Lecture Notes for Mathematics 1070:
Numerical Analysis

William Layton
Math. Dept, Univ. of Pittsburgh

August, 2008

Overview:

These notes are written solely for the convenience of my current
students in Math 1070, Numerical Analysis and are intended as a supplement
to the class lectures. They are mostly typed; you will surely find some
errors, typographical and otherwise, herein. This year's version has bheen
updated from last year's as follows: much more is typed and much less
handwritten, several of the presentations have been simplified, page
numbers have been inserted on all the pages, several new topics are included
and more proofs included. My previous student’s were interested in the
mathematics behind the algorithms and asked for more proofs! | have
included proofs which give real insight into “why” something works; we will do
more such proofs in class.

My current students are welcome to make a copy of these notes for their
own use. All other rights are reserved!

Welcome to the interesting and beautiful world
of numerical analysis!

Numerical Analysis.
William Layton

Contents,

Chapter 1. Computer arithmetic in numerical analysis.
1.1. Roundoff error.
1.2. Measuring and controling error.
1.3. Stability,
1.4. Mathematical preliminaries.
1.5. A case study: numerical differentiation.
1.6. A case study: numerical integration.
1.7. A case study: polynomial interpolation,
1.8. A case study: solving £ (x) =0.
1.9, A case study: solving an initial value problem.

Chapter 2. The numerical solution of nonlinear equations.
2.1, Introduction,

2.2. Simple iteration,

2.3. Newton's method.

2.4. Nonlinear simultaneous equations.

2.3. Globalization strategies: the example of homotopy methods.

Chapter 3. Numerical differentiation and integration
3.1. Introduction: Approximations of linear functionals.

3.2. Numerical differentiation.

3.3. Numerical integration: Basic Newton-Cotes rules.

3.4. Numerical integration: Gauss quadrature.

3.5. Adaptive quadrature

Chapter 4. Numerical methods for ordinary differential equations.

4.1, Introduction.

4.2. More on Euler's method.

4.3. Convergence of Eulet's method.
4.4 Runge-Kutta methods.

4.5. Adaptive time step selection.
4.6. Stiffness and implicit methods.

Chapter 5. Curve fitting.

5.1, Introduction.

5.2. The interpolating polynomial.

5.3. Least squares approximation.

5.4. Orthogonal polynomials and least squares approximations,
5.3. Cubic splines.

Computer Arithmetic in Numerical Analysis

William J. Layton

1.1 Roundoff Error.

The basic problems in numerical analysis are:
Representing a function on a computer;
Solving linear systems of equations;

Solving nonlinear systems of equations;
Differentiating and integrating numerically;

Solving initial value problems for differential equations;

A

Solving boundary value problems for differential equations.

Computers work in finite precision (base 2) number system. This fact causes extra
problems in accomplishing (1) - (6). Every operation a computer performs introduces
errors (roundoff errors). The worse cases of round off errors are usually introduced in

your program in one of the following ways:

1. Input errors.
For example, the following two statements were found in FORTRAN programs on a

machine with 24 significant digits base 10,

PI =3.1416

 WRONG!
PI =22.0/7.0

'To preserve the machine’s accuracy = must be input to 24 significant digits.
PI=3.14159 --- (to 24 digits)
A sneaky way around this is:

PI =40 » ATAN (1.0)

2. Formatting Errors.

This includes such things as using single precision variables in doubie precision calcula-

tions.

3. Subtracting Nearly Equal Numbers.
This is a frequent cause of roundoff error since such subtraction causes a loss of signifi-

cant digits. For example, in a 4-digit mantissa base 10 computer, suppose we do:
1234 x 10" — 1283 x 10" = .1000 x 1073,

We go from four significant digits to one. Thus, a 1% error in .1233 x 10! can become a,

1000% error in the answer!

4. Adding a Large Number to a Small One.

This causes the effect of the small number to be completely lost. For example, suppose

that in our 4-digit computer we perform

X =.1234 % 10° +.1200 » 1072

"This is done by making the exponents alike and adding the mantissas:

1234« 103

CHO
+ .0000f01200 * 10°

= OR ROUND

1234 % 108

This can have profound effects when summing a series.
{ﬁ“"y vr by Mowd Ui Y draid avdimedee (with Fewer Yerws),
a P

- . Exercise:, On Cisum the geometric series (approximating 2) forward and backward:
i_i.ir tfom Pwhe_ ownd ﬁq(?\ﬂkin e ves dxs .
10,000

2o Z 5

ko=0

1
ok

v}

Computer Exercise

The Fibonacci sequence are generated by the recursion

3.1:1) 32:1 » an+l=an+an~] » n22533 s

Here’s a bit of FORTRAN to generate the first 100 Fibonacci numbers

10

20

PROGRAM FIBO

INTEGER FIBO(100)

FIBO (1) = 1

FIBO (2) = 1

DO 10 I=3,100

FIBO (I) = FIBO (I-1) + FIBO (I-2)
CONTINUE

DO 20 F=1,100,10

PRINT *,“T =*, I,” I FIBONACCI NUMBER =", FIBO (1)
CONTINUE

STOP

END

Try running this. What problems does this have? Convert FIBO(100) to a real array and

try again. If we define RATIO(I) = FIBO(T) / FIBO(I-1) it is known that RATIOM)

converges to the golden mean as I- oo Add another loop to compute and output

RATIO(I), the percent difference between RATIO(I) and the golden mean. How fast does

it approach the golden mean?

Dot Gy T

5. Dividing by a Small Number.
This has the effect of magnifying errors. A small percent error can hecome a large

percent error when divided by a small number.

Example

Suppose we compute, using four significant digits, the following:
z=A—B/C,
where

A =0.1102 x 10°,
B =0.1000 % 105,
C = 0.9000 x 1072,

We obtain B/C = .1111 x 10° and z = 0.9000 x 108.

Suppose instead that there is a 0.01% error in calculating C, namely
C' =0.9001 x 1072,

Then we calculate instead

B/C = 0.1110 x 10% so z = 0.1000 x 107.

Thus we have an 11% error in the result! L ‘
Exeecvse LWL What ave e main caunses of serious vound o8 evwwe, Give a(new) txawm P\-Q of each.

1.2 Measuring and Controling Roundoff Error.
Since every arithmetic operation induces roundoff error it is useful to come ‘o grips with

o) it on a quantitative basis. Suppose a quantity is calculated by some approximate process.

H

The result, zcompuTED, 18 seldom the exact or true result, zrrur. Thus, we measure

errors by the following convenient standards:

e = ERROR := zrrur — £coMpPUTED,
€ABSOLUTE = |®TRUE ~ £COMPUTED |,
ERELATIVE ‘= |[ZTRUE — £ooMPUTED|/|2TRUE|,

E€PERCENT := eRELATIVE * 100.

Of course, we seldom know the true solution so it is useful to get a “ballpark” estimate

of error sizes. Here are some universally used “standard” ways to do this;

1.

(Estimating roundoff errors) Repeat the calculation in double precision. The digit where
the two results differ represents the place where roundoff error has influenced the single

precision calculation.

. (Estimating errors in the arithmetic model) Solve the problem at hand twice-once with

a given model and second with a more “refined” or accurate arithmetic model. The
diflerence between the two can be taken as a ballpark measure of the error in the less

accurate discrete model,

. (Interval Arithmetic for estimating roundoff and other errors) As a calculation proceeds,

we track not only the arithmetic result but also a “confidence interval” in which the
solution sought is guaranteed to lie. The evolution of this “confidence interval” is
predicted via a worse case type of calculation at every step.

(Significant Digit Ariﬁhmetic) Similarly to interval Arithmetic, the number of significant
digits are tracked through each computation.

(Backward error analysis for studying sensitivity of problem o roundoff error) For many
types of computations, it has been shown rigorously that “the solution computed using
finite precision arithmetic is precisely the ezact solution in czact arithmetic to a pertur-
bation of the original problem.”. Thus the sensitivity of a calculation to roundoff error

can be examined by studying the sensitivity of the continuous problem to perturbations

in its data.

6. (Statistical analysis of roundoff error propagation) Rather than a worse-case type sce-
nario, roundoff errors are more or less normally distributed. The statistical analysis of
roundoff error proceeds under assumption of a normal distribution. Results typically

agree well with practice. Jn cw ep proxmnation s

Execcise,) 2. 1. Relate Yha vumbed #ﬂgifﬁxm-‘\;j‘.@iﬁ ui’-accuma"la havi a

lochive evveor Swaor
1.3 Stability. "= e

Since scientific calculations involve millions of operations in sequence, some way must
be found to measure the effect of a small roundoff error on the error in later calculations. If
such an error grows as further calculations are performed the algorithm is called unstable.
If roundoff errors are damped by the method (or don’t grow) the method is called stable.

The underlying problem can also by stable or unstable also. Consider the following (case

study) of simply evaluating a function.

...Ex.ample: We seek f(z*) where f(z) can be calculated exactly (a very ideal situation)

but z* cannot be represented exactly on the computer. Thus, we calculate f(z) where z

is “close to” x*,

We call the quotient of the relative change in f induced by a relative change in z*, the

condition of f at z*.

Definition 1.3. The condition of f(z) at z* is defined to be:

lf@ﬁ)mf(z)

HED
cond f(z*):= lim
. T—r* * g
w*

This is a very instructive number to get a grip on. For example, if cond f(z*) = 10, then

a 1% error in z* becomes a 10% error in f.

We can estimate cond f(z*) by noting that the mean value theorem tells us:

o = [£E0=1) |-
MliCes
f(z*)

G 5

since x 18 “close to x*”.

. A.,aﬁnd—c . N n
Exercmd cond (e)at z = £10. (b) Let Sy(z) = > %T’ and find cond Sy(z)
n==0 .
at z = +10, for N = 10,20, 30. Compare cond e® with cond Sn(z). X
W3,2 . \JI- C;-’qvnd(R—{-«:J\ Z W0 awd % Wae a 49, e wvor, uj\na,\' 3 'Hd- ﬂu\)ﬂ‘g tbéﬂw
%

£ YVDr BA

e} { 1
Examples: 1. If f(z) = +/z, then f'(z) = %m'”i and
fa)e| _ gete 1
cond (f(z)) @) | ot 3
0 - 20z - 22

2. If f(z) = l—i_zc?’ then f'(z) = T ot so that cond (f(z)) =

z is near 1 cond (f) is very large and cond (f) — oo as z — 1.

1.3,

Exercise: Let £ 5 be the roots of

. Note that if

|1 — 2

a*ﬂz—l-b*ﬂ—l-c*:(}

given by the quadratic formula

Pra = 2a

—b* £ /b2 — 4grer
-)

Thus, f = B(a,b,c). Suppose 81 = B that is: (8% — 4a*c* = 0) and find the condition of

£ with respect to a,b and ¢ individually. (Hint: use partial derivatives.)

1.4 Mathematical Preliminaries. 7

The notion of condition of a function at a point is related to the idea of continuity. If a
function f(z) is not continuous at £*, then any small in = can yield large changes in the
function value (the condition is “infinite”.) Conversely, if f (z) is continuous at z* then,
in principle at least and with infinite precision arithmetic, etc., small changes in z near z*

cannot produce large changes in the function value. Mathematically, continuity at z* is

defined as follows.

F

Definition. f(z) is continuous at z* if, for any to positive tolerance ¢ in the function,

there is a positive tolerance & in the argument such that whenever |z — z*| < § it follows
that |f(z) — f(z*)] < e.

The “big O notation

Definition 1.4. We say that f(l) is O(W) as Y 0 if f(lw) is bounded by:

Fla)| S CW™ 0 S‘ILSho.

for some C > Q.

Many examples of “O” type notation arise from Taylor’s theorem. As a first example,

Theorem 1.42. Suppose f(z) is C*. Then,
flz+h)— f(z) =0O(h) as h — 0.

Proof. The mean value theorem tells us that

f($+h]3“f($) =f(&), z<é<a+h

Letting C' = max |f'(t)| we then have by rearranging the previous equation,
e<tLztxq

|f(z 4 h) —f(a:)l <Ch,ash—0. O

Theorem 1.43. (Taylor’s Theorem with Remainder) Suppose f{z) has n+ 1 continuous
derivatives on A < z < B, and that ¢,z lie on [A, B]. Then, for eﬁery such ¢,z there is a

¢ between A and B, A < £ < B, such that

f(@) = F(6) + F1(c)(z — ¢) + f_é(,i)(x I

{n)
‘|‘Ln_l(‘c'“)“ ($—C)H+En-

2

The error term FE,, is given by

'—m A & ot
B, = mE) (z —)" O

Example: Expand f(z4h) in a Taylor series centered at z in the variable A up to,
Lrmge

fo ok 1) = £(&) + fi@)a +h2) + T2
f(é)(m)
4!

(z+h—a) -

+ (z+h—z)*+E,

Exewciscx . ,
ﬂm\wﬁ Lexy s cmostia , Show e

where | ‘\"z,(_'({(&'\""\" X _Q(&,__L\)*).._., Q?-[a)'i' Dk\,\"“) .

