p+2 THEN △t ⇐ 2△t and proceed to next step

E!��
��� 32. Suppose in Case 2 and one is willing to change △t more flexibly
than by halving and doubling. Show that picking △t to match EST/△t = TOL
leads, to leading order terms, to

△tnew =△told
�
△told

TOL

ESTold

�1/p
.

E!��
��� 33. Reformulate the decision tree to control the relative error rather
than the absolute error. [Many believe that relative error should be the target quan-
tity.]

E!��
��� 34. Update your program for Euler’s method to incorporate adap-
tivity. Use it to solve the linear pendulum

θ′′ + θ = 0, t > 0,

θ(0) = π/4,

θ′(0) = π/4

written as a first order system via

x(t) = θ(t) and y(t) = θ′(t).

Euler’s method is slightly unstable for this for fixed timestep in that its approximate
solution grows slowly as more timesteps are taken. See if adaptivity saves Euler’s
method from its instability. Estimate the extra cost in saving Euler’s method.

E!��
��� 35. Repeat the last problem. Calculate the true error and compare
it to the estimated error. Draw conclusions.

E!��
��� 36. Repeat the adaptive calculation for the nonlinear pendulum θ′′(t)+
sin (θ(t)) = 0. Calculate the invariant of the nonlinear pendulum and see how close
to conserved it is with the adaptive method.

E!��
��� 37. Program adaptive Euler-RK2. Take TOL = 0.001 and 0 < t <
100. Consider the nonlinear pendulum equation:

θ′′ + sin θ = 0, 0 < t < 100,

θ(0)&θ′(0) given[you pick].
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Write it as a first order system in the usual way [x = θ, y = θ′]. Show first that

G(x, y) = (1/2)y2 − cosx
is constant along solutions. Solve the problem with Euler, RK2 and adaptive RK2.
Plot G(x, y) vs. t. Draw conclusions. Next try the equation

θ′′ + sign(θ) = 0.

Again, pick the initial conditions so the solution has interesting behavior.

E!��
��� 38. Solve the equation below both adaptively and non adaptively [You
pick initial conditions so something interesting happens in the solution]. Plot and
draw conclusions

θ′′ + (θ2 − 1)θ + θ = 1.3 cos(0.2t).
E!��
��� 39. Consider the method with a = 0, b = 1, α = β = 1/2

yn+1 = yn +△tf(tn +
1

2
△t, yn +

1

2
△tf(tn, yn))

Derive an adaptive algorithm for the explicit midpoint method. Compare it with
adaptive RK2. You may choose the test problem and criteria for comparison but
pick one that will show a difference between the two methods.

E!��
��� 40. Literature search: Find out the precise description of "Milne’s
device" in numerical OEDs. Relate it to the adaptive algorithms presented.

3. Embedded Runge-Kutta pairs

Adaptivity for single step methods has two aspects:

• How to estimate the local error at each step?
• How to change the stepsize given an estimate of the local error?

For multi-step methods, every time the stepsize is changed data is missing that
is needed to proceed after the change in stepsize. Thus, adaptivity for multi-step
methods has a third aspect:

• How to provided (by, e.g., interpolation or restarting with a single step
method) the values needed for the multi-step method but missing after
the step size change?

We have seen that the answer to the second question is universal and that an
answer to the first question can be obtained (at extra cost) by halving and doubling.
It is a remarkable feature of some RK methods that estimation of local errors
can be done at essentially no extra cost! The idea behind development of
these, so called, embedded RK pairs is completely explained by reconsidering
RK2:

given : yn

k1 = △tf(tn, yn)
k2 = △tf(tn +△t, yn + k1)

yn+1 = yn +
1

2
k1 +

1

2
k2.

After the first stage the approximation of Euler’s method (which is RK1) can be
computed:

yEulern+1 = yn + k1
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This is a first order method and RK2 is a second order method. The most natural
(but conservative) estimation of the error in RK2 is simply to say the digits of
agreement between the two approximations are to be trusted. This can be a sharp
estimate for the Euler approximation and is thus a reliable3 but pessimistic estimator
for RK2. We thus have the scheme4:

given : yn

k1 =△tf(tn, yn)
k2 =△tf(tn +△t, yn + k1)

yEulern+1 = yn + k1(RK2 & error estimator)

yn+1 = yn +
1

2
k1 +

1

2
k2,

EST = |yn+1 − yEulern+1 |
△t = adapted based on EST and proceed.

That EST is can be an overestimate is more than counter balanced by the fact that
it is obtained at no extra cost!

The idea of embedded RK methods is to use the fact that there are infinitely
many RK methods of every order to derive RK pairs with the property that the
function evaluations needed to take a lower order RK step are repeated to take a
higher order RK step. Thus, the two RK steps difference becomes a reliable error
estimator. To our knowledge, this brilliant but simple idea was due to Felhberg.
Different realizations5 of it have been developed.

We present examples that work well for non-stiff problems.

3Recall that an estimator is reliable if |TrueError| ≤ EST and pessimistic if reliability
is obtained by having at times |TrueError| << EST .

4This is sometimes rewritten as:

k1 =△tf(tn, yn)

yEulern+1 = yn + k1

k2 =△tf(tn+1, y
Euler
n+1 )

yn+1 = y
Euler
n+1 +

1

2
(k2 − k1)

EST = |
1

2
(k2 − k1)|.

5Bogacki, Przemyslaw; Shampine, Lawrence F. (1989), "A 3(2) pair of Runge—Kutta for-
mulas", Applied Mathematics Letters 2 (4): 321—325, doi:10.1016/0893-9659(89)90079-7, ISSN
0893-9659

Dormand, J. R.; Prince, P. J. (1980), "A family of embedded Runge-Kutta formulae", Journal
of Computational and Applied Mathematics 6 (1): 19—26, doi:10.1016/0771-050X(80)90013-3

Erwin Fehlberg (1969). Low-order classical Runge-Kutta formulas with step size control and
their application to some heat transfer problems. NASA Technical Report 315.

Erwin Fehlberg (1970). "Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung
mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme," Computing (Arch.
Elektron. Rechnen), vol. 6, pp. 61—71. doi:10.1007/BF02241732

Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (2008), Solving ordinary differential
equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0.
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3.1. The Bogacki-Shampine embedded RK 2-3 pair. There is an infinite
family of RK3 methods. exploiting this, The popular Bogacki-Shampine embedded
RK2-3 pair is

given : yn (RK2/3 pair)

k1 = △tf(tn, yn)

k2 = △tf(tn +
1

2
△t, yn +

1

2
k1)

k3 = △tf(tn, yn +
3

4
k2)

k4 = △tf(tn +
2

9
△t, yn +

2

9
k1 +

1

3
k2 +

4

9
k3)

ylown+1 = yn +
2

9
k1 +

1

3
k2 +

4

9
k3,

yn+1 = yn +
7

24
k1 +

1

4
k2 +

1

3
k3 +

1

8
k4,

EST = |yn+1 − ylown+1|.

3.1.1. About the discoverers. Przemyslaw Bogacki is a Professor at Old Do-
minion University and Lawrence F. Shampine is a Professor Emeritus at Southern
Methodist University.

3.2. The Runge-Kutta-Fehlberg RKF 4-5 Method. The RKF4-5 pair is
the original embedded RK pair developed by Erwin Fehlberg.

The RFK methods are still considered accurate and reliable. The RKF45
method proceeds as follows.

given : yn

k1 = △tf(tn, yn)

k2 = △tf(tn +
1

4
△t, yn +

1

4
k1)

k3 = △tf(tn +
3

8
△t, yn +

3

32
k1 +

9

32
k2)

k4 = △tf(tn +
12

13
△t, yn +

1932

2197
k1 − 7200

2197
k2 +

7296

2197
k3)

k5 = △tf(tn +△t, yn +
439

216
k1 − 8k2 +

3680

513
k3 − 845

4104
k4)

and (RKF4/5 pair)

k6 = △tf(tn +
1

2
△t, yn − 8

27
k1 + 2k2 − 3544

2565
k3 − 1859

4104
k4 − 11

40
k5)

yLowOrdern+1 = yn +

�
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 − 1

5
k5

�

yn+1 = yn +

�
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 − 9

50
k5 +

2

55
k6

�

EST = |yn+1 − yLowOrdern+1 |
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F����� 1. The paper of Fehlberg

E!��
��� 41. Consider the following predator-Prey system for population levels
of rabbits (R(t)) and Foxes (F (t)):

R′ = R−RF,R(0) = 3

F ′ = −F +RF,F (0) = 1.
The solution is periodic. Solve this system over 0 < t < 20 with Euler, RK2 and
adaptive RK2. Assume (a spherical cow) that the adaptive RK2 solution is exact
and use it to compute the error in both Euler and ((non adaptive) RK2. Study how
the error grows as t increases.

Exercise. Below you will find a ’legacy’ program in low level, FORTRAN of
the sort that 98% of scientific programs in current use are built from. The exercise
is:

Write a [low level] conversion of it to MatLab. If you want to improve the
method that is fine but improvements must be documented. Pick a test problem
among the many in the notes and compare adaptive vs. nonadaptive solution. If
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you get more or less that same result, try again! The goal of tests is to find where
a distinction exists.

PROGRAM ADAPT
C THIS PROGRAM SOLVES
C X’=F(T,X,Y), Y’=G(T,X,Y)
C ADAPTIVELY
C
F(T,X,Y)=Y
G(T,X,Y)=-1.0*X
C
C If you know the true solutions Xtru(T), YTRU(T),
C then fill in the RHS of the 2 lines below as nonzero.
C
XTRU(T)=(ATAN(1.0))*COS(T)
YTRU(T)=(ATAN(1.0))*SIN(T)
C
C If you know a first integral, FINT(X,Y), you can modify the
C RHS of the next line to the correct function.
C
FINT(X,Y)=(X*X+Y*Y)/(ATAN(1.0)**2)
TOL=0.01
C
C Note: you can turn off adaptivity by setting TOL
C to be very large (e.g. 100.0)
C
PI=ATAN(1.0)*4.0
TZERO=0.0
TFINAL=30.0
XZERO=PI/4.0
YZERO=0.0
C YOU MUST FILL IN THE ABOVE LINES TO INITIALIZE THE PRO-

GRAM
C If the problem changes
C these lines MUST!!! be changed.
ICOUNT=0
XOLD=XZERO
YOLD=YZERO
TOLD=TZERO
H=0.001
HMIN=0.0001
HP=0.5
ERRTOT=0.0
TRUERR=0.0
TP=TZERO+HP
NSTEP=0
C
CYOUCAN EXPERIMENT BYALTERING SOMEOF THESE TOO. NOTE

THAT HMIN
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C THE SMALLEST MESHWIDTH ALLOWED, MUST BE RELATED TO
TOL.