Wz l} = S;(;;-s‘,m') s a s.:mw}lﬁw&
Et,t = O(h5) Speciﬂcally, ‘ch_\q“ 0{' Mo vavrt G\L)\MJ (I“;L?Q\

(5) _ _.
b= i# o Prna, iy ond F0A— YA

b Toglor secies Tuvosgh
(\V\sw\' het) % O} Yecws,

1.5 A Case Study: Numerical Differentation. o

One fundamental question in numerical analysis is to estimate rates of change given
function data. In other words, given f(z) at certain points z; (possibly with error) estimate
f'(z) at certain points.

Recalling

f'(a) := lim fla+h) - fla)

h—Q h

we can estimate f'(a) by approximating for 4 “small”.

(15.) fiay e LR 2T gt mymy - (sam

This calculation contains twe sources of possibly serious roundoff errors:

1. Subtraction of two nearly equal numbers (f(a + h) ~ f(a)).

A

2. Division by a small number (A).
In performing (1.5.1} two sources of error can be thus significant:
Discretization error (already in the approximation (1.5.1) and

Roundoff error (when (1.5.1) is executed in finite precision Arithmetic.)

Discretization Errors

"The discretization error in (1.5.1) can be estimated using Taylor’s theorem with remain-

der as follows. Expanding

fla+B) = fla)+ Flan + L) 2

, some ¢ between a and a + A,

gives

Hot M=) _ gy 5, 110

so the absolute error is bounded by:

(152) e - L@,

L\DIB“

@)l

This is linear convergence since it predicts that whenever A is cut in half the error is also

cut in half. It is also written that “the error in (1.5.1) is O(R).)”

Roundoff error in numerical differentiation
When (1.5.1) is performed the values f(a+ k) and f(a) cannot be assumed to be exact:

they each have errors €;, & of O (machine precision) (or worse}. Thus we actually compute:

(1.5.3) f’(a)_ flath)d E;; —fHa)de =: f'(a)compuTED-

1%

There is no reason to suppose ke, ¢ to exactly cancel thus (1.5.3) can be written as:

fa+h) = fla) |, 2, _
) h’

(1.5.4) Fla) =

O (machine precision)}.

We have thus for the absolute error (using (1.5.2) and (1.5.4))

(1.5.5) |f'(a) - f'{(a)compuTED| < C'1E Zhe,

16 9

Evrver
etdy A

Mg T

Digc RETIZATIoN

ERREZ {lmear):
di ./2_

Evwvor 'Pvum ROUN DOFF g 'z‘if_'

> ek v dH

t
[
1
Y
1
h]
vé\

F &vee .. L ToTaL Ergor

OPTim AL

for LiNeAR, Of) MeTHoD,

Fl&uee 51t Trrac SRR

o OR?) MeTrHop

=

'D\s<;gg'ﬂ ZATIoN -
EREOR"

Ce 02
=4

?_guNDeFF Eeeor +iE

/ W

where Cf = a<1£1?ic+h[f”(m)| is an O(1) constant.

h 2
(1.5.5) is an important inequality to understand so let’s graph the RHS e(h) = Cy 3 + _hE

as the sum of two curves.

We can find using calculus (se e'(h) = 0 and solve for k).

2
hopTmaL = W Ve 2 O(+y/machine precision),
1

emin = 24/C1 Ve = O(y/machine precision).

In viewing such a figure you should always ask yourself which portion is particular to
the formula (1.5.1) and which is universal. We shall see that the general shape and the
contribution of roundoff error is universal. The discretization error curve and the values
of hopTiMAL and ey, are particular to (1.5.1).

Let’s now consider other methods which give a smaller value of eny, for a larger value
of h (since the only way to increase the accuracy of ey, for this method is to use extended
precision).

Consider the central difference approzimation:

f’(a) o f(a+h)2_hf(a'_ h)

Repeating the previous analysis gives:

flath)=fla=h), _ &

|f,(a) - Zh | S Cz-g, and
. h2
q) |'(a) — f'(a)compuTED| < C’z-ﬁ- + -:;

M

‘which is depicted in the next figure.

Again we find for the central difference approximation:

hCOMPUTED = (gC‘Z)% /¢ = O([machine precision] 5)

3 2/
emin = O(e%) = O([machine precision]).

Note the improvement attainable using a O(h?) accurate method (central differences) vs.

an O(h) accurate method.

hopTIMAL = (gcz> Ve = O (Jmachine precision]%),
-

emin = O(e%)= O([machine precision]).

Note the improvement attainable usingl an O(h*) accurate method (central diﬂ'erences) Vvs.

an O(h) accurate method.

13

Hoaweod Jr S155003 Jo NOWwIlsg R 5 s PN,

MPWoznmo\v D
VIO1S1 9 9Ad d/ném,. .wuszw/o& W ey

MJ.:WJ»J AQAND u_vu.o AUZDDQ

S X~
.mo,nﬂ_aou
woREW33d W “‘ \hlh\&bu\ﬂlﬂﬁﬂu
JE e N

NO1310334
\ , 21800, |
dozea _
QOLNZILT OS5 ‘ =,
e 7 B

vv%» < 203 nod
/ mmmmh ™l
AT3w 3

mm AN
NoISIDSHg 31 vig
4 ol
/ Jde3das ._r.:FuLl

v (e
20933

R

Exercises

1.5.1.

1.5.2.

1.5.3.

Consider the central difference approximation to f/(a)
f'(a) ~ (fath) —f(a-h)) / 2h
Show that if fe C* then the error has a Taylor expansion in h with only even
powers of h:
E(h) : = f'(a) - (f{a+h) —fa-h)) / 2h
=a, h? +ash* +agh® + ...
Using the result of problem 1, find an O(h*) approxirﬁation to f'(a) as follows.
Let Dy, f{a) = (f{a+h) mf(a;11)) /2h
So that Dy, f(a) = (f(a+2h) —f{a-2h)) / 4h.
Consider D°f(a)= 6Dy f{a)+ (1- 8) Dy f(a).
Show that the error in D, satisfies
f(a) — D’ fa)=(8ar+(1-0)a;2*)h>+(Bas(1-0)as2Hh'+. .

Find a 6 value for which the O(h?) terms vanish.

Suppose f(a) =3.2 x 10° and approximations to f'(a) are computed for various

values of h, giving

h Approximation to f(a) | Error e(h)

1/10 [9.1x 107

120 | 4.6 x 107

1/30 [3.9x 107

Find the (experimental) rate of convergence of the (unknown) method,

13

i

1.5.4.

Hint: Calculate the errors and fill in the above table. Assume e(h) = Ch*
in each case and solve for C and & for each paijr of observed errors. You are
trying to find the “« ™ value,

Consider f'(a) ~ Dy, f(a):= (fa+h)-f(a-h)) / 2h. Upon what degree polynomials is
this exact? Hint: Begin checking:

1"=0 and Dy 1 = (what), x'=1, Dy, x = (what), and so on.

16

! . lompyTe Exegcise R e
—Tr :\J A AL wg M 5 \AOV+ FWJ Vet b&) i T+ et e et e e e e ;
(oM p\r\(u Yo a(ﬂ{smxiwkcﬁ‘(d/u\ o —?;MJ .

Tl = X Eexe (W

FPlvy= W ¥ explx) + exp (¥
& = 4.0
Y= 05
Do o IT= 10,10
H= v/ (2 oxx T
DAF = (Flarw —Tay) /W
Do F (Flotw) - Fra-w)) /(z:o*H)
EA = ABS ((FP(a) -~ DAF)
te = AnS (FP(ey -~ DOF)
i PRISE > W, DAY, E4,_DOF, EO
10 (o NTIRUE
. STOP
END

f .o
l\\M —mus pm (£ T Ut!'r"rzm-r valu%a\— H-:

\A\MA‘ AV &o uiw seq expeﬁ 1w;1‘kq\1 73:;—\05)

i

Tru ma\q&ﬁemﬂt Fm; mcb mm\wq L,WQA!
(DO&L V‘DU\AAJW e VUL m—“uwcﬁ—- dxw:} J@“Q}out/'
ledaions 7 Explom® wowr conduions carefulley.

a—-"

1.6. A Case Study : Numerical Intigration

The basic idea of numerical integration is similar to numerical differentiation : a

function is locally replaced by a polynomial which is integrated exactly. As an example,
consider the “composite” trapezoid rule.
The interval [a,b] is divided into n subintervals (x; , ;1) Where:

A=XQ<X,<X2<..- <Xn:b'-

= y=£ex)
% ’
o X.‘L Xy Xn-3 Xacg X:S:u =h

Figure : A composite integration rule.
Write: . ot o
~ SR,
j foo dx = 2 J, Feo dx
@ Ji=o X3
Each small intervals integral is approximated as above. Consider the linear case first.
On[x;, xj+1] approximate f(x) by a linear polynomial : the secant line through (x;, f{x;))
and (Xji1 , f(x1)):
., F ot = £ex) '
‘FH) = Pihﬂﬂ'_ X~ % (X“‘KJ') 1 'F(ﬁ\;) , A G[KS*,)XJ;\

§+

Then approximate :

X X§n
J ﬂqe{m dx = JF:\ 00 dx = @fder o swple caledlatran)
Xj X3 |

— (X3 ~%R3) {Xjp= %3
= \H‘Z ‘F(X_;) ~+ — *F[K:m) .

Using this approximation on each sub-interval gives :

vy

‘0 ‘F[S\ ‘(l 3
\L ‘FH) cl\! -~ Z (\‘S’rl“xd)(K+)‘2:T (X)).

=

This 1s called the “trapezoid rule” for the following reason. The area under y =

f(x) on [x;, xj+1] is approximated by the arca under the secant line — which is a trapezoid :

mﬂ) F‘jv\ e Avear of

Y- . '{"va _@rtfo\a =% W"X\VM&)@.‘A
oo J"‘Area« op"’*rﬁ?czod : cfuré’fh UV‘AJ‘J"’C‘“’V&~

| '® (X “Vj)({:fﬁ)*g‘ﬁf‘w))

Tﬁ.{ 1 X34

Note that the x;’s do not have to be equally spaced. In fact, it’s almost never good to Iet

them be equally spaced — as we shall see!
The accuracy of this method has been rigorously proven:

Theorgm 1.6.1 Let h = max (Xj31-x;) and suppose f _is continuous. Then,

v b . . | !
\ J& ‘F(‘ﬂ) clx —_ Z‘ (Kym ~ %D Mﬁmxls ‘P_\.fe‘* \(:‘ o \4:,"[’0]*
g=o

k(w«L

There is another way to derive the key approximation step. Suppose we seck a

formula of the form we used before:

y Xi .
!X\; “pﬁ() dyx = \Nj 'EHJ) -tw\jﬂ'?(xj*ﬂ).

If we ask this be exact on {{x)=1 and f(x)=x we get .

Xa¥ —
L A = | Ggn ~x) = W d 4w

Xiy %3 2
_\hw x — e :

If we solve this 2x2 systbm for w;, w41 We get

Wi = (Xj+1-xj) / 2 Wia= (Xjr X))/ 2
exactly as before!

What are the main issues in numerical integration? Like always, they are
accuracy, cost and reliability. The first goal is to get much greater accuracy than the
trapezoid rule for the same cost. “Cost” is measured in the number of function
evaluations performed since that is by far the most computer time consuming operation.

The reliability question is : given a user-specified target accuracy, compute an

N .
approximation to \(\ 1[’ (O Ax (by picking the points x;) which attains this
0

guaranieed accuracy with near minimal cost.

1.6.1 Suppose a small amount of (round off) error E;is committed each time f(x) is
evaluated. Find an expression for the global round off error. Using the discretization
error estimate and assuming E; = E =0 (machine precision) find the minimal attainable
error and “optimal” h.
1.6.2. Take fx) = 1/(1+x%) and compute an approximation to \f:L .F (9 clx using
the trapezoid rule on the mesh i

A=K <X <X <. <X =b , X, T Yy Xy= Z %3 :Y“_fi_ .
What is the error? Cut this mesh in half and repeat. How are the two errors related?
1.6.3. Write the Trapezoid rule algorithm on the non uniform mesh

a.=Xo<X1 <X2<... <Xn:b

. b
in pseudo-code for approximating \f oo dx.
C.

20

RO ER 00n0oan anNnaanec T - aaann

Q0

oo O00o0n

10

20

PROGRAM trapezoid

This program approximates the integral
from x=A to x=B of a function F(X) input below.
It uses the trapezoid rule.

INTEGER CQUNTER

"COUNTER" will count the number of steps taken.
In many older programs such a counter will be
called "ICOUNT" and no "INTEGER" statement used.
It's better to call it what it ig and declare
"COUNTER" to be an integer.

F(X)= 1.0/(1.0+X*X)

The first executable statement comes next.
Thus, any function statements MUST come above here!

The interval of integration is [A,B]

A=0.0
B=1.0

To alter the problem change above here.

N=100
H=(B-A) /REAL {N)

"SUM" will accumulate the value of the integral.

SUM=0.0

COUNTER = 0

HNEW=H

XL=2a

XR=A+HNEW
TRAP=(XR-XL) * (F (XL)+F (XR)})) /2.0
SUM=SUM+TRAP
COUNTER=COUNTER+1

XL=XR

XR=XR+HNEW

IF (XR+HNEW.GE.B) GO TO 20

If you want to try changing the step size, vou
would add a few statements next modifying HNEW.

GO TO 10
Now compute the integral on the last subinterval.

XR=B

TRAP= (XR-XL) * (F(XL)+F{(XR)) /2.0
SUM=SUM+TRAP

COUNTER=COUNTER+1,

PRINT*, " The number of gteps taken was: “,COUNTER
PRINT*, "A=",A," B=",B," INTEGRAL FROM A TO B IS:",SUM
STOP

END

24

1.7. A Case Study : Polynomial Interpolation

One basic problem in numerical analysis is to take a set of function values
(%0, ¥0), (X1, ¥1) 5 . (a5 ¥n)
and produce a smooth function which agrees with these values. Ifthe (n+1) values are
~ exact then one appropriate approach is to interpolate them with a polynomial of degree .
With only two values, the solution is easy:
P00 = Z: :‘;" (X~%o) + Yo .

a

The general case of (n+1) values was solved by Lagrange when he was 16 years old.

Form the “Lagrange Functions™ for the points xp, X1 , ..., Xn

Ao tx) == (X=X Y X~FK2)e (X ~%u) — *‘ﬁ" (x-%i)

(xd ‘*XI) (X‘OH X'L) .,._,' (‘ﬁ-‘.‘l “X‘ﬂ_) J"&:;U ()(Q"x‘j)

v kB oW ¢ @ o o o

¥4 'ﬁ‘ (% ~%;)
(X) = LAY
« a=iark (i)

¢ ¥
o » o o

(X~%2) (X ~%4) " e { X ~Kun)
(Xh"'xo) (le"w.]_) fean f ()(v, --'X‘H.") .
Note that each 1(x) satisfies:

A 6y 5=

) lk(x) is a polynomial of degree n

() h(xg=1

(i) I(x)=0,j #k

The solution of the interpolation problem is then easily written down:

P = Yo L o+Y, Lt ..t Y Ln00,

—

22

Example : Three Points

If we have data at only three points:

(XO ’ YO) » (X] » YI) > (X2 3 y2) 5
the interpolating polynomial is (of course) quadratic. Consider the three (quadratic)

Lagrange functions for these three points:

oA -
lo(x) = LX O Y~ %) \

(Ro~%1) (Xo~K2 ")

Log= LX7%e) (X—%)
(X1 =%y (%=X

(X~%Y (X~%)
(X2 =Yo) (X, ~%)

la(x) =

Note that
o(x)=1,1(x1)=0, lp(xz) =0, and
L) =0,Lix)=1,L(x)=0,and
LE)=0,LE)=0,hx)=0.

It’s easy to graph these: each is a quadratic determined at three points.

y A
4

4 L. 2.t 14 ...

Figure: The Lagrange functions for three points. Note ix)=0,j #k.
In the case of any number of points the Lagrange functions are constructed to
have exactly these properties.

Exercises:

L.7.1. Verify that p,(x)) = y; .

1.7.2. If the points x; are all distinct, prove that the polynomia) interpolant is unique,

This simple and beautiful construction of Lagrange does not close the field.
Many problems remain open; in-particular: |
Indeed,
® cost: how do we evaluate py(x) efﬁc;ientIsf

eincoming data: if the data is continuously being augmented, the entire Lagrange

interpolant must be recomputed.

e observation errors: small experimental or observational errors in the yj can be
magnified i pu(x).

The following is known about the error in polynomial interpolation.

24

Theorm 1.7.1. Suppose yj = f{x;) and f{x) is a smooth function (in particular, f has (n+1)
continuous derivatives.) Let pn(x) interpolate f{x) at x, <x; , <x» <... <x, . Then, for

any X € [Xo , xn} there is a £ € (¢, %,) such that

ﬁ(nﬂ)g)

(41!

sz = P ¥ =

(X‘?fg) X=Xy %, ... £ “‘xm.) ‘

The error is thus super small if n is large (1 / (n+1) is small) and if the points are
close together (so each [x-x;j <1).
Exercise

1.7.3. Consider the following data:

1-14 o 4 % 2 3 y
\/Jl Q 2 0 -3, -\ o 3

(a) Find the polynomial interpolant of this data using the Lagrange functions.
(b) This data actually arises from a quadratic polynomial. Can you think of some

way to discover this from the Lagrange form of the interpolant?

Fmof— of Theowena V7. (Ske-tz,L) Couscdeyr WIX) < T(‘f ~X3).
wWiky = X" & lower ovrdev Yevws gwad W(X;) =0 ,_‘_OJ , N

'T\m.«s, W vesewbela e che Yl
N AN J

l
/xs \/ *V‘\ Me
Flquat © Wix) whew n=b ig. ot 7 powts .
Let 'P“(\() \h‘\'efﬁao\&\b\’& ”E[?Q at dhe FOWK‘\'S X;j Con stder

d?(ﬁ) fF(K) ~ Pulx) — if\”) W %) . Note Yot & was MFLWJO'\‘&!
&y

A?b\a) =0 3"“9 P amd ‘5«’(‘])’*0 AT !’DOW\'\“S,
:l W Ao i on) We. have Fhok ci)’ has wx vouty y ety s,
SN o o ok leost 0w vook, Mgy =o
(ow?\ﬁ—\u\:‘% (D gwes ‘?VE‘H _ety))
0O = A [oo - Pa (0 -2t W(x):l\ =))t
oy

v\-\r\ wtyj W {)

13

1.8. A Case Study : Solving f(x) =0

If f: R R the problem is to solve f{X) > 0 for . This is equivalent to finding

where the curve y = f(x) touches the x axis. The intermediate value theorem implies that

if f{a) and f(b) have opposite signs then {x) must be zero somewhere between a and b,

The Bisection Method

Input XL and XR such that XL XR and f(XL) f{XR) <0,
(*) Xm = (XL + XR) /2.0 |
Iff(XL) - fiXm) <0 set Xg=m Otherwfse set Xy =m.
Test if [XL-XR| < ToL (a pre-specified tolerance)
If not, go to (*)

If so, stop. i ‘e cureve
b = Y= {0

]

X
~
PR
«-.{

Fﬂwre. CDwne S‘\"QP O-g LJCSE‘C“\‘\‘OV\ ’

.

In bisection, the root is always bracheted so convergence is guaranteed (although

slow). Each step cuts the precious error by half so each step adds one binary digit of

accuracy.

Exercige

1.8.1 Suppose we define w differently as the place where the (secant) line through the

points

X, X)), (Xr, f(Xr))

26

s

hits the x-axis. Write down this method (known as “false position”) as an algorithm in

pseudo-code.

— Y= fixy
F_éw

X

Flﬂ wee b False po sition.
There 1s no secret to finding good initial guesses. One basic idea is to search:

pick a Ax and an interval [a,b] and look for a subinterval (atnAx , a+(n+1)Ax) where f{x)

changes sign.

One improvement of the bisection method is described in the last exercise: the
update is calculated using the secant line through (X, , f(X1)) and (X , fiXr)). The
second, and most important improvement is to use instead the tangent line through (X,
f(Xo)). Indeed, this line is:

Y= ‘F‘ I(XOLD) (%=X op,) ’F("(““LD) .

This approximates y = f(x) so its root can be taken as an updated approximation for x.

/\I:‘(ﬁ

Setting y = 0 and solving for x give the famous Newton iteration:

YA Y= ‘c ’(x-l.p) (‘l""oul_)_-\ffxnn

“Tawng ent lme

'8

>
DN o N

F\:ﬁu\wc’, - Oune Newtown S+€P‘

25

1.8.2. Try to generalize bisection, false position and Newton’s method to the 2-d

problem:
f(x,y) =0
g(x,y) = 0, solve for (x,y).

You will soon see that there is no direct or natural generalization of bisection methods.
1.8.3. Consider calculating (+/3) by solving f{x): =x*-3 =0, (a) Take X, = 1, Xz = 3
and do three steps of the bisection method. (b) Write the bisection algorithm carefully in

either pseudo-code or the language of your choice.

1.8.4. Repeat problem 2 for Newton’s method.

28

1.9. A Case Study : Solving an Initial Value Problem

One basic task of computational science is the following, Knowing the initial
state

¥(0) = yo (yois a known number)
and the “laws” governing a system

Vi) = £, vy, foe o<t £ Ty
predict the future! Specifically, find y(t) for t > 0. This could be a single equation, a
system of equations or involve higher derivatives. The ideés are all the same. Thus, v?e
will first consider a scalar problem, like the above.

Naturally, we can’t expect to “solve” for y(f) in closed form. We pick a stepsize
called Ator h. The variables t; and y; denote t; = jh and v; is the approximation we
compute to y(t;):

At =h = stepsize,
t = jr = jm time step,
¥i =y(h).

The simplest way to find y; is a method used by Euler to actually prove that intial
value problems have solutions (ie., that the future exists!). It’s constructive, so we can
use Euler’s method for calculations. It is motivated as follows: Suppose we know y(t;)

exactly and want y(tj+1) = y(t+At). Expanding y in a Taylor series at t; gives:

i
Yyt =)+ y e+ Z_'i[_f.,? W) dor some €, t<g e, -

Now Y /(ft:d‘)y = ‘F H:J ,Yes))D from the equation.

79

Thus:

Ve,)= YED + W fly)y th g

sy,

The last term is “unknowable” but it is small if b is small. Just dropping this last term is

Fuler’s method:

. = V. X , - .
Yia. = Y5 + b fey, , Yo given
Note that by doing this we commit an error O(h®) every step. This is called the “local

truncation error” = the error in performing one step of the method:

Local truncation error of Euler’s method = Y&~ [YC{'J) +, —F T, Yt J

Woo -
Z y (;) , wheee A4< g ¢ T i1

2-
= (by Taylor’s theorem) = vl Y ”({)) 4 d\,,:s)
(Note tat 2 i yy= Loy + §yehy v/
= (by the equation, y* = f{t,y) so y’= ;Gl\»_t ‘F (+y @) ;@ wol Yy = ”rH'j ¥) s
Locel

. |
Tyedions W TE @ ye) s) tred fyw))] + 003).

To calculate the solution from t = 0 to t = T we take J = T/h (=0(h™) steps. Since errors
are additive we thus expect an error in y(T) of Oth). Indeed, we shall prove this is true.

Programming Euler’s method is very simple. Here’s an algorithm for it:

R0

Algorithm Buler’s method for y’ = £ t,y)
Y(0)=yp over 0 <t <T.
Define the function f{t,y)
Input J, the number of steps
Input yy, the initial condition
Input T, the final time
Calculate h = T/J , the step size
torp = 0.0
YoLp = ¥o

—=-YNEW = YoLp *+ hf (towp , yorp)
PRINT tngw, Ynew

If (tygw > T) STOP

Else yorp <= yypw

| torp <= typw

The main issues is doing better than Buler’s method arc the ones we have seen

time and time again:

® Accuracy: Euler’s method is only O(h) accurate. Thus it is nearly

impossibleto get more than about two significant digits of accuracy with it

in the presence of round off error.

e Efficiency: Can we obtain (greater) accuracy with less work?

¢ Reliability: What is the actual error in a computed approximation?

3

The error in Euler’s method can (remarkably!) be calculated inside the algorithm.

Recall that the local truncation error is:

Local Error = %’L [“{jt H:,\/) I 'Fy 5y ’FH:,\/')] + d\f) .

The global error can be calculated inside the algorithm by adding a few more lines:
[® ®

Define the functions
FT(T,Y) : = £ (,y)
FY (T,Y) : =1, (t,y)

YPP (T,Y) : =FT (T,Y) +FY (T,Y) F(T,Y)

]))
ERREST = 0.0
. ° °

LOCERR = ABS (0.5*H*H*YPP (Tnew, Ynew))
ERREST <= ERREST + LOCERR

PRINT Twnew, Ynew, ERREST

Exercise

1.9.1. Insert these statements inside the Fuler’s method algorithm at the correct
locations.

When we are solving a system of equations this is too expensive as FY is an
N x N Jacobi matrix. Thus, important questions include: How to calculate an estimate of

the error more efficiently? How can it be used to improve the accuracy and efficiency of

the program as the calculation pro gresses?

32

Exercises
1.9.2, Consider the linear pendulum
7 +0=0 ,80)=74 ,8(0)=m4.
If this 1s written as a first order system via x(t) = 6(t) y(t) = 8’(t) we obtain:
X=Y , X(0)=/4
Y'=-X , Y(0)=w4.
Take h = 1/3 and compute an approximation to 6(1) and 6°(1) using Buler’s method. Find

the error, (Hint: The exact solution takes the form 8(t) = Cig cos(t) + C; sin(t) , where

C1,2 depend on §(0) and £°(0).)

1.9.3. Repeat problem 1 for the nonlinear pendulum 07(t) + sinf(t) = 0. (The etrror

cannot be calculated explicitly.)

373

aanon aQaoaan

Q0o

QNN

10

20

PROGRAM euler

This program solves

x'=f({t,x,vy)

vy =g{t,x,y)

for a specific choice-the linear pendulum.

F(T,X,Y)=Y
G(T,X,Y)=-X
XTRUE (T)=(ATAN(1.0))* (COS(T)+SIN(T))
YTRUE (T)=(ATAN(1.0})* (COS(T)-SIN(T))

NEXT IS THE FIRST EXECUTABLE STATEMENT.