10 TNEW=TOLD+H
NSTEP=NSTEP+1

C
C NEXT TEST IF ITS TIME TO PRINT AND FLAG IT BY IP=1 IF SO
C
IP=0
IF(TNEW.GE.TP) THEN
TNEW=TP
TP=TP+HP
H=TNEW-TOLD
IP=1
ENDIF
C
C COMPUTE APPROXIMATIONS WITH EULER AND RK2
C
XK1=H*F(TOLD,XOLD,YOLD)
YK1=H*G(TOLD,XOLD,YOLD)
ICOUNT=IOUNT+2
XK2=H*F(TOLD+H,XOLD+XK1,YOLD+YK1)
YK2=H*G(TOLD+H,XOLD+XK1,YOLD+YK1)
ICOUNT=ICOUNT+2
XEULER=XOLD+XK1
YEULER=YOLD+YK1
XNEW=XOLD+(XK1+XK2)/2.0
YNEW=YOLD+(YK1+YK2)/2.0
C
C NEXT COMPUTE AN ESTIMATE FOR THE LOCAL ERROR=EST
C
EST=ABS(XEULER-XNEW)+ABS(YEULER-YNEW)
C
C TEST IF:
C TOL/32<EST/H< TOL
C AND CHANGE "H" ACCORDINGLY
C
IF(EST/H.GE.TOL) THEN
H=H/2.0
IF(H.LE.HMIN) THEN
H=HMIN
GO TO 15
ENDIF
GO TO 10
ENDIF
C
C NOW ACCEPT THE APPROXIMATION BUT
C TEST IF ITS TOO ACCURATE
C
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IF(EST/H.LE.TOL/32.0) H=H*2.0
15 ERRTOT=ERRTOT+EST
C If you know the true solutions, you can compute true
C errors by deleting the comment characters in the next 2 statements.
C
c TRUERR = ABS(XTRU(TNEW)-XNEW)+ABS(YTRU(TNEW)-YNEW)
c FI=FINT(XNEW,YNEW)
c
C TEST IF ITS TIME TO PRINT
C
IF(IP.EQ.1) THEN
PRINT*, ’NSTEP=’,NSTEP
PRINT*,’T=’,TNEW,’ X=’,XNEW,’ Y=’,YNEW
PRINT*, ’Estimated error=’,ERRTOT,’True Error=’,TRUERR
PRINT*,’First Integrals value is:’,FI
ENDIF
TRUERR=0.0
C
C TEST IF WEVE PASSED TFINAL YET
C
IF(TNEW.GE.TFINAL) GO TO 100
20 TOLD=TNEW
XOLD=XNEW
YOLD=YNEW
GO TO 10
100 PRINT*,"total number of function evaluations= ",ICOUNT
STOP
END
3.2.1. About the pioneers. Adapted from Wikipedia:
Erwin Fehlberg ( 1911 - 1990 ) was a German mathematician. His most

important merit is the development of step-size control for Runge-Kutta methods
for the numerical solution of ordinary differential equations (by today Runge-Kutta
Fehlberg method). Fehlberg developed numerical solution methods for ordinary
differential equations. Since 1960, when the Marshall Space Flight Center opened,
he developed Runge-Kutta formula pairs. Their difference represents the numerical
error. In 1969, Erwin Fehlberg received among others the "Exceptional Scientific
Achievement Medal" of NASA.

4. Some examples and test problems for adaptivity

This section presents a few classic test problems for adaptive methods. Several
examples are given about how RK12 solves these problems. For some examples, the
solution is very good while for others the adaptive method hits a stability issue for
RK2. For these an error that is too large is not caused by the true solution doing
something interesting that the timestep must resolve. It is caused by RK2 not being
the appropriate method. Adaptivity then tries to make RK2 overcome instability
by reducing the timestep until, eventually, it is small enough to be stable. We shall
see that this is typical behavior for an adaptive but ill-chosen method confronting
a stiff problem.
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Test problem 1: The is a simple test problem without complicated solutions
or sharp fronts. The issue here for constant timestep methods is How to select the
timestep? The IVP below is solved after being written as a first order system

x′′′′ + (π2 + 1)x′′ + π2x = 0, 0 < t < 20,

x(0) = 2, x′(0) = 0, x′′(0) = −(1 + π2), x′′′(0) = 0.

This has exact solution x(t) = cos(t) + cos(πt) , the sum of two periodic functions
with incommensurable periods, quasi-periodic. Start with timestep k = 0.1, toler-
ance TOL = 0.1 .
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Test Problem 2a: This is solved over 0 < t < 20

x′ = (1− 2t)x, x(0) = 1.

We take TOL = 0.001. It is useful to plot the solution x(t) = exp
�
t− t2

�
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Clearly, nothing interesting happens in the solution after about t = 5. A good
method would steadily increase the timestep thereafter.
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Testing non-adaptive RK2 with timestep 0.1 we see the following approximate
solution:

A test of RK2 by Winlong Pei

Notice the blow up around t = 19. Even though the solution is nearly identically
zero and applying RK2 with zero data yields zero, there is enough numerical noise
to be amplified by the instability. If the base state were different from y=0 the
blowup would occur much faster.
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Adaptive RK2 starting with timestep 0.1 yields the good solution:

An adaptive test of Winlong Pei

The difference is seen in the cost of the two solutions also

Non−Adaptive : 200 steps

Adaptive : 3739 steps

Clearly, adaptivity is not resolving solution behavior but controlling the instability
of the method by taking timestep small enough to make that step fit within the
RK2 stability region.

Test Problem 2b: This is solved over 0 < t < 20

x′ = (1− 2t)(x− 2− cos(t))− sin(t), x(0) = 1.

Take TOL = 0.001. This test problem behaves like the previous one except x(t)→
2 + cos t as t ↑.

Test Problem 3a: Take f(t) = exp
�
− (4.0 + 4.0 sin (x))10

�
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Function f(t)

Solve
x′ = λx+ f(t), x(0) = 1, 0 < t < 20, λ = −1 & λ = −1000.

This is an interesting problem because the solution does do interesting things.
A good method would cut the timestep when the true solution is changing to
accommodate the rapid changes of f(t) but then increase the timestep again when
f(t) is nearly constant.

Test problem 3b: This is a suggestion of Gear. We alter test problem 3a so
that f(t) is the true solution. Solve

x′ = λ(x− f(t)) + f ′(t), x(0) = 1, 0 < t < 20, λ = −1000.
where, as in 3a,

f(t) = exp
�
− (4.0 + 4.0 sin (x))10

�
.

Test Problem 4: Solve x(0) = 1, y(0) = 0, 0 < t < 20

x′ = −x− y + x
�
x2 + y2, y′ = −y + x+ y

�
x2 + y2.

This has true solution x(t) = cos(t), y(t) = sin(t) that goes around and around the
unit circle. This is an interesting problem because it is unstable; any perturbation
from the very simple solution grows rapidly.

Test Problem 5: The Lorenz system is

dX

dt
= 10(Y −X),

dY

dt
= −XZ + 28X − Y,

dZ

dt
= XY − 8

3
Z.

The above uses the original parameter values of Lorenz. These produce a chaotic
system. It must be noted that chaotic test problems tend to exaggerate differences
between methods. The initial conditions are (X0, Y0, Z0) = (0, 1, 0). The system is
solved over the time interval [0, 5] .

Test Problem 6: Van der Pol’s equation is a classic test problem:

x
′′ − µ(1− x2)x′ + x = 0

x(0) = 2

x′(0) = 0

The van der Pol equation with parameter µ = 1000 is a common test problem for
stiff solvers. take tolerance 10−4 and 10−6. and plot the approximate solutions, the
time step evolutions and the total number of halving, doubling and the same steps.
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5. The Spherical Cow Assumption

Milk production at a dairy farm was low, so the farmer wrote
to the local university, asking for help from academia. A multi-
disciplinary team of professors was assembled, headed by a theo-
retical physicist, and two weeks of intensive on-site investigation
took place. The scholars then returned to the university, note-
books crammed with data, where the task of writing the report
was left to the team leader. Shortly thereafter the physicist re-
turned to the farm, saying to the farmer, "I have the solution,
but it only works in the case of spherical cows in a vacuum". -
https://en.wikipedia.org/wiki/Spherical_cow

The assumption that the global error is the sum of local errors is very useful.
In this section we shall examine it more carefully.





CHAPTER 6

Asymptotic Stability

Zero stability ensures that the numerical approximation grows no faster than
exponential. There are (at least) 2 cases where restriction to exponential growth is
insufficient:

(1) The true model may have a conserved energy and the calculation is over
a long time interval. In this case it is critical that the numerical method
exactly conserve a system energy related to the physical energy. Methods
that do this are called symplectic methods.

(2) The true solution may be asymptotically stable and approach some steady
state / equilibrium state as t→ ∞. In this case having an approximation
that grows is not good. The numerical method used needs to be asymp-
totically stable as well.

The situation at this point is as follows.

• There are very many methods (and it is easy to generate yet more meth-
ods). Thus it is critically important that some collection of simple criteria
be developed to separate methods and pick the right method for the right
application.

• While every reasonable method is zero stable1, when applied to problems
whose solution is bounded or even decays to zero, some methods produce
solutions that grow as more time steps are taken and other methods pro-
duce solutions that better resemble the true solution’s qualitatively behavior
for large t .

• Adaptivity makes all methods better. However, if a method produces a
solution that (incorrectly) grows when the true solution decays, adaptivity
tries to save the method by cutting the timestep until the calculation is no
longer possible within time and resource constrains.

The solution of all three of these issues is the theory of stability in numerical
ODEs pioneered by G. Dahlquist. Since there are very many different kinds of
stability, we must be precise.

D�	������� 11 (Asymptotic stability). Consider the IVP

y′(t) = f(t, y(t)) for t > 0, and y(0) given.

1Recall that a method is 0-stable if, when applied to y′ = Ly+ F, with L,F constants, the
solution satisfies |yn| ≤ C1eC2tn(|y0|+ |F |), where C1, C2 are constants independent of tn, h but
possibly dependent on L,F . It is known that if this estimate holds with F = 0 then it holds with
nonzero F .

97
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This IVP is (globally) Asymptotically Stable if any two solutions x(t), y(t) cor-
responding to any two different initial conditions satisfies

|x(t)− y(t)| → 0 as t → ∞.

Dahlquist studied the question:

If a method is applied to an asymptotically stable IVP, under what considerations
does it produce an approximation that is asymptotically stable?

We shall develop the resulting stability theory in this section.

1. Stability Regions

We begin with one very simple but critically important example.

E!���"� 17. Let λ denote a fixed/selected complex number. Consider the
linear, scalar IVP

y′(t) = λy(t) + f(t), and y(0) given.

If x(t), y(t) are two solutions with different initial conditions (e.g., y(0) = y0 and
x(0) = x0) their difference v(t) = x(t)− y(t) satisfies

v′(t) = λv(t), and v(0) = x0 − y0 given.

Thus, for linear problems, the nonhomogeneous problem is asymptotically stable if
and only if the homogeneous problems has solutions v(t)→ 0 as t → ∞. Thus we
consider the following which is the standard test problem for numerical methods for
IVPs:

(Model Problem) y′(t) = λy(t), and y(0) given.

Let λ = α+βi, where α, β are real and i =
√

−1.Then, the solution to this problem
is

y(t) = eλty(0) = eαt [cos(βt) + i sin(βt)] y(0).

We observe that:

The linear , constant model problem (Model Problem)

is asymptotically stable if and only if Re(λ) < 0.

If x(t), y(t) are numbers that are the amount of "something" then they have units
of "something". For example, if x(t), y(t) are distance travelled then they have
units of length. The units of dx/dt are therefore "something"/time. Since x′ = λx
the units of the LHS and the RHS must also be equal. Thus, just by writing this
equation we must have

units[λ] = 1/T ime

so 1/λ has an interpretation of a relaxation or growth time.

From the calculation presented in the last example, we say that:

The stability region of the standard test problem y′(t) = λy(t) is the left
half-plane in C: {z ∈ C : Re(z) < 0}.

Every good theory is built from a calculation and begins with a collection of
examples. Based on the above calculation and example we now give the definition.
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D�	������� 12. Consider a numerical method for IVPs applied to the standard
test problem

y′(t) = λy(t), y(0) = 1.

A point z = △tλ is in the stability region of if the approximations yn produced by
the method for that value of △tλ satisfy yn → 0 as n → ∞.

A method is A-stable if its stability region includes the entire left half-plane,
{z ∈ C : Re(z) < 0}.