T0=0.0
PI=4.0*ATAN({1.0)
X0=PI/4.0
YO=PI/4.0
TMAX=5.0

H=0.1

TC ALTER THE PROBLEM, MAKE CHANGES ARBOVE HERE.

TOLD=T0
XOLD=X0
YOLD=Y0

NOW BEGIN COMPUTING.

XNEW= XOLD-+H*F (TOLD,XOLD, YOLD)
YNEW=YOLD+H*G (TOLD, XOLD, YOLD)
TNEW=TOLD+H
ERRX=ABS (XTRUE (TNEW)} - XNEW)
ERRY=ABS (YTRUE (TNEW} -~ YNEW)

PRINT*, "T=",TNEW, "X=",XNEW, "Y=", YNEW
PRINT*, "ERR IN X=" 6 ERRX, "ERRY=", ERRY
IF (TNEW.GE.TMAX) GO TO 20

XOLD=XNEW

YOLD=YNEW

TOLD=TNEW

GO TO 10

PRINT*, "MAXIMUM TIME IS NOW REACHED."
STOP

END

34

2. The Numerical Solution of Nonlinear Equations.

2.1 Introduction.

One basic problem in scientific computing is to solve a nonlinear equation:
(2.1.1) f(z)=0 find z, where f : R:— R

or system of equations:

filzy, - ,2n) =0
fa(zg, o+ y2p) =0

, find z,
fa(z1, 2n) =0

A closely related problem is optimization of a scalar function. If Hlry, ,24) R* > R

i‘.. | find the minimizer of ¢, Find (2}, -+ ,2%) such that
(21, san) S ¢(zy, - @), forall (24, ,2,) € R™.
This leads to the nonlinear system for the critical points of ¢

¢Z1($I:"' 13::;) :-0
qﬁmz("‘c;:"' 73:2) =0
, find (z7,---,2})

zn(fﬂfa '.\m:) =0

We will begin by studying the 1 — d problem (2.1.1).

35

2.2 Simple Tteration.
One way to attempt to solve f(z) = 0 for the root Z is by simple iteration. We rewrite

f(z) =0 as z = ¢g(z) and iterate:

GUESS TOLD (= zo)

ITERATE 2NBW = §(sowp) (Znt1 = 9(@n))
(until satisfied with sxgw)

If not satisfied with rnew, set zoLp = znmEw.

Of course, there are infinitely many ways to rewrite f(z) = 0 as 2 = g(z). Here is an

example.

Example. The roots of f(z) =22~ 5z +4 =0arez =1 and =q. We write this as

z = g(z) to attempt to find these roots as follows:
2 1, 2
bz =z"4+4 or $n+1:3($n+4)

Take

Ty = 2,

m1=22;4z—§=1.6,

o =(—119;~+—4 = 1.312,
) 23 = - = 1.144,

x4 == 1062,

z5 = -+ = 1.025,

zg = +-- = 1.010,

xr = .- = 1.004.

This converges to the root z = 1 (although slowly!) To obtain the second root z = 4, try

20

.'?30:51

:1’1025,
5 44 29
oyl 5 5 S y
By = e 528,
g == 1212,

which clearly diverges.

There is a graphical interpretation of the simple iteration z,1y = g(z,).

. M \I_-:_X

(R, R ps — — — — — 7§/‘/’“--‘ju«)

e (x4, 90¥4))
/ %mFW_I

af\ti)fl't... J/
X X J, Yo

”~ ¥ L ! \/ .

FIGURE: GRAPHICAL INTERPRETATION OF THE SIMPLE ITERATION

enew = ¢(zoLp)..

If we program a simple iteration the simplest possible program resembles:
INPUT the initial guess zoLp rlsmd MAX-ITERATIONS

Counter = 0 i

Compute znEw = ¢(zoLp)

Counter = 0

Test if satisfied with zygw

If so, print zxgw, Counter and other statistics.

If Counter > MAX-ITERATIONS, then exit program

If not, zo1p <= znEw and go to (*)

37

The test for “satisfaction” is interesting to consider because all iteration programs con-

tain essentially the same three tests:

Test 1: Too many iterations. If Counter > MAX ITERATIONS the scheme is likely
diverging and you should exit the program and signal failure by printing “Program exited

after “counter” iterations”.
Test 2: Update small. If z,, — & then z, is a Cauchy sequence. This implies |2, ~2 41| —
0 as n — oo. Thus, one common stopping criterion is:

STOP if ImNEW — QZQLD[< TOL 1

where TOL 1 is pre-set stopping tolerance. (For example, TOL 1 = 107%). Another

version is to stop based on the relative update:
STOP if |zngw — $OLD|/|$NEW| < TOL 1.

Test 3: Small residual. If we are solving f(z) = 0, then we preassign a tolerance TOL 2

and
STOP if |f(:ENEw)| < TOQL2,
Naturally, the safest course is to stop only if Test 2 and Test 3 are both satisfied.

One statistic thats often interesting to track and print is the experimental contraction
constant:

P |$n—|-1 _$n|
K |='-Cn - wn—l'

1
Ifa, = % (say) then |zpq1 — 2| = §|m,,L — &p—1| and (it can be shown that)

|z z| 1| 7|
—Z| ~ |z, — T
ntl — T 5 1%n T

In other words n.1 has 1 significant digit base 2 more accuracy than z,,.

Remarks about Fixed Point Problems.

Consider the fixed point problem

33

where we assume ¢(0) = 0 (if not then write ¢ = (g(z) — g(0)) + (v + g{0})}). The basic

iterative method is:

(2.2.1) Trt1 = ¢{@n) + Y, To given.

The convergence of this to Z is equivalent to the convergence of the telescoping series:

§ (Znt1 — Tn)

n==0

Note that by subtraction
Tot1 — Tn = G(Tn) — 9(Tn—1)
If ¢'(€) is bounded:

9" < &

then the telescoping series can be dominated by:
o0
by Odnlﬂ',’l - .’B()l
n=0

as

lwn-+1 - mnl S Oflwn - wn—ll S U S an|$1 - 330'-

"Thus convergence follows easily if & < 1. If g is a matrix (more generally, a linear operator)
g(e) = Az
then the iteration becomes:
L J—
Eptl = An+1£ﬂg + 'ED Aty
e
oo L
'Eo A'y is called the Neumann series of A, it equals (I — A)™*y if ||4]| < 1.
=

The iteration (2.2.1) is frequently called the Picard-Poincaré-Neumann method. How-

ever, Liouville used this iteration in 1837 to solve integral equations as did Newmann later

39

e —

in 1877., Liouville indicates in his paper that this method was well known in his time. In

fact, Heron of Alexandria used this method in the 2"¢ century B.C. to solve z? = 3 via:

1 3
Tniyl = 5 (-’Bn + '3?)

If [¢'(z)| < 1, (rather than “< 1”) then sometimes the iteration: zg = y,

n
n-+41

Zn41 = g(zn) + () +vy

n—+1 9
will converge when (2.2.1) fails to converga |,
Remark: It is an interesting exercise to relate the z,’s to the z,,’s.

Convergence of Simple Iteration.

We begin with another example:

Example. Find all Z such that f(Z) = 0 where f(z) = ¢* — 3z.

"This can be interpreted geometrically. Indeed, the curves y = 3z and y = e* do intersect

twice, at T = (.62 and at T = 1.51.

7 X

FIGURE: LOCATION OF THE ROOTS OF f(z) = 0..

1
We attempt to find the roots via the iteration zxpw = 3 exp (zoLp).

1 T
TNEW = 5 ¢ O

4o

zg =0 zg =2

j v e?
= . 22}, cee g = —— 22246
62.46
Ty = - =0465 .+ 2y = 3 = 3.91
Ty =+ 20530--- g5 = --- =2 16.7
Ty = 20567 g, == 6 million

converges (slowly) to 0.62 diverges very rapidly.

'The explanation for when this method will converge is given in the contraction mapping

theorem.
Contraction Mapping Theorem.

Theorem 2.2.1. Suppose g(z) is C' and there is some interval I = (a,b) such that
()IHzelglz)el. |
(ii) l¢'(z)| € « < 1, for some «, for all z € I.
Then,
(1) There is a unique T € I with 7 = g(Z).
(2) K aq €I thenz, € I for alln and z, — ¥ as n — oo.

(3) The error |z, — Z| satisfies
zn —Z| < a™|zo ~ . O

We will prove only the error estimate (3) in the theorem since it is an instructive
application of the mean value theorem. Note that one consequence of the theorem is the

following global result.

Corollary 2.2.1. Suppose g(z) is C* and that there is an o < 1 such that

lg'(z)] < d <1, forall z € R,

Then, (1) there is a unique fixed point 7 = g(z).
(2) The simple iteration p41 = g(z,) converges for every choice of z.

{j{ (3) |zn — 7| < a” lzg — z|. O

Al

In solving nonlinear problems there is a recurring dilemma: global convergence
results like this one impose hard to verify and unrealistic conditions on 2(.) while local
convergence results are easy to verify theoretically but require an initial guess “close
enough” to the root. Before proving the contraction mapping theorem, we give the local

analogue.

Theorem 2.2.2. Suppose g(x) € Cland g(x) had a fixed point
X, ie.
X = g(%).
Suppose |g’(x) <1. Then, if xo is close enough to x, the iteration
Xnr1 = g(n)
converges to x. For x; close enough to x, it also satisfies the error estimate:

| X =Xn| €™ IX ~%| |, whewe <4,

Proof oftheorem 2.22: By continuity of g’(\)if g’(X) <1, there is an @ <1 and an
interval (a, b) = (%-§, X +§) (where £>0) in which lg’(x)|=a<1 forx e (a,b). The mean
value theorem implies that if x € (a,b) then 8(x) € (a,b). Indeed, x € (a,b) means x%| <§
Now [g(x) -X] = |g(x) - g(¥)| < |x-%] <o §<4 The conclusion now follows by taking I =

(a,b) in the contraction mapping theorem. {}

2

Exercises
2.2.1. Consider the iteration used by Heron to calculate V3
Xn-[-l = (Xn + 3 /Xn) /2.

Apply the contraction mapping theorem to find an interval I = {a,b) such that if xg e I

>

X+ 3.

2.2.2. Consider the simple iteration
Xor1 = (1-x4 %) / 2.
What are the fixed points? Find an interval I = (a,b)sothatifxg e 1, x,~>x , a fixed

point.

2.23. Suppose’X = g(X) is solved by x4 = g(xn). If g’(X) =0, show that if [x, - X is

small enough, x,~>X.

2.2.4, What three stopping criteria should be included in all programs which solve some

problem by iteration?

H3

Proof of Part (3) of the Contraction Mapping Theorem.
z = g(Z) and p, = g(zn—1). Subtracting these two equations and applying the mean

value theorem gives:
|20 — & = Igl({fn” |2n—1 — 2| < a|zp-1 — Z[.
Further, [tn_1 — Z| < a|zyo — Z| 30 we can iterate backwards:

l2n — #| < o*|wp_g — # < e®le,_g — Z| <o < allzg — F| 0
1
Example. We can analyze the simple iteration sxgw = 3 exp (zoLp) via this theorem.

Indeed, if we ask that |g'(£)| < a < 1, we obtain

1
-1 < =% < 1.
38

Since e” is always positive we can simplify this to
0<e* <3 or —co<a<ing.

So if I = (—o0,In (3)) condition (i) is satisfied. Further, if ¢ € I then we can work
backward to verify (i):

—co<z< In(3ord<e® <3,

So that 0 < g(z) < 1.
Thus, if z € I,¢(2z) € (0,1) C I, and condition (i) holds. O

2.3 Newt;;’s Method.”

We wish to solve f(z) = 0 for Z. Simple iteration can converge very slowly. Newton’s
method typically converge much more rapidly. In fact, we will show that the “approximate”
contraction constant «, in Newton’s method satisfies a,, — 0 as n — co. First, let us

review the geometric idea behind the method.

Y

L -'_."i'biw'ﬂev\—\' hwme

4
x

X2 |
/ R Tovqent e at Xy Yo

FIGURE: GOING DOWN THE TANGENT LINES.

Geometric Idea:

(¢ ; The equation of the tangent line L at (z;, f(z;)) is:
y = flzi) = fl(z:i)(z — 2.
To find ifs root set y = 0 and solve. When y = 0,z = z;,4 or:

zip1 = & — f(z3)/ F(zs)

This is precisely the Newton iteration:

(2.3.1) zip1 = 2 — fzi)/f'(2) |

This is an iteration of the form z;1; = g(z;)

Example. f(z) = ¢ — 3z = 0 with zy = —1,0,41,4+2. This takes 38 iterations to

i(" | converge with simple #teration. However,

H5

!

7 ComMPUTZR EXERCSE | Use the l\\euﬂ—cm st
rwsra.wn do verd 'ps Hacg alaswm o8 owu\\ W-g
e wrton '&\:124‘79 s

4 or b iterations produces both roots with Newton’s method. S
k=i
Algorithm Guess zy (intelligently).

Compute f(z;), f'(x;)

Is f'(2;) =07 (ie. [f'(z:)] < &)? - YES
If YES, signal failure.

If NO, proceed:

zig1 = =i — flw:)/ F'(2:)

TEST if: (a) |f(zir1] < €

(b) Fixed of iterations

(¢) |mig1 — 2] < e

CONTINUE if not true.

Convergence of Newton’s Method.

Theoreuaed Gl otoal\ Cd\nv&vaev‘,)
Theorem 2.3.1. (Newton—BalueA) Assume

(i) f:R— R is C! and convex;
(i) f'(z) > 0 for all 2
(iii) f(z) = 0 has the solution z = .

Then # is unique and the Newton iterates

mk'H — mk —f(mk)/f’(:ck)
converge to & for any z,. Moreover

E<aef < =12,

a sev\era\{zx\-'\an of

This theorem is a “global” convergence result and,it holds if f : R™ — R"™ as well.

There is also very famous and important local convergence theorem called the “Newton-

Kantorovich Theorem”. We comwm-¥ apve W oheve v —Y\,«\\ .evxe\ra\

awdl ?ower NQ‘\;@/\-\‘\/\Q\QE;S Vocal CENNY AN @ W L og- NQ\A”\VG‘V\A MJ'\A\\S
WAL D easy o peveusiss, Theovew 2.2 2.

Hb

Theorem 2.3.2. [Local Convergence of Newton’s Method].
Let fe C? and suppose X is a simple root of f(x). (Specifically, f{%) = 0 but,

(%) #0.) Then, if x is close enough to X, the Newton iterates converge to X.

Proof Newton’s method is a simple iteration with g(x} =x—1f{x)/ £ (x). Thus,.Theorem

2.2.2. can be applied. Checking g’(%) shows:)
Ffm-fofm _y _ fxy
(£’)2 £ 0™

3’(‘&)' =1-
X=X

Since |g’(%)] = 0 < 1, local convergence Vfollows immediately,

7

Exercises

2.3.1. f{x)=xe" has aroot at x = 0. Take Xo =1 and do five steps of Newton’s method.
Calculate and tabulate for each step: n (the step number), [f(x,)| (rosidual), | Xq41-x,| (the
update), o = | Xpr=Xy| / Xy — Xn-1] (the contraction constant).

What patterns do you see?

2.3.2. Write Newton’s method as a pseudo code algorithm,

2.3.3. X is a double root of f{X) = 0 if fﬁ) =0 and /(%) = 0 but %) 0. Construct a

function f{x) with a known double root, Repeat problem 1 for this function,

LR

Pitfalls of Newton’s Method.

The diagrams below indicate some commonly occurring pitfalls in using Newton’s method.

It’s good to be aware of these rare possibilities.

Pitfall 1: No real root. If f(2) is a real function when z is real then all the Newton
iterates will remain real. Thus, to find complez roots we must start with a complez initial

guess.

L
¥\ :1- Xo
%z, Xz

FIGURE: f(z)={(z-1)2+1=0.

Pitfall 2: f"(z) = 0. In this case, the method can be stuck in an infinite loop near the

root.

Pitfall 3: Bad initial guess Some other portion of the function f(z) can “rap” the

iteration,

Order of Convergence.

If we have the simple iteration

"

X
PHRALLZ ¢ RAD INMIAL Guess)

. e

we then have
Tpy1 — & = g'(fn)(:cn - ﬁ)

or, with e, = n** error = z,, — 7,

Cnt1 = g'(én) €n.

As zp — &, €, — T also so we can say that as z,, — T

ent1 = g (Z)en.

If ¢' is continuous, we can write also
~ = 1 We=y_2
ent1 & g'(Z)en + 54" (F)en + -
Definition. The order of convergence of .1 = g(xy) is the order of the first nonzero
derivative of ¢ at the root'Z.
Alternatively:
Definition. Suppose

i [€nt1] <C

a5 Jeal?

then the method is of order p. C is called the asymptotic error constant.

50

.

Examples. 1. f(z) = e® — 8z = 0 rewritten as:

z = e®[3=g(z)

T

then ¢'(z) = %— so this first order since g’ # 0.

2. f(z)=2*—bz+4=0, 2roots: 1,4. Consider

z% 4

5

z=g(z)=

2 .
so ¢'(z) = ?m which is not 0 at ¢ = 1, and z = 4 so this is first order,

Convergence Order of Newton’s Method.
Consider Newton’s method: @11 = g(z;) where g(z) =z — f(e)/f'(z)

Differentiate g(z):
_ @) f'(=) — f(2)f" (=)
[f'(z)P

g'(z)=1
at z = Z and using f(Z) = 0 we have: _
Case 1: Simple root (i.e. f'(z) # 0), ¢'(Z) = 0 and ¢"(&) # 0. ‘Thus Newton’s method is
second order at a s simple root.
Case 2: Multiple root (i.e. f'(z) = 0). Here ¢'(7) = g, (formally) IL'Hospital’s rule
reveals ¢’ (i) ~ % so Newton’s Method is first order at a multiple root.
The Secant Method The secant method is almost as fast as Newton’s method and does
not need f'(z) to work. _
Notes about the secant metht;d:
1. f(z1), f(zo) do not have to be of opposite sign.
2. This converges faster than bisection and false position but more slowly than Newton’s

method.

3. The secant method generalities to systems.

4. The ratio:

Tpn —Tp—1 — 1

fen) = F(za-1) = F(za)

51

The secant method needs two initial guesses. It replaces the function with the
secant line through the previons two iterates. The root of this line is the new
approximation (see the next figure). Mathematically, it takes the form:

X0, X1, givena

'F(X'u\) - 'Q[lewf)
XV\ - Xm'—}

Xntl = Xn — f{xn) / (

).

Computer Fxercise

Consider the short Newton method program you have previously used. Convert it

to the secant method and repeat the experiment you did earlier. Compare the resuits of

the two methods.

572

, yofon

SECANT
LING

ar—

X
/v/')(‘:L {XJ_L . X o > %

L = Loy —
FIGURE: THE SECANT METHOD, Zp41 = 2n—F(2s) n el

flan) - f(mn—l).

so that this can be thought of as replacing f'(z,,) by a difference quotient.
Error in the Secant Method

The error in the secant method satisfies:

1 f"(c)
En1 N"'“é" f’(c) Cnbn—1

This translates to an order of convergence between 1 and 2, about 1.6.

METHOD ORDER,

Newton 2 at simple root 1 at even order root

Secant 1.618 (“d’uﬁ“ﬂ > T *°-—-__.‘*“'“*\3 J‘J“’"Q"\‘}Q“W‘""‘“)
Simple Iteration 1

2.4 Nonlinear Simultaneous Equations.

Suppose that we wish to solve

fi(z,y) =0,
(2.4.1) {

f2($7y) = (.

There are many possibilities as the two curves fi(z,y) = 0 and f3(z,y) = 0 can intersect

in virteally any manner. "7 - fecall the definition of Jacobian, and Tecsh materx,

o vecekor Somctrion oF o
26 veiks v vavialb\es

53

Definition 2.4.1. Let E—:'(;El,'-' yZn) = (f1,fa, o fo) with fi = Ji(@y, -) T) ct.

Then, the Jacobi matrix of F, written F’, is defined to be the n x n matrix

(%) = (gj) Li=1,,m.
J

The Jacobian of F is defined to be J = det (E’)

Exercise: fi(z,y) = 2? + 4%, fo(z,y) = ¢ + 3zy find 2
Exercises: (1} Suppose E(wl, ey 2n) = grad @(z1,- -+ ,z,). Show that E”(?E) is sym-

metric.

(2) Show that if J(z,) # 0 then E'(En) is an invertible matrix.
Newton’s method for the system (2.4.1) then reads

Guess zq, Yo
Given Tp, Yn, let zppq = 2, + AL, Yng1 = yn + Ay
Where, with J = J(fi(zn,yn), fo(®n,yn)) # 0,

o Az fl ("Tﬂ » yﬂ)
F (m'n:yn) - :
Ay Ja(Za,Yn)
More generally, for n x n nonlinear systems we can write Newton’s method for F' ag

F'(20) (Tngt — Bn) = —Fzn).

nxn Jacobi matrix

Note that at each iteration we must solve an n x n linear system for the update, Az =

—

Tatl ~ Tq.

Example. y = cos z,2 = sin y, solve for (z,y) using Newton’s method.
Solution:
{fl(:c,y) = cos x—y=0

falz,y) =2z — sin y =0

54

X= S‘“"(:}\

(R = (0615, (G F68)

0635 e
\&d los(x)

The next figure shows the approximate location of the root:

We have

Oh i 9Py
Oz '’ Oz
Oh . Ofs
By = 1, By cos Y

so that

— —sin z -1
Fllz,y) =
1 —cos ¥

and J =sin ¢ cos y+ 10, for (z,y) in the box 0 < z < 1, 0<y <1,

Given (z,,yr) we solve

— sin z, -1 Az, cos (&n) — Yn
1 — COS Yy Ayn, B Tn — sin{yn,)

and then 2,41 = &, + Azn, Yng1 = yn + Ay. This gives the following results:

55

)

G

Exercise: Repeat this example for

Ln

1.000

0.72027285

0.69495215

0.69481970

0.69481969

0.69481969

Yn

1.00

0.77568458

0.76832706

0.76816915

0.76816915

0.76816916

Y=+ sin y

3 sin(z)-y=0

Problems with Newton’s Method in R".

1. (Expense) At each iteration we must form an n X n matrix F'(z,) and solwa NEW

2. (Pitfalls) There are a lot more possible pitfalls in R”™ than in RZ, Thus, we have to be

Solution 1: (Modified Néwton’s Method) Once we are near the root z,, doesn’t change

much so F'(z) doesn’t either. Thus, we may “freeze” F'(z,) for a few iterates at a time

linear system with it.

very careful when we are away from the roots.

Some Solutions to these Problems

(near the root) : (modified Newton Method).

Solution 2: (Damped Newton Method) We monitor |F(z,.1)| and refuse to accept z ni1

P2 o) (% npbbt — T) = —

as the new approximation when |F(% 1) 2 [F(2).

56

—

F($ﬂ+k).

Algorithm: Damped Newton Method for };(;) = (.

Gluess: xy.

Forn =10,1,2,---, until satisfied, do:
R = —F(Tn) " F(an)
Find smallest 7 such that

(%) F(Tm + A /26)] < [F(7)

Tmtl 1= Ty + A2y f27

you program it, you specify a jmax(= 10 for example) and exit if § > jpax. O

(oMPUTER ExERCIsE
Tealee Mo Newston MWJJ\ ?\rﬁwam bm have, ueed
2o\ QA - Mo&l"t\'ﬁ e andeds o .&om@\wh S\CQ,«.
Wouw 3((3 e covxS'JCt'ruC.s(' S oA v‘m\\& Ax{*gtw.\'\'
W G\ AL G Q-_:\(uaﬂiicm Yo soee | S Iy o vomloen dY,
dawg ey siops awd comveqema with and wtwogt
Ao.wxf\v\%. Pbo&s. J\’\ASL Veﬁ&““\\ *Qq\\:l Aea{wssﬁl
MWG%GV\EC-&\\»‘) .

MoRe) N
A Seconk Method R awd R
2. Boyndess Mo
2 o Gl o RALIZEATION STRATE &ies
¢ DAM PIN & ;3}

It is possible to show that, in theory at least, (*) can always be executed. Of course, if

28, Clobeltz 2dgn %*'m%a_j'\m ‘ The &x “‘“"'P\& e

i

o \40MA‘65,>3,M@+L0 aﬁf) B

S«/YJ pose. e w8 “_AQUQV:_Q_:V\ _wanlivean

. A*_;-ﬁevup\l\'jﬂ_m G variablea

Ak =0)

0o y &= %(‘?37‘8.

Ouwe diffralt querkion & velakd £ He

__“__,,lﬂ-ACJ:‘-M_k m,.,.m_W%L:’_(QA,____L_QIM\,L@,&W“@_“___a'il Ne w%(rr“ni

o hu:_—HA od. Th s _.JS__{___df__..__.CQM,KII? Pala e{at ed
R o the question o ﬁ ﬁz nd tnp & o off
: b - g

lﬂg‘t‘\"‘ﬁﬁ gVe€sSsES |

care g Cglobalization chedesy B
N Q_ufl’ (_Mj Al +LL0¢J . IM- ‘H’UL Ao -S"{' US_ IM»f)Lﬂ..w_,ww,uﬂw‘,,#,vw

okt B = wodts os dollows, A

ndwlivaan q@ub(:a\!i_uﬁ

- R - - i e I
(= (K =C / WMVJ&.)TI'CIW\ A vm-l'azﬂ(m,.

LS DI'GL(-Lcﬂ VLYQ\\FC,L WX “Qas:}“ 4 gé,[v.e_ aucﬂ

\ —n
= whoch oo 0 elose A F (R}, A Tlese

“{‘u_fo amé(a GA_S Ave (Lonne c‘é’aJ ‘ZM 2

4) linnire [5\ ‘IAOMU%ZJ(D:{ “ :) . SvuL\d @ 5

58

HE, X)) =+ B (4-t) & (R) =0

e HEX)=o s ow eq oaﬁnc_nm via_ (D)
Vo dololes x\.,,....,?a.h ondh £ co M

<o ludrcan K G CLAE

X&) o tsg 4.