Obviously, when a method is applied to the standard test problem, a linear,
homogeneous difference equation results. Since that can be solved exactly, stability
regions can be calculated and plotted. We will now consider some examples of
stability regions for numerical methods approximating the standard test problem.

E!���"� 18 (No explicit method can be A-stable). No explicit s-step method
can be A-stable. In this case we have

yn+1 = a(△tλ)yn where a(z) = polynomial in z.

Since any polynomial satisfies

|a(z)| → ∞ as |z| → ∞

we cannot have A-stability.

E!���"� 19 (Stability region of Euler’s method). Euler’s method reads

yn+1 − yn
△t = λyn or yn+1 = (1 +△tλ)yn.

This means that

yn = (1 +△tλ)ny0 and thus yn → 0 if and only if |1 +△tλ| < 1.

Let λ = α+ βi so that

|1 +△tλ|2 = |1 +△t(α+ βi)|2 = |(1 +△tα) + i(△tβ)|2

= (1 +△tα)2 + (△tβ)2.

Thus, the stability region is:

{z = x+ iy ∈ C : (1 + x)2 + y2 < 1}.

If △tλ lies in this region in C the approximate solution will decay to zero expo-
nentially fast as t increases (correctly). If △tλ lies outside of this region, the
approximate solution will blow up exponentially as t → ∞. If it lies on the bound-
ary of this region, (for this case2 of Euler’s method) its magnitude will be constant.
This is the interior of a circle centered at −1 with radius 1:

2In general, if hλ lies on the boundary of the stability region the approximate solution can
be bounded or have polynomial growth.
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-2 -1

-1

1

x = Re( z )

y = Im( z )

Stability region of Euler’s method

When stability regions are symmetric about the real axis, often only the top half is
given in a figure.

Examining the stability region, we see that

• Euler’s method is not A-stable.
• If one solves y′ = −10, 000y by Euler’s method, the approximate so-
lution will blow up if △t > 2/10, 000 and will decay to zero only if
△t < 2/10, 000.

• If one solves the pendulum equation written as a first order system, Euler’s
method will be unstable for all △t > 0.

It is worthwhile examining the last claim in some detail. The pendulum equa-
tion (when g/L = 1) as a first order system is

x′ = y, y′ = −x
equivalently

d

dt

�
x
y

�
=

�
0 1
−1 0

� �
x
y

�
.

The eigenvalues of the above 2× 2 matrix are easily found to be λ = ±i. Thus, for
the pendulum equation, the relevant test problem is y′ = ±iy.

The last example (of the pendulum) illustratyes that sometimes stability is
more important than accuracy. For example, Euler’s method

yn+1 − yn
△t = f(tn, yn)
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is first order accuracte but not appropriate for c9onsevative systems. The explicit
method AB2, given by

yn+1 − yn
△t =

3

2
f(tn, yn)−

1

2
f(tn−1, yn−1)

is second order accurate but also not stable for the conservative systems for any
timestep. Its stability region, like that of BE, does not include any of the imaginary
axis.

An un-named, first order method. However, the first order method (which
to our knowledge does not have a name)
yn+1 − yn

△t = 2f(tn, yn)− 1f(tn−1, yn−1), for constant time step , and

yn+1 − yn
kn

= (1 +
kn
kn−1

)f(tn, yn)−
kn
kn−1

f(tn−1, yn−1), for variable time step.

has the stability region belowThis includes a piece of the imkaginary axis and can

F����� 1. Stabilty region of yn+1−yn△t = 2fn − fn−1

thus be used for conservative systems under a time-step condition.

E!���"� 20 (Transport). Oscillations of a pendulum are not a compelling or
high impact application (possibly aside from clock makers). However, the standard
test problem for transport (when something is moved around by a liquid or gas) is

y′ = ±iωy, ω a real number.
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To see why we briefly consider the simplest transport problem: for u(x, t) a con-
centration of something that is moves to the right with speed a > 0, u(x, t) satisfies
the partial differential equation

∂u

∂t
+ a

∂u

∂x
= 0,−∞ < x < ∞, t > 0,

u(x, 0) = f(x) , the concentration initially.

It is easy to check by direct substitution that the exact solution is

u(x, t) = f(x− at)

which is the profile f(x) moving to the right with speed a. The simplest case is
when f(x) is one Fourier mode such as f(x) = cos(nx) + sin(nx) and, as usual
we shall do the calculation with f(x) = eiωx because its easier. Then write

u(x, t) = y(t)einx

substitute into ∂u
∂t + a

∂u
∂x = 0 and cancel gives

∂

∂t
(y(t)einx) + a

∂

∂x
(y(t)einx) = 0⇔

y′(t)enx + ay(t)ineinx = 0⇔
y′(t) = −i(na)y.

Similarly, if the transport is to the left we get y′(t) = +i(an)y. In all cases, faster
transport speed (larger a) means larger ω = na in the test problem y′ = ±iωy.

E!���"� 21 (Stability region of the backward Euler method). The backward
Euler method reads

yn+1 − yn
△t = λyn+1 or yn+1 = (1− △tλ)−1yn.

This means that

yn = (1− △tλ)−ny0 and thus yn → 0 if and only if |1− △tλ| > 1.

Let λ = α+ βi so that

|1− △tλ|2 = (1− △tα)2 + (△tβ)2.

Thus, the stability region is the exterior of the circle of radius 1 centered at 1

{z = x+ iy ∈ C : (1− x)2 + y2 > 1}.
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Stability region of backward Euler

If △tλ lies in this (shaded) region the approximate solution will decay to zero ex-
ponentially fast as t increases (correctly). If △tλ lies outside of this region, the
approximate solution will blow up exponentially as t → ∞.

Examining the stability region, we see that

• The backward Euler method is A-stable.
• If one solves y′ = −10, 000y by backward Euler, the approximate solution
will be stable for any △t > 0.

• If one solves the pendulum equation written as a first order system, the
backward Euler method will produce an approximate solution that is over
damped.

Let us consider the Trapezoid rule.

E!���"� 22 (Stability region of the Trapezoid rule). The trapezoidal method
reads

yn+1 − yn
△t = λ

yn+1 + yn
2

or yn+1 =
1 + 1

2△tλ
1− 1

2△tλ
yn.
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This means that3

yn =

�
1 + 1

2△tλ
1− 1

2△tλ

�n
y0 and thus yn → 0 if and only if

����
1 + 1

2△tλ
1− 1

2△tλ

���� < 1 or : |1 +
1

2
△tλ| < |1− 1

2
△tλ|.

We proceed as above. Let λ = α+ βi and calculate both sides. After some calcula-
tions, the result is the stability region is exactly the left half plane

{z = x+ iy ∈ C : Re(z) < 0}.

-2 -1 1 2
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1

x = Re( z )

y = Im( z )

Stability region of the trapezoid rule

Clever methods have been developed to calculate the stability region of a
method. We give next some of the stability regions for popular methods produced
by these techniques. (These regions are copied from http://www.mathworks.com.)

The Adams-Bashforth methods. These are explicit multistep methods.
They are not A-stable and their stability regions generally get smaller as accuracy
increases. One point to notice is that AB3’s stability region includes an interval

3Observe that

����
1+ 1

2△tλ

1− 1
2
△tλ

���� =
��� 1+z
1−z

��� where z = 1

2
△tλ. The function 1+z

1−z
is a classic fractional

linear transformation studied in complex analysis.
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F����� 2. AB1,2,3 stability regions - interiors of figures

of the imaginary axis. Thus AB3 is stable (for △t small enough) for pendulum
equations.

The Runge-Kutta methods. The explicit RKmethods are also not A-stable.
Their stability regions do increase as the methods accuracy increases.

The BDF Methods. The BDF methods are implicit. Their stability regions
are the exteriors of the regions plotted below. Observe that BDF1 (backward Euler)
and BDF2 are both A-stable and BDF3 is nearly A stable.

E!��
��� 42. Analyze asymptotic stability for the Leapfrog method. Show that
approximate solutions never → 0 as t → ∞.

E!��
��� 43. Verify for Euler’s method that if △tλ lies outside of the stability
region, the approximate solution will blow up exponentially as t → ∞. If it lies on
the boundary of this region, its magnitude will be constant.

E!��
��� 44. Consider the wave equation (which is the equation for sound
propagation in a fluid at rest). Repeat the analysis performed for the transport
problem and show that the appropriate test problem is also y′ = ±iωy.
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F����� 3. RK1 to 4 stability regions- interiors of curves
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F����� 4. BDF methods stability regions





CHAPTER 7

The Dahlquist theory

1. The Dahlquist barriers

Recall that an A-stable method is one that is asymptotically stable for any △t
for any (model test) problem that is itself asymptotically stable:

D�	������� 13. Consider a numerical method for the IVP for the standard
test problem y′(t) = λy(t). A point z = △tλ is in the stability region of if the
approximations yn produced by the method for that value of △t and that value of λ
satisfy yn → 0 as n → ∞. A method is A-stable if its stability region includes the
entire left half-plane.

With an A-stable method the time step can be adapted strictly to resolve
solution behavior for accuracy. With a method that is not A-stable there will be
cases where adaptivity will function to produce a stable approximation rather than
to obtain desired accuracy. It thus seems clear that , all things being equal, an
A—stable method is to be preferred over one that is not A stable. Unfortunately,
Dahlquist that A-stability presents three fundamental barriers to methods.

T������ 9 (Three Dahlquist barriers). There are no A-stable explicit single
step or linear multi-step methods.

An implicit single or multi-step method that is A-stable can have at most second
order accuracy.

The second order A-stable method with the greatest accuracy (in the sense of
smallest local truncation error1) is the trapezoid rule. For the trapezoid rule the
local truncation error is τ = − 1

12△t3y′′(tn) +O(△t4).
This landmark result had a number of important consequences. First there was

intensive study of problems for which there was nothing better than just use an
implicit method and solve the nonlinear system at every time step. These types
of IVPs systems are now called stiff systems. Second, the trapezoid rule has been
the subject of intense study and many small tweaks of it have been developed.
Third, there has been an intense study of alternative stability concepts to see if
requesting a form of stability in between 0−stability and A−stability can both be
useful for some applications and break one of the above Dahlquist barriers. Some
alternative stability theories are summarized below.

D�	������� 14 (Different stability concepts). Let a method’s stability region
be R.

• A method is A-stable if R ⊃ {z : Re(z) < 0}.
• A method is Aα-stable if R ⊃ {z : Re(z) < 0 and |arg(z)| < α}.

1The LTE for the trapezoid rule is LTE = − 1

12
y′′(tn)△t3 + O(△t4). Thus here ’most

accurate’ means the constant mulitplier 1/12 is minimal.

109
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• A method is A(0)-stable if it is Aα-stable for some α > 0 (however small).
• A method is A0-stable if R ⊃ {z : Re(z) < 0 and Im(z) = 0}.
• A method is stiffly stable if R ⊃ R1∪R2 where

R1 = {z : Re(z) < −a < 0 for some a > 0} and

R2 = {z : −a ≤ Re(z) < 0,−c ≤ Im(z) ≤ +c for some a > 0, c > 0}.
• A method is L-stable (or strongly A-stable) if it is A−stable and its

approximation yn satisfies yn → 0 for n fixed but as λ → −∞.

The motivation for L-stability is that it captures some aspect not in A-stability
of the true solution of y′ = λy . Namely, the solution has the property that

y(t)→ 0 as Re(λ) → −∞ for fixed t.

2. Two step Methods

Since accuracy is limited, the most commonly used A stable methods are 1 and
2 step methods. The most general, second order 1 step method is the θ-method
interpolating between the Trapezoid rule and implicit Euler.

T������ 10 (A-stable 1 step methods). All 1 step, A stable methods of order
≥ 1 (i.e., LTE=O(△t2) and higher) take the form

yn+1 − yn
△t = θf(tn+1, yn+1) + (1− θ)f(tn, yn),

1

2
≤ θ ≤ 1.

These are A stable for 1
2 ≤ θ ≤ 1 but second order (i.e., LTE=O(△t3)) only for

1
2 = θ.

Two step methods

α2yn+1 + α1yn + α0yn−1
△t = β2f(tn+1, yn+1) + β1f(tn, yn) + β0f(tn−1, yn−1)

can also be useful for their other properties. The above 2 step method is consistent
if

α2 + α1 + α0 = 0,

2α2 + 1α1 + 0α0 = 0,

β2 + β1 + β0 = 1.

Thus the general method has 6 parameters but must satisfy 3 conditions so 3 free
parameters remain. Rewriting the method in terms of the remaining free parameters
gives

(1 + ξ)yn+1 − (1 + 2ξ)yn + ξyn−1
△t = θf(tn+1, yn+1)+(1−θ+φ)f(tn, yn)−φf(tn−1, yn−1).

The LTE is easily calculated to be

LTE = (φ− ξ + θ − 1
2
)△t2y′′(tn) +O(△t3)
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so that the method is first order accurate except when the extra condition holds
that

φ− ξ + θ − 1
2
= 0.

If this is true the LTE is then

LTE = (−ξ + 2θ − 5
6
)△t3y′′′(tn) +O(△t4),

when φ− ξ + θ =
1

2
.

Thus the following characterization (from Dahlquist [D78]) of them is helpful.

T������ 11 (A-stable 2 step methods). Concerning 2 step methods

α2yn+1 + α1yn + α0yn−1
△t = β2f(tn+1, yn+1) + β1f(tn, yn) + β0f(tn−1, yn−1)

These have order ≥ 2 (i.e., LTE=O(△t3)) if

α0 = −1 + α2, α1 = 1− 2α2,
β0 =

1
2 − α2 + β2, β1 =

1
2 + α2 − 2β2.

They are A stable if

α2 ≥ 1

2
, β2 ≥ α2/2

and are L stable if

α2 >
1

2
, β2 > α2/2.

Alternately, a consistent 2 step method

(1 + ξ)yn+1 − (1 + 2ξ)yn + ξyn−1
△t = θf(tn+1, yn+1)+(1−θ+φ)f(tn, yn)−φf(tn−1, yn−1).

is A stable if and only if

θ ≥ φ+ 1/2,

ξ ≥ −1/2,
ξ ≤ θ + φ− 1/2.

For second order A-stable methods the conditions can be written in terms of 2
parameters and become

ξ ≥ −1/2 and ξ ≤ 2θ − 1.

This region ξ ≥ −1/2 and ξ ≤ 2θ − 1 is visualized below.
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theta

xsi

Crosshatched A-stable θ, ξ values

E!��
��� 45. Show that the trapezoid rule is not L−stable.

E!��
��� 46. Consider the 2 step methods below. Using the results in this
section, analyze their accuracy and stability:

BDF2 θ = 1, ξ = 1/2, φ = 0
Contractive−Adams θ = 3/4, ξ = 0, φ = −1/4

E!��
��� 47. Analyze stability of the following proposed by Durran:

(TR)
yn+1 − yn

△t =
3

4
f(tn+1, yn+1) +

1

4
f(tn−1, yn−1).

E!��
��� 48. Show that BDF2 approximation satisfies yn → 0 for n fixed and
λ → −∞ and thus BDF2 is L−stable.



CHAPTER 8

Stiffness and Implicit Methods

A stiff linear system is a system

d

dt
−→y = A−→y

where the matrixA has some eigenvalues that are negative but very large in absolute
value and others of moderate size. For such systems the amount of stiffness is often
quantified by the stiffness ratio defined to be

Stiffness ratio :=
max |λ|
min |λ|

The dynamics of a stiff system are simple: the slowest decay solutions dominate
and the faster decay modes quickly damp out. The next figure shows a depiction
of this and the bad result for approximating a stiff system with Euler’s method.

Depiction of stiffness and how Euler’s method goes wrong

One definition of stuffiness is that:

Stiff systems are those for which the solution sought is slowly varying but
perturbations of the solution are damped out at a much faster rate.

113
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Here "much faster" means that the system cannot be solved within time and
resource constraints by explicit methods, even adaptive explicit methods. Thus,
while the stiffness ratio has a precise mathematical definition, "stiffness" only as
meaning with respect to how people want to use the results of a simulation including
how fast they need the result, how miuch computer resources are available and how
much cost to generate the result is acceptable. For example, Google gives the
following possible definitions of stiffness.

Definitions of ’stiff system’
In Civil Engineering:
Stiffness is the rigidity of an object – the extent to which it resists deforma-

tion in response to an applied force. The complementary concept is flexibility or
pliability: the more flexible an object is, the less stiff it is.

Wikipedia:
... a stiff equation is a differential equation for which certain numerical methods

for solving the equation are numerically unstable, unless the step size is taken to be
extremely small. It has proven difficult to formulate a precise definition of stiffness,
but the main idea is that the equation includes some terms that can lead to rapid
variation in the solution.

J. D. Lambert:
If a numerical method with a finite region of absolute stability, applied to a

system with any initial conditions, is forced to use in a certain interval of integration
a steplength which is excessively small in relation to the smoothness of the exact
solution in that interval, then the system is said to be stiff in that interval.

paraphrased often to read:
If a numerical method is forced to use, in a certain interval of integration, a

step length which is excessively small in relation to the smoothnessgif of the exact
solution in that interval, then the problem is said to be stiff in that interval.

DM Thomas:
"In applications you usually find out if your ODE is stiff by numerically in-

tegrating it and watching Runge Kutta fall apart. Then you find the eigenvalues
of the linearized DE and realize after the fact you have a stiff system. Then you
grumble as you program in your stiff numerical solvers."

CW Gear:
Although it is common to talk about "stiff differential equations," an equation

per se is not stiff, a particular initial value problem for that equation may be stiff,
in some regions, but the sizes of these regions depend on the initial values and
the error tolerance. (C. W. Gear (1982): Automatic detection and treatment of
oscillatory and/or stiff ordinary differential equations. In: Numerical integration of
differential equations, Lecture notes in Math., Vol. 968, p. 190-206.)

From ’Glossary of Meteorological Terms’:
A system of differential equations with solutions that contain a rapidly damping

component (as would describe the displacement of a stiff spring when stretched and
then released).

Germund Dahlquist quoted in Exercise 9.1 of Shampine (1994):
"The stiffness ratios used by some authors ... may be of use when one estimates

the amount of work needed, if a stiff problem is to be solved with an explicit method,
but they are fairly irrelevant in connection with implicit methods...."

From around the web:
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We say that a problem is stiff if the following conditions are fulfilled. A)
No solution component is unstable, or equivalently, no eigenvalue of the Jacobian
matrix has a real part which is at all large and positive, and at least some component
is very stable, that is, at least one eigenvalue has a negative part which is negative
and large. B) The solution is slowly varying with respect to the negative real part
of the eigenvalues.

Stiff if eigenvalues of the Jacobi matrix df/dy are negative and large in magni-
tude.

E!���"� 23. As a concrete example, the problem

y′ = −100y + 101t+ 101, y(0) = 1
has general solution and true solution

ygeneral(t) = 1 + t+Ce−100t and since y(0) = 1 :

y(t) = 1 + t.

Perturbations of the solution, such as by discretizations are damped rapidly like
e−100t. The system is stiff means that perturbations are small but their derivatives
are very large. This makes explicit method crash, as depicted above.

Thus, we take the model problem

y′(t) = λy(t) where λ < 0 and |λ| is very large.

"Very large" simply means so large that explicit methods cannot be used to get the
solution within time and resource constraints due to the accompanying timestep
restriction for stability. The solution of this problem is y(t) = eλty(0) → 0 very
fast as t → ∞. Although the behavior is not exotic, there is a natural time scale
associated with this decay: the half life:

1

2
life =

ln(2)

|λ| .

The more negative λ is, the shorter the half-life of the solution and (in that sense)
the faster things happen in the IVP.

We look at a few examples to see possible sources of stiffness.

E!���"� 24 (A Second Order IVP). The following second IVP seems inoffen-
sive

y′′ + 1001y′ + 1000y = 0, t > 0

y(0) = 1 and y′(0) = −1.
However, it has solution (which can be found by standard methods)

y(t) = C1e
−t +C2e

−1000t,

where C1,2 are determined by the initial conditions1. This solution exhibits rate
constants λ = −1,−1000 which begins to be stiff. The so called stiffness ratio of
this problem is

Stiffness ratio :=
max |λ|
min |λ| = 1000.

1y(0) = 1 gives C1+C2 = 1 and y′(0) = −1 gives C1(−1)+C2(−1000) = −1. This is a 2 by
2 linear system for C1, C2.
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If we write the second order IVP as one for a first order system in the usual way
(y1 = y, y2 = y′ etc.) we get

d

dt

�
y1
y2

�
=

�
0 1

−1000 −1001

� �
y1
y2

�
.

The eigenvalues of the above 2× 2 matrix are easily found to be λ = −1 & −1000.
The stability region of RK4 shows that if this system is approximated by RK4,
it will converge nicely if △t < 0.002 but the approximate solution will blow up
exponentially if △t ≥ 0.003.

E!���"� 25 (Heat Conduction). The IVP for heat conduction in a bar in its
simplest form is a partial differential equation for the temperature u(x, t) at the
point x at time t. The initial temperature u(x, 0) and the temperature at both ends
u(0, t) and u(1, t) are known and the internal temperature satisfies

∂u

∂t
=
∂2u

∂x2
for 0 < x < 1, t > 0.

To predict the temperature it is converted into an IVP for system of ODEs as
follows. Pick a space mesh width △x = 1/(N + 1) and let

xj = j△x and uj(t) = approximation to u(xj , t).

We approximate

∂2u

∂x2
(xj , t) ≃

uj+1(t)− 2uj(t) + uj−1(t)
△x2 (which has error O(△x2)).

We then have the system of equations for uj(t)

u′1 =
−2u1 + u2

△x2

u′2 =
+u1 − 2u2 + u3

△x2
· · · ·

u′N−1 =
+uN−2 − 2uN−1 + uN

△x2

u′N =
+uN−1 − 2uN

△x2 .

This is written in matrix form as

d

dt




u1
u2
...
uN


 =

1

△x2




−2 +1
+1 −2 +1

ց ց ց
+1 +2







u1
u2
...
uN


 .

The above matrix is denoted tridiag(+1,−2,+1). Its structure is so regular that an
explicit formula exists for its eigenvalues. Even without an explicit formula the stiff-
ness ratio could be estimated based on the (plausible and correct) assumption that
the eigenvalues of △x−2tridiag(+1,−2,+1) approximate the first N eigenvalues of
the continuous problem:

−φ′′n(x) = λnφn(x), 0 < x < 1,

φn(0) = 0, φn(1) = 0.

These are easily calculated. For the matrix we have the following.
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T������ 12 (Eigenvalues of tridiag(1,-2,1)). ‘The eigenvalues of the N ×N
matrix 1

△x2 tridiag(+1,−2,+1) are

λj = − 4

△x2 sin
2

�
jπ

2N

�
, j = 1, · · ·,N.

Specifically2

j = 1 : smallest eigenvalue ≃ −2π ,

j = N : largest eigenvalue ≃ −4 (△x)−2

E!���"� 26. Suppose N = 1000 (for example) so △x = 10−6 then the
stiffness ratio is

stiffness ratio =
4△x−2
2π

=
1

2π
10−6.