© LWhow +=o + ved vs de &GER)I=O

So

Xy = solutim of + GeR)=s

e hwes =4 v vedvas e F(R)=0

¢ o2

KW = solutiem o 1T (R) =0,

OU\LQMPLL fl’va_jce.jj IS cia I—‘anoms‘-

go\\f—e. —G:b:a) =0 &"' SZD.

Pieke A“l:_

0 {ueu) = -tmt_'r;) + DL

g_;:zu_yﬁ..

N —
ch .Tt_.y\am by X U\pn\-\) =0

U%iuj ‘QQ’LL&.—WE W)dkﬁ-’(l U\J*L ﬁ?\ oD oS .\IA\\'\D&&‘UE?S'S. l‘

\

|
» | 1L WM dees sk C duce Ak
+ \ | ond e \S:vr‘il -\‘o (:g\\’waz e

\ N cmvwgm / xm,,,é*xmw aed et oM
LM‘_DTDP mhem .-t Meu = iﬁ,m S — N

} 1 W/Ui-— N MOM Y Do S |\0U- VT@::EMMAM)YS _

e s base | svedeqs I
:)

‘T—gdm_m_fﬁvm_—?wm __ ODE. wethods | o
I - T2 W_\siﬁuusﬁrlm'ﬁo\]om&mj:@ e

‘i‘lg.%‘k'o‘ha—\ rle.n wodwe H (t (Xit))"*‘“Q
-__..._.--.._:_;;_\'..’S..M:k:o;k e 5wt oboteiw: l

Wl v + Wt xay) Xy =0
\-—"“"“V"'_"“"“"') — S x.__,,_,_i)
AN~ Vee_*kw kkkkkk TR jaCOL‘\'

Mt

i

Yoxfrs = (B Gxm)) Helbxe)

or *Frd xA) e

\)-(Coqj = go\u’{' Lo ag- . @(-7?) = v ﬂ_-~e—~——

OV nekunadly cRY tvdbees
ARSI (ﬂ\? - T a MBI WMk g

m_mf;llc_ < D\ i /A;‘l A A . A in \v R .
. S4s°20a. l |

Exercise 151 Show Had L e sotve Y

WQMD €. shore wth Zolen W w th

R __Ah{;s:‘ie A W ge aw WC-'\"\:D{
&o uS}('cW‘; MQ}AAQJ\ ‘s

3. Numerical Differentiation and Integration.

3.1 Introduction.
Often functions are “known” as a table of values rather than a closed form expression. ,%
This table of values might be known from experiments or observations. It might also be

the result of a long computer program where “z” represents some input parameter and

“y” the result of 20,000 lines of FORTRAN calculation. In either case, the probiem is:

given data

(3-1-1) (m0190)1($1:y1)1"' :(mmyn) &; € [a?b] l

calculate an approximation to

b ,
(%), € la, 8], or / y(z) de, |

from this data.

One basic approach is to simply interpolate the data (3.1.1) with a polynomial ()

(3.1.2) Pa(z) =yo Lo(z) +y1 L)+ + yn Lulz).

o

where £;(z) = 1I J
k=1 z; — xp
k=4

integrating p,,(z).

are the Lagrange functions, and then just differentiating or
In fact, this is an example of a general procedure for approximating “linear funetions”.

Definition. L is a linear functional acting on continuous functions, if L(f) is a real number

and for any two continuous functions f(z),g(z) and any real number «:

L(f +9) = L(f) + L(g) and L(af) = aL(f).

‘There are numerous examples of linear functionals in applied mathematics:

o differentiation: L(f) = f'(a) for f € C*(R).

6L

.
|

b
e Integration: L(f) = / f(z) dv
o limits: I(f) = lim f(a -+ k)

e Fourier sine coefficients: Ly(f) = —21— / flz) sin(Nz) dz

4 w
Assuming we can calculate L{(p(z)) for any polynomial p(z), we may proceed as follows:
Given y; = f(x;) in the table (3.1.1),

Approximate f(z) by p,(z) given by (3.1.2), and from this, approximate

L(f) = L(pn) = L{yo bo(z) + - + yu Lo(2)) =

= (using linearity) = yo L{fo(2)) + - - + yn L{L.(2)).
The “weights” w; := L(y(z)) are calculated and tabulated. The approximation formula

(3.1.3) L(f) = wo f(zo) + w1 f(w1)+ -+ wn f(zn)

results. L(f) is approximated by a weighted sum of function values of f at the points
Loyt 3T

The weights typically
wj = L(Z;(z))

are computed and tabulated. However, there is another way to think of how these are
determined. To see this note that if f(z) is a polynomial of degree < n (wfitten fell,

then it 1s, own interpolant:

F(@) = pu(z) = flwo) Lo(a) + -+ + flzn) La(z), €.

Thus,
L(f):L(pn):wﬂ f(w0)++wn f(mﬂ)? fETTn

In other words, the approximation (3.1.3) is ezact on II,,.

G2

‘ E:X eEvelses

........... ?LL iwggwéiwmm cenkeal A tﬁem.@ﬂ)mmmw
Yo LY = My

LE = Dfay:= (o - Lady) /2b

U \fem"l«« Aok Mt & exact on 4, X awd x5

%_‘12, COV\&\&D\ 4 Owne, —&\&ch &eomnmd'tm o 4 (o) = LLE)

LEY = Py = DE= Wy oo+ Wy oty iy Foosah.

— | (@Q@qu\m ‘H/\Ls 4o \ae, -Q‘:(d‘f"\‘ on__ A 4 m~q}\3{2‘

RO au\é"t devwe Twe V‘MM&M 2wl \ww
3%%3(79\,\/\ ‘Qﬁ\f" N ' T \;0 annd Wz,
(b) f:.a\u»e e u:a)\‘rin As 'QOV w:.'m;- owd_{uz. @3
' €,7¢{)mm§uu:§ Yo _evior @A . Tm\ov"

Senvto \:U\ \%\ } \ju{g“"m 1¥$ O({)Z) (‘ACL%MCM

3\3 Hw& I ai;rwmwkalrw +.:: .C”foo (,J]AC,\A \C

AZ Cawpa(}c (_ 13 ,wsel 2@«: po\wl‘.r oS ‘zpaSS‘r)SL’-)'

F,k\(,ﬂalm. \'\Cj eAa Y VSIM&TMLM Sutwpmoaur(m\

Uwfv\ A‘ka J\tc (18 paQL, mméc&»& o1 E’Acac.-} 7

L3

We have already seen that in practical calculations we cannot let A — 0 since roundoff
error will make the total error blow up. In many practical calculations there is (worse)
noise or other errors inherent in the data. In these settings, numerical differentiation must
be preceeded by a procedure known as “data smoothing” to filter out some of the noise.

We shall discuss some approaches to that later.

. Numerical Integration: Basic Newton-Cotes Rules.

The idea of the introduction, applied to calculating

/ﬂ g

15 to pick » + 1 points on [a,b] zo, 25, ,z, interpolate f(z) at those points by p,(z) €
Hpla, b and - Lopprox wm ate »

b
f (z)dz & / pu(r)dz.
&
This procedure does NOT work well without one additional refinement. If f(z) is not very
smooth (i.e., f(z) ¢ C™(a,b)) then it is quite possible that p,(z) = f(z) as n — cc.
The refinement needed is to use this idea inside a “composite” formula: the interval

[a, 8] is broken into small subintervals and this idea applied, for fixed polynomial degree,

on each subinterval.

The basic idea of a composite formula is to pick the meshpoints on [a, b]:
=29 <) <Ay < < Tp=20

and divide the integral accordingly:

ff)ia =5 /+ (2)ds.

H

Each sub-integral fm’?“ f(z)dz is approximated by a weighted sum of function values.

Methods differ only on how this weighted sum is selected.

e

Example 1. : (The trapezoid rule) If we seck a two point approximation on each subin-

terval:
zi41
/ f(@)de & w; F(z;) +wigs flzer),

J

the coeflicients w;,w;, are determined by requiring this be ezact on II; (equivalently,

flz)=1and f(z) = z.) This gives the 2 x 2 system:

T4t . .

J

Titt T2, . 22
41 J
/ zdr = 2 T = WEE G A W1 T
z;

Ti+1 — %j
2

f:"“ fla)da & (ﬂﬂ;i) Hei)+ (ﬁﬂ@:‘%) F@j41)

i

The solution of the system is w; = w;4q = . This gives the rule:

and the approximation

ssy [ez 5, (225575 e+ (B fiepnn].

Exercise:'If the points are equally spaced, A = z,41 — z; for all j, show that this reduces

to:
b 1 1
[f@xe = b3 foo)+ s+ H@a) ot Foa) fen)|

Theorem 3.3.1. The local error on the j** subinterval is O(z 41 — z;)%:

2 12

i

The global error is O(h?), if h = max (z;41 — 2;),
j

’ not 4 Ti+1 — a9 "
O Y e R A O)

2 12 a<<e<h

65

/z-jﬂ f(z)dz = [(ﬂfj—i-l—ﬂlj) et f(wjﬂ)] s f'(¢5), for some £ € (25, 2541).

Proof. The first follows by integrating from z; to z;41 the error formula for linear inter-
polation.

The second, global error bound follows by summation:

1
Total error| < nE Error on (z;,2,;41)| € (inserting the first bound
=0 Jrgt

n 1 '
< E g (@i —2) F1E)

max (m.Hl - 33:’)2 n—1

< max |f"(2)] — Z, @i = 2j)
< ' (- a) max |P'()). O
- 12 a<<z<b)

Example. : (Simpson’s Rule) As before, we decompose

/a b f(w)dm::g / jm F(a)de.

The trapezoid rule arises as a two-point formula on (2, ;41), exact on the fwo functions
f(z) =1and f(z) = 2. The path to more accuracy is now clear: Simpson’s rule (the next
step) is a three-point formula exact on 1,z and z2.

Let us seek an approximation:
i 41
/ fle)de = w; f(z;) + w12 f{Zi4170) + ’wj+1f(mj+1)_

where z;., /, is the mid-point: ;1179 1= (z; 4+ 2441)/2. I this is ezaci on I, = span

{1,2,z*} we have:

41
f 1dmm(wj_|_1—mj)mwj-1+wj+1/2-1+w3‘+1 1,

H

Tit1 2 72
41
f T de =0 — <h = w5 85 F Wi a%j4n 2 + Wik T
T
41 23 3
+1 2 2 2
/ v do = J3 - —g‘ = Wiz + Wit1/a Tipapg T Wik1 Tjyg
i

ae

Lo,

This is a 3 X 3 linear system for the 3 weights wji, Wit12 and wjyy. [t's solution is:

_ (441 — z)

4 1
wj 5 » Wikrfe = g (Zi41 = 25), Wik = o (@54~ 24).

The corresponding integration rules (Simpson’s rule) are:
i1 1 4 1
f(z)de = g (@irt—w;) f(o5)+ g (@ir1—a5) fl@gpipe) + g (@1~ 25) flzjaa),
2
and

n—1 7]

(3.3.2) /: flz)dz = B = (2541 = mj)[f(mj) +4f (%ﬂﬂ) + f($j+1)]-

This formula. is also (by chance) exact on z® so it contains hidden accuracy. It’s local
error on (zj, £;41) is O(A®) and its global error is O(Rh%).
There is another, equivalent, way to derive Simpson’s rule: Interpolate y = f(z) at the

points:
(mja f(mj))’ (mj+1/21 f(mj-i"l/z)) and (mj+17 f(m.f‘f‘l))

to give a quadratic polynomial py(%). In each (z;,z,41) we approximate

/:Hl flz)de = /:Hl pa(z) dz.

]Y"’-fo)

ARABOLA INTEE PoLAT
Leay P2 (%)

. o LR R :
N L Kirg £ === | Xy
St -y

FIGURE: A GEOMETRIC INTERPOLATION OF SIMPSON’S RULE..

vy

L+

Theorem 3.3.2. Let h = max (x;41 — ;). The global error in Simpson’s rule is O(h*):
i
“"‘p(%ﬁ

b n—1
I/ fz)dz — 2 "é“ (@j+1 = ;) [f(%‘) +4f(zjvh)

O =@ pé max |F(2). O

| <
2880 a<a<h

More Examples By following the above procedure it's easy to generate (so-called)
Newton-Cotes integration rules of any order.

It’s interesting to make a simple comparison between the above two rules when the
meshwidth is a constant h = z;¢y — z;. Simpson’s rule (as we have presented it) takes
roughly twice as many function evaluations as the trapezoid rule. It’s error is far smaller

through:

240

error in Simpson

error in Trapezoid (h? }"]

I, for example, i = , Simpson’s rule error is smaller by 2.4 x 10°! As h decreases the

1
100’
advantage of Simpson’s rule increases further.

evvey(

/I\ (rouvxc\~n§F Troperod

ervor efde ‘e"\ €
el J.ec!q

SiMpson: Rule
e= & pH

>4

FIGURE: SIMPSON’S RULE IS BETTER!.

Of course, this picture neglects roundoff error. If each function evaluation contains a

small bit of roundoff error, F., the total expected error of each is then:

Total error in T.R. ~ Ch®* + “* ! Eil Ch—a) 3
ht -
Total error in S.R. ~ 240 + 2 ELL (B’*&) .