RK2 is stable if and only if (using 0 > −2π ≥ λ ≥ −4△x−2)
−2 < △tλj < 0⇔

△t 4

10−6
< 2⇔

△t <
1

2
× 10−6,

which is an extraordinary small size for a problem whose solution is not doing
anything dramatic.

This last example is a critical one as it represents all processes that are dom-
inated by diffusion. For these it is typical that the eigenvalues are large (in
absolute value), negative and real. A-stability requires more than is needed for
this application where the eigenvalues are real and negative (so stability for complex
eigenvalues is not necessary). Further, the solution behavior is also very specific:
the solution decays monotonically to zero and, when the data is positive, preserves
positivity. This is one motivation for studying stability beyond A-stability such as
A0 stability, stiffly stable and L-stability.

D�	������� 15 (Stability addressing diffusion dominated problems). Let a
method’s stability region be R.

• A method is A0-stable if R ⊃ {z : Re(z) < 0 and Im(z) = 0}.
• A method is stiffly stable if R ⊃ R1∪R2 where

R1 = {z : Re(z) < −a < 0 for some a > 0} and

R2 = {z : −a ≤ Re(z) < 0,−c ≤ Im(z) ≤ +c for some a > 0, c > 0}.
• A method is L-stable if it is A−stable and its approximation yn satisfies
yn → 0 for n fixed but λ → −∞.

For a nonlinear system,
d

dt
−→y = −→

f (t,−→y )

2This estimate uses
� π
2N

�2
≤ sin2

� nπ
2N

�
≤ 1 = sin2(

Nπ

2N
).
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stiffness refers to the rates (time scales) at which trajectories squeeze together. If
−→x (t),−→y (t) are solutions with different initial data then their difference satisfies

d

dt
(−→x − −→y ) =

−→
f (t,−→x )− −→

f (t,−→y )
or

d

dt
(−→x − −→y ) =

�
∂f

∂y
(t,

−→
ξ )

�
(−→x − −→y )

The matrix ∂f
∂y is the Jacobi matrix or derivative matrix of the system. For a

system of N equations, it is an N ×N matrix with entries
�
∂f

∂y

�

ij

=
∂fi
∂yj

.

D�	������� 16 (Another definition of stiffness). A stiff system d
dt

−→y = −→
f (t,−→y )

is one for which the eigenvalues of the Jacobi matrix ∂fi
∂yj

are negative and so large
in absolute value as to preclude its solution by explicit methods.

Stiffness can be measured various ways. One common method is in terms of
the Stiffness Ratio.

D�	������� 17 (Stiffness ratio). The stiffness ratio is

S :=
maxi |Re(λi)|
minj |Re(λj)|

.

The obvious solution for stiff systems is to use implicit methods and the obvious
choices are the trapezoid rule and BDF2, considered in the next section. The most
general result for 2 step methods is the following.

T������ 13 (A-stable 2 step methods). Concerning 2 step methods
α2yn+1 + α1yn + α0yn−1

△t = β2f(tn+1, yn+1) + β1f(tn, yn) + β0f(tn−1, yn−1)

These have order ≥ 2 (i.e., LTE=O(△t3)) if

α0 = −1 + α2, α1 = 1− 2α2,
β0 =

1
2 − α2 + β2, β1 =

1
2 + α2 − 2β2.

They are A stable if

α2 ≥ 1

2
, β2 ≥ α2/2

and are L stable if

α2 >
1

2
, β2 > α2/2.

Alternately, a consistent 2 step method

(1 + ξ)yn+1 − (1 + 2ξ)yn + ξyn−1
△t = θf(tn+1, yn+1)+(1−θ+φ)f(tn, yn)−φf(tn−1, yn−1).

is A stable if and only if

θ ≥ φ+ 1/2,

ξ ≥ −1/2,
ξ ≤ θ + φ− 1/2.
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E!��
��� 49. Estimate the stiffness ratio for the discretized heat equation equa-
tion. Hint: first show that

0 > − 4

h2

�π
2
h
�2

≥ λj ≥ − 4

h2
.

1. The Trapezoid rule

The trapezoid rule

(TR)
yn+1 − yn

△t =
1

2
f(tn+1, yn+1) +

1

2
f(tn, yn).

is the optimal A-stable method according to the Dahlquist theory. Thus, there is a
lot of experience working with it. This leads to an understanding of its limitations
and a number of fixes for its known weak points.

1.1. The Trapezoid rule is not L-stable. One drawback (we now explore)
of the trapezoid rule is that it is not L−stable. To explore L-stability return to
the TR for the standard test problem y′ = λy where λ is real and negative. It is

yn+1 − yn
△t = λ

yn+1 + yn
2

or yn+1 =
1 + 1

2△tλ
1− 1

2△tλ
yn.

This means that

yn =

�
1 + 1

2△tλ
1− 1

2△tλ

�n
y0 and thus

yn → 0 as λ → −∞ if and only if
����
1 + 1

2△tλ
1− 1

2△tλ

����→ 0 as λ → −∞.

Define

a(x) :=
1 + x

1− x
(where x =

1

2
△tλ).

Note that

a(
1

2
△tλ)→ −1 as λ → −∞

and clearly the trapezoid rule is not L−stable. This is also very clear from the
plot of a(x), below.
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a(x) = 1+x
1−x and y = ±1.

O. Axelsson3 has proposed a simple correction. This does not restore L-stability
but does introduce some damping for large λ. Recall that the θ-method is

(θ-method)
yn+1 − yn

△t = θf(tn+1, yn+1) + (1− θ)f(tn, yn).

and reduces to the TR when θ = 1/2. He suggested simply taking

θ =
1

2
+△t

which is a slight bias to the fully implicit method. The resulting method is

yn+1 − yn
△t = (

1

2
+△t)f(tn+1, yn+1) + (

1

2
− △t)f(tn, yn),

or (A!�"����� 
����
����)

yn+1 − yn
△t =

�
1

2
f(tn+1, yn+1) +

1

2
f(tn, yn)

�
+△t [f(tn+1, yn+1)− f(tn, yn)]

E!��
��� 50. Show that the correction of Axelsson is second order accurate.

3Professor Owe Axelsson has been a leader in the develpment and analysis of numerical
methods for solving large, sparse linear systems, for finite element methods and for timestepping
methods. He is the founder of the journal Numerical Linear Algebra with Applications and is on
several other. From 1964-1971 he was chairman of the CS department at Chalmers University and
the University of Gothenburg, Sweden. He was professor in Numerical Analysis at the University
of Nijmegen, The Netherlands from 1979 - 2004. He is currently guest professor at Uppsala
University and senior researcher at the Institute of Geonics, Academy of Sciences, Ostrava, Czech
Republic. He is listed in the ISI Highly Cited List of Mathematicians.
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1.2. The Trapezoid Rule Oscillation. The plot of a(x)
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a(x) = 1+x
1−x and y = ±1.

also makes the qualitative behavior of the TR solution clear. Note that

a(x) = a(
1

2
△tλ) > 0 only for

−1 < x ≤ 0⇔ △t|λ| < 2.
For larger timesteps, i.e., for

△t > 2

|λ| ,

a(x) < 0 and thus the approximate solution yn will alternate sign / oscillate if
the same timestep condition needed for most explicit methods is violated. The
true solution y(t) is positive and decreases to zero monotonically. This oscillation
for larger timesteps is a bad feature of the TR and a number of fixes have been
developed for it.

1.3. Fixes for the TR Oscillation. Since the TR is used in many practical
simulations in which time scales are not well resolved, oscillations occur. Many
fixes for these oscillations have been developed. We review some fixes here. The
development of a complete and sound mathematical theory for many of there is an
open problem.

Axelsson’s tilt to the implicit method
As described earlier, it is the following

yn+1 − yn
△t = (

1

2
+△t)f(tn+1, yn+1) + (

1

2
− △t)f(tn, yn),

or (A!�"����� 
����
����)

yn+1 − yn
△t =

�
1

2
f(tn+1, yn+1) +

1

2
f(tn, yn)

�
+△t [f(tn+1, yn+1)− f(tn, yn)]

Moving averages
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Lindberg [L71] proposed in 1971 that one average the TR approximation as
follows

ytempn+1 − ytempn

△t =
1

2
f(tn+1, y

temp
n+1 ) +

1

2
f(tn, y

temp
n )

ytempn =
ytempn+1 + 2y

temp
n + yn−1

4
.

The moving average can be rewritten as

ytempn+1 − ytempn

△t =
1

2
f(tn+1, y

temp
n+1 ) +

1

2
f(tn, y

temp
n )

yn = ytempn +
1

4

�
ytempn+1 − 2ytempn + yn−1

�

which can easily be shown to reduce the curvature in time
�
ytempn+1 − 2ytempn + yn−1

�

of the computed approximation.
The Robert-Asselin time filter
Robert and Asselin proposed something similar4 with a tunable parameter ν

for the CNLF approximation

yn = ytempn +
ν

2

�
ytempn+1 − 2ytempn + yn−1

�
, 0 < ν < 1.

To quantify the effect of the filter step, define a discrete curvature in time,
before and after the filter, by

κoldn = ytempn+1 − 2ytempn + yn−1,

κnewn = ytempn+1 − 2ytempn + yn−1

We then have the following on reduction in the TR oscillation.

T������ 14. Let 0 < ν < 1. The method

ytempn+1 − ytempn

△t =
1

2
f(tn+1, y

temp
n+1 ) +

1

2
f(tn, y

temp
n )

yn = ytempn +
ν

2

�
ytempn+1 − 2ytempn + yn−1

�
.

reduces the discrete curvature. It satisfies the curvature evolution equation

κnewn = (1− ν)κoldn

The proof is a simple rearrangement of the filter step and left as an exercise.

E!��
��� 51. Let κold = ytempn+1 − 2ytempn + yn−1, κnew = ytempn+1 − 2yn + yn−1.
Show that κnewn = (1− ν)κoldn .

E!��
��� 52. Consider TR plus the above filter step. Eliminate the temporary
variables and write the combination as a LMM. Show it is first order accurate for
ν > 0 fixed and analyze its stability.

E!��
��� 53. Prove that the usual TR with Lindberg’s moving averages is
stable. The proof should be a development of the following strategy: The averaging
as formulated does not alter the TR computed solution hence step 1 is stable and
Step 2 is a weighted average with positive weights and hence preserves stability.

4They specifically proposed it for the IMEX method CNLF described below. Various im-
provemments have been developed. The one currently considered best is the RAW or Roberts-
Asselin-Williams filter.
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Occasionally adding a BE step
One method sometimes advocated is every unit time add 2 steps of backward

Euler. These strongly damp the oscillations generated during the previous steps.
Adapt the time step
This is the method strongly advocated by Phil Gresho5 who notes that, while

there is no proof, there is extensive evidence that oscillations do not arise when
time adaptivity is added to the TR. He proposes the following as an efficient im-
plementation of an adaptive estimator.

Predict_with_AB2

yPn+1 = yn +
△tn
2

�
(2 +

△tn
△tn−1

)f(tn, yn)−
△tn

△tn−1
f(tn−1, yn−1)

�

Reuse_function_Evaluations_for_TR:

yn+1 − yn
△t =

1

2
f(tn+1, yn+1) +

1

2
f(tn, yn)

EST =
|yPn+1 − yn+1|
3(1 + △tn

△tn−1 )
,

Invert_TR to get fn+1

f(tn+1, yn+1) =
2

△tn
(yn+1 − yn)− f(tn, yn)

and reuse for next predictor step.

1.4. The one-leg vs. two-leg Trapezoid rule. The issue of "leggedness"
has been considered in great detail for the trapezoid rule. The two-leg (usually
considered the normal TR) and the one-leg (also called the implicit midpoint rule)
versions are, respectively,

−→y n+1 − −→y n
△t =

1

2

−→
f (tn+1,

−→y n+1) +
1

2

−→
f (tn,

−→y n) or
−→y n+1 − −→y n

△t =
−→
f (tn+ 1

2
,
−→y n+1 +−→y n

2
).

To explain the difference, consider the nonautonomous test problem

y′ = λ(t)y, where λ(t) < 0.

Here there is a difference between the 1 leg and 2 leg methods. They are respectively

1 leg_ TR: 2 leg_ TR:

yn+1 =
�
2+△tλ(tn+1/2)
2−△tλ(tn+1/2)

�
yn yn+1 =

�
2+△tλ(tn+1)
2−△tλ(tn+1)

�
yn

.

Clearly, the 1 leg method has the property, not shared by the 2 leg version that

|yn+1| ≤ |yn| for all n since

����
2 +△tλ(tn+1/2)
2− △tλ(tn+1/2)

���� < 1.

This impacts stability. Suppose f = f(y) satisfies a monotonicity condition.

5Dr Philip Gresho is one of the founders of the International Journal for Numerical Methods
in Fluids. He made many major technical contributions to the field. His book ‘Incompressible Flow
and the Finite Element Method’ is a source for "what works" in Computational Fluid Dynamics.
It is filled with important insights into numerical methods.
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C��/����� 1. Suppose there is an α > 0 such that for all x, y

(M�������
���) (f(x)− f(y)) · (x− y) ≤ −α|x− y|2.
In this case the following is easy to show (and its proof is an exercise).

T������ 15. Suppose f(y) satisfies (M�������
���). Then any two solu-
tions x(t), y(t) from different initial conditions must squeeze together exponentially
fast:

|x(t)− y(t)|2 ≤ e−αt|x(0)− y(0)|2

The natural question is whether discretizations preserve this property. It is
very easy to show that the one leg TR has this property for averages of the solution
over 2 time levels..

T������ 16 (Squeezing of averages). Suppose f(y) satisfies (M�������
���).
Then averages of any two solutions xn, yn from different initial conditions of the
one leg TR must squeeze together: let wn = xn − yn then

wn+1 +wn
2

→ 0 as n → ∞.

P���	. Begin with

xn+1 − xn
△t = f(

xn+1 + xn
2

)

yn+1 − yn
△t = f(

yn+1 + yn
2

).

Set wn = xn − yn. Subtract and take the dot product with (wn+1 + wn)/2. This
gives

wn+1 −wn
△t · wn+1 +wn

2
=

=

�
f(
xn+1 + xn

2
)− f(

yn+1 + yn
2

)

�
·
�
xn+1 + xn

2
− yn+1 + yn

2

�
.

The LHS is

LHS =
wn+1 −wn

△t · wn+1 +wn
2

=
1

2△t
�
|wn+1|2 − |wn|2

�
.

The RHS fits the monotonicity assumption perfectly. It satisfies

RHS =

�
f(
xn+1 + xn

2
)− f(

yn+1 + yn
2

)

�
·
�
xn+1 + xn

2
− yn+1 + yn

2

�

≤ −α
����
xn+1 + xn

2
− yn+1 + yn

2

����
2

= −α
4

|wn+1 +wn|2 .

Putting these together we have

1

2△t
�
|wn+1|2 − |wn|2

�
+
α

4
|wn+1 +wn|2 ≤ 0.

Summing n = 1, ..., N − 1 gives

1

2△t |wN |2 + α

4

N−1�

n=0

|wn+1 +wn|2 ≤ 1

2△t |w0|
2.
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Since the RHS is independent of N we conclude that, uniformly in N,

sup
N

|wN |2 < ∞

and
∞�

n=0

|wn+1 +wn|2 < ∞.

Since the infinite series converges it must follow that the nth term → 0

|wn+1 +wn| → 0, as n → ∞

�

Averages squeeze together but what about trajectories?
Now, the previous proof simply does not work with the two leg version of the

TR. Thus it was believed that the one leg version had preferable stability properties,
until the following was noticed.

T������ 17 (Equivalence of 1 leg and 2 leg methods). If (tn, yn) satisfies the
1 leg TR. Then

)tn =
tn+1 + tn

2

*yn =
yn+1 + yn

2

satisfies the 2 leg TR. Conversely, if ()tn,*yn) satisfies the 2 leg TR then (tn, yn)
satisfies the 1 leg TR where

yn = *yn − (h/2)f( )tn,*yn),
tn = )tn − h/2.

To my knowledge, this relationship has not [yet] been used to post process the
TR.

E!��
��� 54. Prove the equivalence theorem about the 1 and 2 leg TR.

E!��
��� 55. If f(x) = Ax where A is negative definite show that wn = xn−yn
→ 0 as n → ∞.

1.5. Error Estimation. Error be combined efficiently with methods for gen-
erating initial guesses for solving the nonlinear system. This is the method6 strongly
advocated by Phil Gresho who notes that while there is no proof, oscillations do
not arise when time adaptivity is added to the TR. He proposes the following as

6This is a repetition of an earlier note.
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an efficient implementation of an adaptive estimator.

Predict_with_AB2

yPn+1 = yn +
△tn
2

�
(2 +

△tn
△tn−1

)f(tn, yn)−
△tn

△tn−1
f(tn−1, yn−1)

�

Reuse_function_Evaluations_for_TR:

yn+1 − yn
△t =

1

2
f(tn+1, yn+1) +

1

2
f(tn, yn)

EST =
|yPn+1 − yn+1|
3(1 + △tn

△tn−1 )
,

Invert_TR to get fn+1

f(tn+1, yn+1) =
2

△tn
(yn+1 − yn)− f(tn, yn)

and reuse for next predictor step.

2. Solving the nonlinear system for stiff problems

For a nonlinear system,
d

dt
−→y = −→

f (t,−→y )
the trapezoid rule can be interpreted in two ways:

−→y n+1 − −→y n
△t =

1

2

−→
f (tn+1,

−→y n+1) +
1

2

−→
f (tn,

−→y n) or
−→y n+1 − −→y n

△t =
−→
f (tn+ 1

2
,
−→y n+1 +−→y n

2
).

These are sometimes called the "two leg" and the "one leg" trapezoid rule and the
one leg version is also called the implicit midpoint rule. (They are the same for
linear systems.) For either selection, one must solve a nonlinear system for −→y n+1
and the issues are much the same for one as for the other. For the two legged
version, at every step we must perform:

given −→y n :

assemble the vector :
−→
b = −→y n +

△t
2

−→
f (t,−→y n)

solve the nonlinear system : −→y n+1 − △t
2

−→
f (t,−→y n+1) =

−→
b

Essentially the same challenge occurs for any implicit method including the
one leg trapezoid rule and BDF methods. So that we can be specific, we shall thus
study the above system. Thus the problem is:

solve for −→y :

F (−→y ) := −→y − △t
2

−→
f (−→y ) = −→

b .

The general method for solving nonlinear systems F (y) = b consists of three ingre-
dients:

• Select initial guess to the solution yold;
• Rewrite F (y) = b as y = G(y) and iterate ynew = G(yold);
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• Stop when appropriate stopping criteria are satisfied.

We will examine these three main steps for the above nonlinear system.
The initial guess. Finding good initial guesses is usually the hardest part of

solving nonlinear systems. When, as here, they arise in time dependent problems,
it becomes the easiest part of the problem. Good options for initial guesses yold =
approximation of yn+1 include:

the last time step: yold := yn

extrapolation from previous values: yold := 2yn − yn−1

one step of an explicit method : yold := yn +△tf(tn, yn)
Stopping Criteria. Every iterative method must contain a user selected,

preset tolerance, a user selected, preset maximum number of iterations and three
tests:

STOP and signal non-convergence if too many iterations,

STOP if both below hold:

Small Residual: test if |F (ynew)− b| < Tolerance

Small Update: test if |ynew − yold| < Tolerance

The choice of iterative method. If the time step △t is small it is very
natural to try to solve the nonlinear system by a simple iteration of the form:

Given: yold,

ynew − △t
2
f(yold) = b

Replace: yold ⇐ ynew.

Implementing this is particularly easy since the iteration uses only the function
f(y) already programmed and noting further. The convergence of this iteration is
governed by the contraction mapping theorem. There are various versions. The
relevant one for our purposes here is as follows.

T������ 18 (Contraction Mapping Theoorem). Suppose G(y) is continuously
differentiable and has a fixed point

y∗ = G(y∗).

Consider the fixed point iteration

Guess : yold

Until Convergence:

ynew = G(yold)

ynew ⇐ yold.

This iteration converges locally (i.e., for good enough initial guess) provided

| d
dy
G(y∗)| < 1.

Applied to ynew − △t
2 f(y

old) = b, we take

G(y) := b+
△t
2
f(y).
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The contraction mapping theorem assures convergence provided the timestep △t is
small enough to satisfy

△t
2

|fy(tn+1, yn+1)| < 1.
Since getting good initial guesses is no problem, this means the nonlinear system
can be solved easily provided the system is not stiff.

The problem with simple iteration for stiff problems is that it requires the above
timestep restriction for convergence

△t
2

|fy(tn+1, yn+1)| < 1.

When f(y) = λy, this is
|△tλ| < 2,

exactly the time step restriction required for stability of forward Euler! Thus,

Simple iteration is useful if and only if the system is not stiff.
Fortunately, Newton’s7 method works well for solving the nonlinear system

arising in stiff systems. Newton’s method for F (y) = b reads

Until Satisfied : Given yold, r = b− F (yold)

Assemble the N ×N matrix : A =
∂Fi
∂yj
(yold) and solve Ax = r

Update : ynew = yold + x and yold ⇐ ynew

Compute : r = b− F (yold) and test for convergence.

With a good initial guess, the second step is normally where Newton’s method
would break down. For stiff systems, F (y) = y − △t

2 f(y) so the eigenvalues of the
matrix ∂fi

∂yj
are large and negative. Thus the eigenvalues of ∂Fi

∂yj
are positive and

bounded away from zero:

λ

�
∂Fi
∂yj

�
= λ

�
I − △t

2

∂fi
∂yj

�

= 1− △t
2
λ

�
∂fi
∂yj

�

= 1− △t
2

× {something large and negative} ≥ 1.

As a consequence, no breakdown is possible for Newton’s method.

3. Energy proofs of stability

There are problems for which proof of stability by direct assault (by energy
methods) is essential. In particular, energy proofs, beyond scalar , autonomous
problems, yield stability for nonlinear, non-autonomous systems. they also give
estimates of dependence of stability on the size of the system (thus are relevant for
PDEs) and other parameters. Further, IMEX methods are the current standard for
multi-physics systems and the scalar test problem gives necessary but not sufficient
conditions for IMEX methods. Energy proofs, when known, are the gold standard
for stability and, when compatible for the component methods, can yield stability
of IMEX methods.

7"The" Isaac Newton of course!
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On the other hard, energy proofs are not systematic8 and are generally more
intricate than the beautiful, complete and systematic theory of A-stability by root
conditions.

There are a few methods where the "tricks" needed for energy stability analysis
are known. In this section we review 3: the backward Euler method, the Trapezoid
rule and BDF2. The goal of an energy proof of stability is to develop an exact
energy equality where the equivalent of the kinetic energy is revealed and where
the numerical dissipation of the method is exactly quantified. To give this much
detail, often the analysis is restricted to a linear system of evolution equations such
as

−→y ′ +A−→y = f(t), t > 0,
−→y (0) = −→y 0,

where

A = a square SPD matrix.

In the analysis the A-norm is important for a precise result.

D�	������� 18 (A-norm and inner product). For an SPD matrix A the asso-
ciated A−norm and inner product are

�x, y A := xTAy and |x|A :=
�

�x, x A.