6%

iy

Including these last terms accounts for the dotted lines in the previous figure. Once again:

Higher order formulas (hke Simpson’ s) are SupeI'IOI"
¢ 1 (o o Swe psem’ nde . ﬁ 2a-t
PR S R I A R Ay

3.4 Gauss Quaci‘h’tlﬁepw ol Y m.{legmok N Haose

All quadrature schemes begin with the decomposition

/a b f(w)czmz’;g: / j”l F(2)ds.

The integral over (z;,2;4.1) is approximated by a weighted sum of function values. The
brilliant idea of Gauss was to pick both the points at which f(z) is evaluated (called the

quadrature points) and the weights to optimize the methods accuracy.

Example. : (Midpoint Rule) Suppose we seek a one-point approximation of optimal

accuracy:

[e wira)

This has two degrees of freedom (w; and ¢;) so we can ask it be ezact on Ty, (Thus, it

will have accuracy comparable to the trapezoid rule.) This yields

j 41
/ lde ={(2j4q ~z;)=w;-1

i

Tjof1 3’;2 3;2
+1 J

& dsc = 1 - 5 =Wy Qj.
/w 2 2

i

This 1s a 2x 2 nonlinear system with solution w; = (241 ~2;), ¢; = mJ—H—iﬂ (= Z541/2)-
The midpoint rule is then:
b n—1 Tijy1 + 5
(3.4.1) / f@)dn = "5 (o1~ 2) f (J_+1_2__:)
u =

This is exact on II; go it attains O(h?) accuracy.

If we seck greater accuracy with a k-point formula

L5 41 k
foodx 2 w;, (g5 2),
x5 £=1

69

_& CompPuTed. EXERCICE

Ko coms cﬂf’/‘ Jear g I, o p e oruime "Z’ Lé\

| ;;E’/(a) Lw erwj Ja#«,[erww ﬁ%—éo—wg%-*m

S A nclode

+ wage

. COM/M/?L (a& erf’mﬂf& 4

nemué‘im

Me%&aahi Evror = \—['—‘-l £y | Whow LMy

_______ 1 GFY’Y‘OXPMOA:LA L/'V[b ’F‘Wlﬁk dfferovs Qpeori»owadﬁd/\
‘Jfo —pmfoﬂf u'e o\A ‘100 S\AOJ\J JWPL);P)
eded2 Lot Dy fe=Chong—tet) b, A
— LOMf\r‘@Jo\n. M’\’Wal'e T Y N
Levoe = | D g(a) — ~:Dh -EM)J —

'COMP\}@ \od‘\,\ cvd Yo Yvwr Evor. Lﬂmol; 3 Jo&&r

(Do ck\\ J(\IL% _— Qgﬁ@mc(!:m ZeND 1[»1 ()(ID'L) - L-’b o 7

-

With this in mind, we must have:

wo 4w L4 4wy, 1= L(1), (exact on 1)
wo - g+ WiL1 + o+ wezs = L(z), (exact on z),

woy + wiz] + - - + wazl 4+ L(z?), (exact on z?)

wng‘ -+ ’LU1-'1‘31” + cre ek wniﬂﬁ = L(mn)a (exact on ‘,L,n).

This is an (n 4 1) x (n + 1) linear system for the weights wg, -+ ,w,. If it’s easy to solve

using Gaussian elimination, then wq, -+ ,w, can be determined this way.

(wmsedr paqe WERE)&——

3.2 Numerical Differentiation.
The classic approach to numerical differentiation is to expand everything in sight in a
Taylor series and cancel everthing possible. However, the approach of the introduction is

equally valid. We shall see how they are complementary.

Example. : (Forward Difference) Suppose we seek an approximation to f!(a) using two

points a and a - hA.
f'(a) 2wy fla) +wy fla+ h).
Here n = 1 so wy and w; are determined by requiring the formula be ezact on linears, i.e.,
flz)=1and f(z) = z.
Exacton1:1"=0=wy - 14w -1
Exactonz:a' =1 =wq-a+wi(a+h).
This gives a 2 x 2 linear system for wq and wy whose solution is wg = —%-, wy = % and

flath)—fla)
h ¥

Fla) S~ fla)+ 7 fla+h) =
ag expected!

The error in this approximation can be calculated by expanding the RHS in a Taylor

series, as in Chapter 1. This gives:

error = f'(a) — flat hf)a — fe) = — %h f1'(€), some ¢ between a and a + h.

T4

T

The following difference approximations can be derived exactly analogously to the last

example. Their error properties are summarized.

Example. : (Central Difference)
a+ h)— —h

ey = Lot - Sla=h

_ fla+h)—fla—h)

2h -6

2
?

lexact on 1,2,z

error = f'(a)

F(€), for some £ € {a — h,a + h).

Example. : (Second Central Difference)
f”(a) oo f(a'+h’) “2f(a)+f(a_h)

P¥:
error = f"(a) — =—— f® (&), some £ € (a—h,a+h).

, exact on 1, z, 2?2, 23

fla+h)—2f(a)+ fla~R) h?
h? ~ 12

Numerical Differentiation: Roundoff.

Suppose we compute

fla+h)—fla~h)

f{a) = o

h) — fla— —h?
flat)2hf(a h) + él f""(n). In general, there is an error in f{a-h) :

Ey and in f(a — h) : E—; errors can occur in measuration or storage or roundofff (if

Then f'(a) =

fla 2 h) is the result of other computations). Then, as

fecomp(a £ h) = fla h)+ E,

we have

h) — —h E, —FE_
foomp = flat)2hf(a) + +2h

Hence, the total error (discretization plus-roundoff) is:

. , B, — E_ hg_ e
fi(a) = feomp = ~ +2h - (fﬁ (??)_

Notes: As h — 0 the DISCRETIZATION ERROR. — 0.
Fy — E.
2

The roundoff errors £ do not decrease as A — 0 so that — o0 as h — 0.

Ey?

AisareH zetion
evyo

<__..3

—E'l"q‘ E Yo

Cuayr et

PAYMLMAL a
Aenmalle + ¢

€rver X voond o-(l-(
: Evvor

o

\Mzs\nwu\-\‘h
OP-{-ﬂ e ‘e,. 7

Example. Suppose the error in computing e for —1 <2 < 1is +1x 107" so B} ~ E_ &

+2 x 107*%, The roundoff error is approximately

2% 1018

doff =
Roundo -+ o7

As for the discretization error: ()" < 3, so that

—~h? —h?
Discretization error & 3 = —
6 2
Thus, we have a rough estimate for:
2x 1071 p?
Total = Sl AN R
|Total error| = |R| + | D] TR

1
=107 71 4 5 h? (= g(h))
What :18 the minimum value of total error: |

g(h)=—-10""h 2 +h=0= —10"" 4+ 1* =0
or h = V10718 = 107" s0 hoprmmar ~ 107°

and the minimum total error is roughly 10710,
Higher order difference approximations to derivatives are easy to derive by the same

procedure.

13

we have 2k undetermined parameters. Thus, such a formula can be exact on 1, 2,22, ... | 2251,

The overall rate of convergence will also be very high: O(A?*). The only difficulty is solving
the 2k x 2k nonlinear system of equations on each (2, ;1) for the points and weights!
Clearly, this needs to be done once and the weights and points tabulated. This is accom-
plished as follows:

Make a change of variables mapping (z;,z;41) to (—1,+1):

f T b de = /'H o4 dt.

¥ -c.un. o e i, - -1
rﬂ‘e‘i‘fhmt, @Auﬁ*\f c\:\‘;-c«\a\t, VS \W\‘)Or‘%’mw-\‘ \"Eauum "\'\Alt.u —\'h;. uefah-!rs 6““{ F'D“"'\-‘f

X5m Finr Y- (e \ : : N -
This is simply done by: X9 Fin)- A ighees teact of U-—--——-—au—m“w&"’a\"\'ﬁ v echieved 1

Tjpr — &5 Tip1 -t T;
t
2 T 2 k

xr =

Thus, we have

b n—1 fTi+1 n—1 +1 — Ly i
(3.4.2) /; flz) dz = jEO L f(z} do = jgﬂ (%) /1

I

Now we only need a quadrature rule on {—1,4-1):

+1
[s a2 wgla) + o o gla)

—1

which is used in (3.4.2). Note that with this approach we need only store k points and %
weights. These are used for every subinterval!
How are these points and weights determined? By exactness on Ilz;-1 naturally! We

give two examples.

Example. (Two point Gauss) We seek a rule of the form:

+1
[_ a(e) &t 2 wng(an) + s o).

#

The w2, 1,2 are determined by asking this be exact on 1,%,t% and ¢%:

"
/ lde=d=w; - 14w -1,

-1

+1
/ zde=0=w ¢ +ws g,

-1

+1 2
/1 z’ drsg T wy g + wy ¢,

+1
/ z® dz=Q=w; ¢% + wy ¢,

—1
This is a 4 x 4 nonlinear system that happens to be easy to solve. (By symmetry, we expect
w; = wy and g1 = —¢z. Try solving this yourself!) The solution is:

wl=1,w2ﬁ1,qlz—m =

This gives the base rule

[} sl) s (o)

Used in (3.4.2) as a composite rule we have:

(["ot T — 2 i1 — &, Tj+1+ 2
/ f(z)dz & JEO —‘—2—) Wy f(—““a— g1+ — +
(3.4.3) $ +wg f (M q2 + M)}
. 2 ?

1 . 1
915_753 QZ=+E, w; =1, wy = 1.

"This requires only two function evaluations per subinterval yet yields O(h*) accuracy (since

it’s exact on II3.)

Remark: (3.4.3) points to the general programming procedure. We store a small array
of weights w(k), points g(k). The RHS of (3.4.3) is programmed typically as 2 nested do

loops: over the subintervals (z;,z;,1) then over the points (w(£), g(£)).

+5

Compdn Syerarsc i Comvert Jour Yrapezote vuls p mew Yo wne

o oY GRawss rds . \22(’ %Pmnm £ o PAAL-
ﬁ\ﬂ\:-j;m% Ho ’rmpegwk rde and Swpsont vule.

Example. : (Three point Gauss) A three point Gauss formula takes the form:

/—41-1 g(f)dt = wy g((h) + wq g(qz) + wg g(cm).

The w;, ¢; are determined by asking this be exact on IIs:

exact on 1l = 2 = wy 4+ wy + w3,
exact on ¢ = 0 = wygq + wage - w3gs,

2 2 _ 2 2 2
exact on z° = — = wyg{ + wag; + wsqs,

5

exact on z° = (0 = w1 gs + wags + wags,
2

exact on z* = E. = w19’_‘11 + ’w2Q'§ + wBQ’g;

exacton z° = (= wig: + wags + wags.

We expect, by symmetry, wy = w3 — ¢1 = g3 and ¢ = 0. Nonetheless, this system starts

to seem a bit intricate. It's solution is:

5
'LUl:— w2:- 'UJ3:'§

9

7 =/3 g =0 q3=+\/g

‘Three point (Gauss, used as a composite rule, attains an overall error of O(h®).

The weights and points of the general k-point Gauss scheme are available in most math-

ematical handbooks for example, Gaussion Quadrature Formuylgs,by Stroud and Secrest.

We give one last example < the quite popular four-point Gauss scheme.

Example. : (Four point Gauss) Four point Gauss is exact on II; and O(h®) accurate as

a composite rule. It's weight and points are{ %> 1o signiFreavd dgin) ¢

Wy =0."’>HHSLWL\§\)wz =0LS2SIsHY JWs = Wy Jwa = W4,

¢ 71 =w0.961136311 3 gh‘z--—o;ﬂclci%lcu%@ g3 = —% g4 = _% i

J6

E—KQW\P\{; (S ?o\w\' G’;au(s) . 'r\VL Folm'\' 30\“35
\"u\\PS are exac:\' ow _Trc\ . ﬂ—[: ~em S\a“r"Pfcaw{'
ACS'*\:S P ’\)U\Q_ fo W\)c‘_s awc} WA lcd {QL\X'J Ve Swe,m \n§ ,

Wy = Weg = C.23642 6335,
W, =Wy T O.43R62Z 360 5
W & 0.56 8% IRIRL
“941 7 9s T 0.061F qe4sA
- = = 0.53%U4 o
GL’L Ay a3 to|

c\/a = 0.0

EXOL\M P\l . (é ?owv\" @:o\.u\sg) _ SR\& ?)O\V\"\' G::cmu-ss'
(s Q,‘Kat.)C ow _W-‘\ . Lo -\'e.v. s\”‘gv\'\" 'Q—fca.u:h
‘l\'&ijﬁ 5 Vs f\)oww\-\cj ond e 'QS\A‘\CS ove -

Wy =W, = 01312 44424
Wae = Wg = 036076 I§$3F30
Wa = Wu = 0deFAl 334G

“"‘L\:G\/(, = 0.9324L4<S\42
-9 . s'igz 5. 66120 A2 RES

—"ﬁ,'& = ﬂ«"l = 0.2336)1 gy 261 .