Taking the dot product of −→y ′ + A−→y = f(t) with −→y and integrating in time
gives, for any T >0,

1

2
|y(T )|2 +

� T

0

|y(T )|2Adt =
1

2
|y(0)|2 +

� T

0

f(t) · y(t)dt.

This is the basic energy equality that a discrete energy analysis seeks to mimic.
The terms have the interpretation below.

Interpretation Corresponding term
energy at time T : 1

2 |y(T )|2
energy dissipated at time t : |y(t)|2A

total dissipated over 0 ≤ t ≤ T :
+ T
0

|y(T )|2Adt
Initial energy : 1

2 |y(0)|2
Energy input over 0 ≤ t ≤ T :

+ T
0
f(t) · y(t)dt

The goal is to produce a discrete equivalent for the solution of the methods difference
approximation.

3.1. Implicit Euler. Consider the implicit Euler approximation to

−→y ′ +A−→y = f(t), t > 0,
−→y (0) = −→y 0,

where

A = a square SPD matrix.

8There is a systematic approach to energy estimates of stability known as G-stability theory.
It is intricate and quite technical.
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It is given by

(I��"�
�� E�"��)
−→y n+1 − −→y n

△t +A−→y n+1 = f(tn+1).

The proof will need a vector identity known as the polarization identity.

L���� 2 (Polarization Identity). For any vectors x, y we have

x · y = 1
2
|x|2 + 1

2
|y|2 − 1

2
|x− y|2

P���	. This is an identity. To prove it first expand each side and cancel terms
until it reduces to 0=0. The proof is then simply writing the sequence of steps in
the opposite order starting with "0=0". The realization of this proof is left as an
exercise. �

We then have energy stability.

T������ 19 (Energy stability of the implicit method). We have, for any N>0

1

2
|yN |2 +△t

N−1�

n=0

�
|yn+1|2A +

△t
2

|yn+1 − yn
△t |2

�
=
1

2
|y0|2 +△t

N−1�

n=0

f(tn+1) · yn+1.

P���	 �	 ������ �����"���. We parallel the steps in deriving the energy
equality

1

2
|y(T )|2 +

� T

0

|y(T )|2Adt =
1

2
|y(0)|2A +

� T

0

f(t) · y(t)dt.

for the IVP. Take the inner product with −→y n+1 and multiply through by△t. This
gives

�
|yn+1|2 − yn · yn+1

�
+△t |yn+1|2A = △tf(tn+1) · yn+1

At this point we need a vector identity known as the polarization identity. The
polarization identity is now used on the term yn · yn+1. This gives
�
|yn+1|2 −

�
1

2
|yn|2 +

1

2
|yn+1|2 − 1

2
|yn+1 − yn|2

��
+△t |yn+1|2A =△tf(tn+1)·yn+1,

or
�
1

2
|yn+1|2 − 1

2
|yn|2

�
+△t |yn+1|2A +

1

2
|yn+1 − yn|2 =△tf(tn+1) · yn+1.

Note that
1

2
|yn+1 − yn|2 = △t△t

2
|yn+1 − yn

△t |2.

Summing this over n = 0, · · ·, N − 1 gives

1

2
|yN |2 +△t

N−1�

n=0

�
|yn+1|2A +

△t
2

|yn+1 − yn
△t |2

�
=
1

2
|y0|2 +△t

N−1�

n=0

f(tn+1) · yn+1.

�
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The discrete energy stability resembles term by term the continuous case:

Continuous :

1

2
|y(T )|2 +

� T

0

|y(T )|2Adt =
1

2
|y(0)|2A +

� T

0

f(t) · y(t)dt

Discrete :

1

2
|yN |2 +△t

N−1�

n=0

�
|yn+1|2A +

△t
2

|yn+1 − yn
△t |2

�
=

1

2
|y0|2 +△t

N−1�

n=0

f(tn+1) · yn+1

This means we have the following interpretations of each term.

Interpretation Corresponding term
energy at time tN : 1

2 |yN |2
energy dissipated at time tn : |yn+1|2A + △t

2 |yn+1−yn△t |2

Energy dissipated over 0 ≤ t ≤ T : △t,N−1
n=0

�
|yn+1|2A + △t

2 |yn+1−yn△t |2
�

Initial energy : 1
2 |y0|2

Energy input over 0 ≤ t ≤ T : △t,N−1
n=0 f(tn+1) · yn+1

The dissipation has two components:

Interpretation and Term

IVP dissipation : |yn+1|2A
Extra numerical dissipation : △t

2 |yn+1−yn△t |2

3.2. The Trapezoid Rule. Consider the implicit Euler approximation to
−→y ′ +A−→y = f(t), t > 0,

−→y (0) = −→y 0,
where

A = a square SPD matrix.

It is given by

(I��"�
�� E�"��)
−→y n+1 − −→y n

△t +A
−→y n+1 +−→y n

2
= f(tn+1/2).

The proof will need use the vector identity.

L���� 3. We have

(x− y) · (x+ y) = |x|2 − |y|2

P���	. Expand both sides. �

With that identity energy stability follows easily.

T������ 20 (Energy stability of the TR). We have, for any N > 0

1

2
|yN |2 +△t

N−1�

n=0

����
yn+1 + yn

2

����
2

A

=
1

2
|y0|2 ++△t

N−1�

n=0

f(tn+1/2) ·
yn+1 + yn

2
.

P���	 �	 ������ �����"���. We parallel the steps in deriving the energy
equality

1

2
|y(T )|2 +

� T

0

|y(T )|2Adt =
1

2
|y(0)|2A +

� T

0

f(t) · y(t)dt.
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for the IVP. Taking the dot product of the TR with
−→y n+1+−→y n

2 and using the above
identity gives

1

2△t
�
|yn+1|2 − |yn|2

�
=

����
yn+1 + yn

2

����
2

A

= f(tn+1/2) ·
yn+1 + yn

2

Summing n = 0, ..., N − 1 gives

(3.1)
1

2
|yN |2 +△t

N−1�

n=0

����
yn+1 + yn

2

����
2

A

=
1

2
|y0|2 ++△t

N−1�

n=0

f(tn+1/2) ·
yn+1 + yn

2
.

�

The discrete energy stability resembles term by term the continuous case:

Continuous :

1

2
|y(T )|2 +

� T

0

|y(T )|2Adt =
1

2
|y(0)|2A +

� T

0

f(t) · y(t)dt

discrete :

1

2
|yN |2 +△t

N−1�

n=0

����
yn+1 + yn

2

����
2

A

=
1

2
|y0|2 ++△t

N−1�

n=0

f(tn+1/2) ·
yn+1 + yn

2
.

This means we have the following interpretations of each term.

Interpretation Corresponding term
energy at time tN : 1

2 |yN |2

energy dissipated at time tn :
���yn+1+yn2

���
2

A

total dissipated over 0 ≤ t ≤ T : △t,N−1
n=0

���yn+1+yn2

���
2

A
Initial energy : 1

2 |y0|2
Energy input over 0 ≤ t ≤ T : △t,N−1

n=0 f(tn+1/2) ·
yn+1+yn

2

The dissipation components for the TR are:

Interpretation and Term

IVP dissipation :
���yn+1+yn2

���
2

A
Extra numerical dissipation : none

3.3. BDF2. Analogous but more complex manipulations are known for BDF2.

3.4. The discrete energy evolution of leapfrog. Analogous but more
complex manipulations are known for leapfrog.

4. Implicit RK Methods

The first Runge Kutta methods were explicit and developed quite early (Runge
1895, Kutta 1901, Heun 1900). The subsequent work of Dahlquist revealed that
implicit methods are necessary. It took substantially longer to develop good implicit
RK methods. This section presents some good implicit RK methods.

First, RKs methods are one step methods. Thus they take the general form

yn+1 − yn =△tΦ(·)
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where Φ takes the form:

Φ =
s�

i=1

biki.

The stages are of the form

ki = △tf(tn + ci△t, yn +
s�

j=1

aijkj) for i = 1, · · ·, s.

Thus, the method is determined by specifying the parameters bi, ci, aij . These pa-
rameters are determined by the twin constraints of high consistency and desired
stability. RK methods are thus codified by presenting these parameters are an ar-
ray called the "Butcher array" or "Butcher tableau" due to the work of Butcher9

in 1964: 


−→c | A
_ | _

| −→
b T


 =



ci | Aij
_ | _

| bTj


 .

E!���"� 27 (Butcher array for RK2). RK2 is

k1 = △tf(tn, yn)
k2 = △tf(tn +△t, yn + k1)

yn+1 = yn +
1

2
k1 +

1

2
k2.

Thus,

b1 = b2 =
1

2
,

c1 = 0, c2 = 1

a11 = 0, a12 = 0

a21 = 1, a22 = 0.

This corresponds to the Butcher array

0| 0 0
1| 1 0

| 1
2

1
2

.

Indeed, rewrite RK2 as follows (and use subscripts to indicate where in the array
each number goes:

k1 = △tf(tn + 0(c1)△t, yn +
�
0(A1,1)k1 + 0(A1,2)k2

�
)

k2 = △tf(tn + 1(c2)△t, yn +
�
1(A2,1)k1 + 0(A2,2)k2

�
)

yn+1 = yn +

�
1

2

�

(b1)

k1 +

�
1

2

�

(b2)

k2.

9Adapted from Wikipedia:
John Charles Butcher ONZM (born 1933) is a New Zealand mathematician who is a leader in

the development of numerical methods for the solution of ordinary differential equations. Butcher
works Runge-Kutta and general linear methods. The Butcher group and the Butcher tableau are
named after him. Butcher was awarded the Jones Medal from the Royal Society of New Zealand
in 2010, for his "exceptional lifetime work on numerical methods for the solution of differential
equations and leadership in the development of New Zealand mathematical sciences."
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Written this way, it is clear that in step 1, if A1,1 �= 0 one must solve a nonlinear
equation or system of equations for k1 and similarly for solving for k2 in step 2. If
A1,2 �= 0 then the nonlinear system is twice as large as the nonlinear equations for
k1 and k2 are coupled.

E!���"� 28 (Butcher array for the Ralston rule RK2 method). The Ralston
rule is:

given : yn (Ralston Rule again)

k1 = △tf(tn, yn)

k2 = △tf(tn +
2

3
△t, yn +

2

3
k1)

yn+1 = yn +
1

4
k1 +

3

4
k2.

This corresponds to the Butcher array

0| 0 0
2
3 | 2

3 0

| 1
4

3
4

.

We observe that a RK method is

• explicit if Aij = 0 for j ≥ i;
• implicit if A has a nonzero entry on or above its diagonal;
• diagonally implicit if Aij = 0 for j > i and Aii �= 0 for some i.

E!��
��� 56. Write the Butcher array for RK4.

The Calahan (1968) DIRK. The following is a diagonally implicit RK
(DIRK)10 method proposed in 1968 by Calahan. It is given by the Butcher ar-
ray:

α| α 0
1− α| 1− 2α α

| 1
2

1
2

A second order DIRK Method

The following is known.

T������ 21. The Calahan method is A0-stable and second order accurate
(local truncation error O(△t3)) for all α , 0 ≤ α ≤ 1, and third order accurate
(local truncation error O(△t4)) if

α =
3 +

√
3

6
.

For that value of α, it is A−stable (but not L−stable).

Implementation of the method is as follows.

Given α, yn :

Solve the nonlinear equation for k1 : k1 = △tf(tn + α△t, yn + αk1)
Solve the nonlinear equation for k2 : k2 = △tf(tn + (1− α)△t, yn + (1− 2α)k1 + αk2)

yn+1 = yn +
1

2
k1 +

1

2
k2.

10K. Dekker and J.G. Verwer, Stability of RK methods for stiff nonlinear equations, North
Holland, Amsterdam, 1984.
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A fourth order implicit RK method. The 2 stage RK method given by
the following Butcher array is known to be A−stable and fourth order accurate.

3−
√
3

6 | 1
4

3−2
√
3

12
3+
√
3

6 | 3+2
√
3

12
1
4

| 1
2

1
2

An A− stable, 2 stage, implicit RK Method

4.1. The discoverers. D.A. Calahan was a professor at the University of
Michigan. His method originated in a 1968 paper of his.

Adapted from Wikipedia:
John Charles Butcher ONZM (born 1933) is a New Zealand mathemati-

cian who is a leader in the development of numerical methods for the solution
of ordinary differential equations. Butcher works Runge-Kutta and general lin-
ear methods. The Butcher group and the Butcher tableau are named after him.
Butcher was awarded the Jones Medal from the Royal Society of New Zealand in
2010, for his "exceptional lifetime work on numerical methods for the solution of dif-
ferential equations and leadership in the development of New Zealand mathematical
sciences."

5. Stability of RK Methods

Stability of RK methods is analyzed in the usual manner. We apply the RK
method to the test problem

y′ = λy, y(0) = 1

Since these are all one step methods, this yields

yn+1 = a(△tλ)yn.
We then ask under what conditions does yn → 0 as n → ∞, i.e., when is

|a(△tλ)| < 1.
E!���"� 29 (RK2). RK2 is

k1 = △tf(tn, yn)
k2 = △tf(tn +△t, yn + k1)

yn+1 = yn +
1

2
k1 +

1

2
k2.

which becomes for f(t, y) = λy

k1 = △tλyn then k2 = △tλ(yn + k1)

yn+1 = yn +
1

2
k1 +

1

2
k2.

Eliminating intermediate steps gives

yn+1 = yn +
1

2
(△tλyn) +

1

2
(△tλ(yn +△tλyn)) .

Collecting terms yields yn+1 = a(△tλ)yn where

a(△tλ) = 1 +△tλ+ 1
2
(△tλ)2.
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Like RK2, if the RK method is explicit, a(△tλ) will be a polynomial in △tλ.
Since every polynomial a(z) → ∞ as |z| → ∞, we can immediately conclude one
special case of the Dahlquist theory for RK methods.

P���������� 6. Explicit RK methods must have bounded stability regions and
thus cannot be A-stable.

If the RK method is implicit, a(△tλ) will be a rational function R(△tλ) (a
quotient of two polynomials) in △tλ. In terms of the methods Butcher array, letting
z = △tλ, we obtain

R(z) = 1 + z
−→
b T [I − zA]−1

−→
1(5.1)

where
−→
1 = (1, 1, · · ·, 1)T .

With R(z) known, stability properties of the RK method can then be read off.

T������ 22 (Stability of RK methods). The RK method with R(z) given
above is

A−stable if |R(z)| < 1 for all z with Re(z) < 0;
A0−stable if |R(z)| < 1 for all z with Im(z) = 0,Re(z) < 0;
Aα−stable if |R(z)| < 1 for all z in the infinite wedge: Re(z) < 0, π − α <

arg(z) < π + α;
L−stable if it is A−stable and |R(z)| → 0 when z is real and z → −∞.

E!��
��� 57. For RK4 find a(△tλ). If is λ real (and negative), plot it and
verify RK4 is stable for the interval predicted by its stability region.

E!��
��� 58. Consider an implicit RK method with

R(z) =
1 + 1

2z +
1
12z

2

1− 1
2z +

1
12z

2
.

a. Find the RK method (hint: (5.1)). b. Given this R(z), show that R(z) factors
in the form

R(z) =
(z + p)(z + q)

(z − p)(z − q)
c. use the factorization to analyze its stability.



CHAPTER 9

IMEX Methods

This chapter collects a list of some particular combinations of schemes (known
as an IMEX = Implicit-Explicit method) that have been useful in some applica-
tions. The analysis of these schemes for stability and convergence is largely an open
question so use them at your own risk.

1. CNLF

CNLF is a method combining the Trapezoid rule1 with doubled timestep with
Leapfrog. This combination is commonly used in some applications when the sys-
tem takes the form

−→y ′ = −→
f (t,−→y (t)) + Λ−→y (t),

where Λ is skew symmetric, i.e., ΛT = −Λ.
The combination CNLF is then

(CNLF)
yn+1 − yn−1

2△t =
1

2
f(tn+1, yn+1) +

1

2
f(tn−1, yn−1) + Λyn.

CNLF is usually combined with time filters. Robert and Asselin proposed the
first filter with a tunable parameter ν

yn = ytempn +
ν

2

�
ytempn+1 − 2ytempn + yn−1

�
, 0 < ν < 1.

This filter does reduce the oscillation that sometimes occurs but it also reduces
the accuracy to first order unless ν = O(△t). Subsequent developments include an
important modification by Williams that restores accuracy.

To quantify the effect of the filter step, define a discrete curvature in time by

κoldn = ytempn+1 − 2ytempn + yn−1,

κnewn = ytempn+1 − 2ytempn + yn−1

We then have the following on reduction in the TR oscillation.

T������ 23. Let 0 < ν < 1. The method

ytempn+1 − yn−1

△t =
1

2
f(tn+1, y

temp
n+1 ) + +

1

2
f(tn−1, yn−1) + Λy

temp
n

yn = ytempn +
ν

2

�
ytempn+1 − 2ytempn + yn−1

�
.

reduces the discrete curvature. It satisfies the curvature evolution equation

κnewn = (1− ν)κoldn

1It is called CNLF and not TRLF because in the applications where it is commonly used the
trapezoid rule is called the CN = Crank-Nicolson method.
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2. CN-AB2

AB2 is commonly used with the trapezoid rule. This combination (another
IMEX = Implicit-Explicit method) is used in some applications when the system
takes the form

y′ = f(t, y(t)) + g(t, y(t)).

The combination CN-AB22 is then
yn+1 − yn

△t =
1

2
f(tn+1, yn+1) +

1

2
f(tn, yn) +

3

2
g(tn, yn)−

1

2
g(tn−1, yn−1).

3. Semi-Implicit Predictor Corrector IMEX schemes

We consider next some linearly implicit schemes for the system

y′ = f(t, y(t)).

Here y is a vector. We split f(t, y) into a linear part and a nonlinear part. The
linear part is generally described as "fast" and the nonlinear part as "slow".

y′ = Ly(t) +N(y(t)).

3.1. CNLF again. The combination CNLF is in this case

(CNLFagain)
yn+1 − yn−1

2△t =
1

2
Lyn+1 +

1

2
Lyn−1 +N(yn).

Unfortunately, CNLF can be unstable so special time filters are always used with
CNLF when the LF is applied to a nonlinear term.

3.2. The LFT predictor corrector scheme. Kurihara in 1965 proposed

yPn+1 − yn−1
2△t = f(tn, yn) (LFT)

yn+1 − yn
△t =

1

2
f(tn+1, y

P
n+1) +

1

2
f(tn, yn).

3.3. The ABT scheme. Kar proposed in 2012:

yPn+1 − yn
△t =

3

2
f(tn, yn)−

1

2
f(tn−1, yn−1) (ABT)

yn+1 − yn
△t =

1

2
f(tn+1, y

P
n+1) +

1

2
f(tn, yn).

3.4. The ABM scheme. Durran proposed in 1999 the Adams-Bashforth-
Moulton scheme:

yPn+1 − yn
△t =

3

2
f(tn, yn)−

1

2
f(tn−1, yn−1) (ABM)

yn+1 − yn
△t =

5

12
f(tn+1, y

P
n+1) +

8

12
f(tn, yn)−

1

12
f(tn−1, yn−1).

2It is called CN-AB2 and not TR-AB2 because in the applications where it is commonly used
the trapezoid rule is called the CN = Crank-Nicolson method.
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3.5. The T-ABT scheme.

yPn+1 − yn
△t =

1

2
LyPn+1 +

1

2
Lyn +

3

2
N(yn)−

1

2
N(yn−1) (T-ABT)

yn+1 − yn
△t =

1

2
Lyn+1 +

1

2
Lyn +

1

2
N(yPn+1) +

1

2
N(yn)

3.6. The AM2-ABM scheme.

yPn+1 − yn
△t =

3

4
LyPn+1 +

1

4
Lyn−1 +

3

2
N(yn)−

1

2
N(yn−1) (AM2-ABM)

yn+1 − yn
△t =

3

4
Lyn+1 +

1

4
Lyn−1 +

5

12
N(yPn+1) +

8

12
N(yn)−

1

12
N(yn−1)

E!��
��� 59. Choose a test problem and compare the performances of the
above IMEX schemes. The goal is to differentiate among the methods and draw a
conclusion. If they perform more or less the same, try a different test problem. Use
an adaptive RKF45 simulation as a "truth" solution.





CHAPTER 10

Modularity: Splitting Methods

insert
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CHAPTER 11

Modelling Errors

"In the future, proponents of numerical fluid dynamics should ex-
plain the limitations (as well as statistical uncertainties)..." Gar-
rett Birkhoff, p. 29 in: Numerical Fluid Dynamics, SIAM Review,
25(1983), 1-34.

Problems associated with missing initial data or unrepresented processes occur
widely in atmospheric science and the methods used to handle the issues have been
highly developed there. We will only look at the first step in their development:
"nudging"1 or "Newtonian damping". There are two cases: forward nudging
and backward nudging.

1. Forward nudging for errors in the model.

"There are two kinds of prognosticators: those who know nothing
and those who don’t know they know nothing." -an old proverb
about economic forecasting

As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality.
– Albert Einstein

Treating these errors requires extra solution measurements. Measurements or
observations are averages. Thus, they containing necessarily less information than
y(t). (Otherwise, we would just use the observation as a new initial condition.)
Thus, we have a matrix C which is not of full rank and observations ydata(t) and
want to minimize ydata(t)−Cy(t). Thus the problem becomes:

minimize : |ydata(t)−Cy(t)|2

subject to: y′ = f(t, y), t > 0, & y(0) = y0.

The idea of nudging is to penalize the deviation of the solution from its observed
averages. Thus, it chooses a small penalty parameter χ > 0 and replaces y′ = f(t, y)
by the IVP

y′ = f(t, y) + χ−1CT (ydata(t)−Cy(t)) , for t > 0,

y(0) = y0.

1For recent work see:
1 D.G. Luenberger, IEEE. T. A. Control, 11(1966) and 16(1971).
2 F.E. Thau, Int. J. Control 17(1973), 471—479.
3 H. Nijmeijer, PhysicaD, 154(2001), 219—228.
4 D. Bloemker, K.J.H. Law, A.M. Stuart and K. Zygalalkis, Nonlinearity 26(2013), 2193—

2219.
5 K.J.H. Law, A. Shukla and A.M. Stuart, Discrete and Continuous Dynamical Systems A,
34(2014), 1061—1078.
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2. Backward nudging for unknown initial data.

It is also quite common for a complete initial condition to be unknown. This
can be treated by starting the IVP at a (later) time when some observed value y(T )
is known. The nudging term is added and the following IVP is solved backward in
time down to t = 0

y′ = f(t, y)− χ−1CT (ydata(t)−Cy(t)) , for t < T,

y(T ) given.

Finally, these two steps can be repeated iteratively giving forward and back
nudging. These two cases are optimization problems with IVP sitting at their
center. Optimization problems are solved by iteration, (in simple form, given a
guess of the unknown data, change it a bit and see if the quantity minimized goes
up or down and use that information to improve the guess of the unknown data)
which requires solving the IVP many times. Forward and backward nudging is only
one example is such an iteration.
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