77

o, b e s 8 L MR e s o @t B 28 P P AR b e ek Rk S 4 £ B4 T 2 SEiR RS ns 8 s e e me s e e es el e ames e s e v AIa = S enE A e n = s i L e s e s

L E}(é rerses

\

24 A . Considon I doodx (B L= e
Toke Yo weslh -
Oz%Re < Kpedh € Yozd < Xe=1 .
€ Cm\cujlc\'ji AN ﬂpaomc.mxaﬁ-.rm us.mp &nmpgd‘lf_s

rude ow Hais W\QAQ\ Whad 13 "ﬂu e,

i Hﬁ) F;v- AN cm\o)t"u—m:ﬁ ‘\M@A‘Q’“
M= Yl Ky €K p€ e € Ko Th

\MVW)(L AQM/\ W\ pLQUciO Cocs\l. “*\AQ gl\M PSW‘J
\fv&a &&QUF\‘HAW &W‘ &ﬁfzrml W\a}mp q '{'}t‘&idx

TEHZ Supert prdan A 0 bra poik Gmuse el

5”3 &{g\?—é\ T\U- Ko called _WMQ\JAM_SJ Mbé@*&hm%yﬁm@&&*ﬂw
- i WAL ’\j\u lU\jriLr\V‘a)..& QAA& f:ﬁo:u\’lct (I\M—

M()_,M\JV(N\ (F;\’\:’?A W\Q}&nél\') a}:u& & -g sejr d’.{a

N L\Aj@/\ nall. {LOHM\:.&M _,Jmmﬁ o .,_L,;ff.\x.&dwib_mgb:.,\.m\mmhﬂ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ -

- ijmaj\ accuncc (e Guwse wethods)
({‘N’\ S\ A é‘aqu ~ Lo{a’/\‘}]['o *!—nl’m m[a :

R T T IE VT TR e

(05} w\l\dk &Ccuv‘ac% Am *\ou aW\"Lc\ Pa&\cﬂ. {3 c:xj&‘amalq[.a_

\06 0 yor na Ul o& AT -{"j[:e usec\m aCd\«uQ)os;J:Q V«ﬂ,ﬂ

&“‘V‘l&“ﬁ a “M‘Fo:‘wj @mch%: CM ﬁ* |
78

m%m%wwwwM$me»w%mw

3.5 Adaptive Quadrature.
The problem of adaptivity is to compute

b
/ f(z)dz = L,(f) (some approximation)

with menimal or near minimal cost and guaranteed accuracy
b
| / flz)de — I(f)| < €, a user-supplied error tolerance.
/3
Thus, we want an algorithm that will automatically select the points z;
a=tp <2 < < Bp=0"b

so that the error and cost requirements are satisfied.

Suppose that we wuse a composite rule that is exact on II;. We thus decompose

b n— Zit1 n—]
(3.5.1) / flz)dz = JE: / ' flz)dz = JE: L)

i

Zi41
where I;(f) = / flz)de. M I;(f) is emact on II;, we have seen that the global

approximation (3.5.1) is O(h*!) accurate. Om each (z;,z;45) it is O((z;41 — z;)%?)

accurate:

/ - flz)de — I; () = C(zjq0 — ;)2 J(k%')(éj)a for some & € (2, 241)-

i

Suppose we can approximate f;’ +
&

f(z)dz to an error smaller than e(z;41 — z;)/(b — a):

Zj 1 oy —
R A

&

Summing this from j = 0 to n — 1 then implies:

I n—1

b—q 350 ($j+1 - m]) =&

b 71
exror| = | [fe)da =T, 1091 <

49

e(T 41 — &
our target accuracy! Thus, a local error of ———--———(J;“l)
—a

There are thus three components of an adaptive strategy:

ensures a global error of .

e Bstimation: A computable estimate for the local error: f o flz)dz — I;(f).

e Accuracy: A strategy for cutting the mesh and recomputigg the approximation when
the local error is bigger than e(z;14 — z;)/(b— a).

¢ Efficiency: A strategy for increasing the mesh size when the local error is much smaller

than necessary (<< e(zj41 —z;)/(b—a)).

Estimation of the Local Errors.

The simplest way to estimate local errors is to approximate f:i" ' f(z)dz by one method
and then by a more accurate one. The number of significant digits of agreement are a good
estimate of the accuracy of the first method and a conservative estimate of the accuracy
of the more accurate one. (One common method is to cut (z;,z;4;) in half for the more

accurate approximation.)

\[:*—?C"F- /—-

Vs
/ e d /Z //" 4
/ IJ // . / d”/// //
S VN

%.'\ Xjel X; Rjth, Rt

FIGURE: A TRAPEZOID APPROXIMATION AND A MORE ACCURATE ONE.

Example. : (The Trapezoid Rule) For the trapezoid rule |I; — I;| is a crude but reliable
Tjit1

i+ —
estimate for | f(z)de — L[.HUW&V@ v, W0 vod pn efilicienk etz o
2
This estimate can be improved a lot as follows. From Theecrem 3.3.1 we know

A (B -z 33
[s = o) ey

i

g0

Similarly, applying it over (z;,2;11/2) and (2412, 2;41) then adding gives:

Fj4a B . —)3 . s 3 A
/ +f@ﬂ$—%:(%ﬂfzmﬂ.ﬂﬁﬂ+(%ﬁ mﬁUﬂ'W@”

i
It’s reasonable to suppose f does not vary much over (z;,z;41). Let hj = (2,4, — 7;)

(so (@jp1p2 — 27) = (@41 — Tj41/2) = hy/2). The last two equations give:

Zj+41 h3
/ fla)ds — I; = ié " (= local error in 1),

(3.5.2) :
fml Fo)ds =T = L0 o2 Jocad crror in T
g-I;= - 21 = Jocal error ;).
. iIT %12 © j
Subtracting these two equations gives: -
, 3 A,
IJ - I.? T 412 f.
- 3 -
Thus, %(Ij —I;) = ?i— % f = (compare with (3.5.2)) = the local error in I;. We thus
have:
T s =L
(3.5.3) flz)de — I; = 5 (+ Higher Order Terms).
z

R = o
Thus, 3 (I; — I;) is a computable local error estimator for the error in I ;. This estimation
is smaller by a factor of 3 than the simpleminded one of |I; — L.

More generally, if the scheme used on (x;, z,41) is exact on IT;, we can do the analogous

computation:

I; : apply scheme onceon (z;,2;41)
I;« cut (z;,2;41) in half, apply on

(Wa”:jﬂ/z)a (234172, Z4+1) and sum,

Then, a sharp estimator for ; is:

1

W(fj — I;) (+ Higher Order terms).

(3.5.4) /zHl flz)de = I; =

i

g1

Examples.

Simpson’s Rule, k = 3, —1% (I; — I;).

Four Point Gauss, k =17, 21

?s.(fj”fj)-
D
Exevcisest CCDV\%\AEV' Yz Xver ez—o\cl e, Shew et \I T \

overestwoter Yhe evver W L. b a fackor of ﬁ'\nvee (5o s“\’
LS re\\u\o\e, \ow\’ \M’\' e?—-ﬁc'\w}f Lor I) \bm UnAeres'\‘\w\a—\—es e eyrvoy

WA j;s \a:j o -Fac%or o\f-%{ {so \¥is e-F-Ficteu’\‘ bt net veliable e IJB

Verify (3.5.4) and the above two examples.
- ATT)

Accuracy and Efficiency: A Mesh Refinement and de-Refinement Strategy.

The strategy is pretty simple: If the estimator on (zj,2;41) is too big I; is rejected,
the interval is cut (for example, ;41 is replaced by :cl;lflw = z; + (x?_H) — z;) and
the calculation repeated on (z;,% ?I_Elw). If the estimated error is much too small, I; is
accepted but the size of the next interval is doubled. There are only two choices that must
be made. First, to accept a simple mesh halving and doubling or use a more sophisticated

adjustment. Second, to set the tolerances far enough apart that there is no “flip-flopping”

(half — double — half — double — ---).
With the mesh halving and doubling the algorithm proceeds as follows.
Algorithm: Adaptive Quadrature.
Set upper error tolerance: €max
) 1
Compute lower error tolerance: epjn = Y= Emax-

Initialize: Integral = 0.0, zr,rrr = a.

Set initial meshwidth: A

22

e

4 Numerical Methods for Ordinary Differential Equations.

4.1 Introduction.

Suppose we are modeling a system that is changing. If its state at time ¢ is

represented by a number y(t) (or a collection of numbers 3 (t)) it’s reasonable
to suppose that its rate of change depends upon its current state. This general

situation leads to the initial-value problem: find y(t) satisfying
"(t) = f{t,y(t)),fort >0,

(1) y'(t) = Flt,y(t)
y(0) = yo, (known).

Higher order initial value problems (IVP’s for short) often occur through New-
ton’s laws, for example. A particles position s(t) satisfies a second order IVP:

() = g(t,8(2),5'(t) ¢ > 0,
3(0) = 8,
§'(0) = s,

This, and in fact any higher order IVP, can be written in the form (4.1.1). Let

y(t) = s(t),y2(t) = (). Then yi = yp and yh(= 5" = g(t, 5, %)) = 9(t,v1,2).
This gives the IVP: y1(0} = sy, y2(0) = s; and:

Y o= yo = = f{ty), y(0) = Yo
Yy = g(t,y1,¥2)

The problem is now, given f : R x R® — R® and _go € R™, solve approximately
the TVP:

(4.1.2) Yy = fty) ,4(0) = yo,0r equivalently.

¥y = filt, ¥, Y2, Yn)s

= tﬂ 1 L L | nis
(4.1.3) yy = fa(t,y1, 92 Un)

Yo = fn(t}yl,ym e wyn)-

35

One basic approach to approximating the solution of (4.1.1) and (4.1.2) is to

replace all the derivatives by differences and compute. We begin with the two
examples.

Example: Buler’s Method for 4 = f(t,y).

Let & denote the time-step and ¢; the jth time. Thus, b = T/N for some integer
N and t; = jh = t; 1 +h. Since y'(t;) == ﬂij—"ﬂ—_y(—tﬁ, we can take h ”small”
and approximate the derivative with the difference quotient. In (4.1.1) this gives:

(4.1.4) Yo given ,ylt%z:ﬂ = f{t5,y5).

The method (4.1.4) is very simple to program. It is known as Euler's method.
As a concrete example, consider

¥ =y,y(0) = 1, (true solution : y(t) = &*),

Euler’s method is:

y;’l‘Hh__ZfE = 4, y(0) = 1,80

Ynt1 = (1+h)yn and y, = (1+h‘)ﬂ'

Example: Recall that t, = nh son = t,/h. Then y, = (1 + k)™ = [(1+
h)!/W)En — etn ag h — 0 for 1, fixed.

If we take h = 1 (much too large for practical calculation) we get the following

n| 0 1 2 3 4 5 6
tn| 0 3 1 : 2 2 3
yof 1 15 2225 3.37h 5.0625 7.59375 11.390625

This has the correct general behavior but there is an error which, not surprisingly,

increases as we calculate further.
YA
2%

-

o -

!

Trwe solution
Viry = et

ReroreB. 1)

True Solntion us.

Eu\er APPW‘!W\E'\"{,
Solution .

—~0
’0'/

——

O Ewlev Acpprn\g{\M:;J\‘\ OV
e \\§~

aQ 3

>

Example: A Second Order IVP. As another brief example, consider the IVP
from Newtonian mechanics:

s"(t) = g(t,s(t),d'(t)), for 0 <t < T,5(0) = a, §0) = 8.

Let the stepsize h = T/N, t, = nh and s, be the approximation to s(i,).
Replacing derivatives by differnces gives:

S0 = &
81— 8
= =B, % s = a+hf
§ 1_25 +S-—1 8n — Sp—1
n+ hz‘n n = g(tn,Sn’J—hﬂh)’forn:Q,_”’N_

Note that this is again explicit calculation.

In both of these examples, it is not clear if the solutions of the differences ap-
proximations are close to the solutions of the IVP’s.

Example: An Implicit Method.

Consider y' = f(t,y) again. If y' is replaced by a difference quotient (as before)

but f(¢,y} is evaluated at (tn41, ynt1) we obtain the, so-called, "backward Euler”
method:

Y - .
—n:"l-lT‘y;ﬂ = .f(tn+1: yn+l) » Yo gven.

Note that to find the yy,4+1 we must solve the nonlinear system: given i1, yn find v, 41

Ynti — h'f(tn+11 yn-{-l) = Yn ,

at each timestep. This is more costly than simply evaluating f(t,,y.) (as in Euler’s
method) but it is not particularly difficult using the methods in Chapter 2. Note
that in numerical methods for IVP’s we always have lots of good initial guesses
for y,+4 including ' '

guess __

yn-{-l - yﬂ' '
* linear extrapolation: y547° = 2y, ~ gy
¢ an explicit method: ¥595° =y + hf(tn, yn).

We shall see that simple implicit methods can succede where all explicit methods
fail miserably.

Example: A Multi-Step Method

A one-step method determines g, from 1,. A "multi-step” method uses more
time levels. One common approach to deriving multi- step method is through
numerical integration. Integrate from t,_p, t0 fpyq

7

{Aﬁ-..,-.-.,___

EXQMP\L : S”%a\\o{ \\’\:\3 a—(-) E‘AP\{C;"\' VS, IMP\\“C\"’
M e Yo b

\/d\»:) wou\c& a\@d\/ut, wawk jc‘t:> Ser\r-«Q.
PEEPYC A TTPIN Sqstean each twe sp
uf?:\ﬂ.» (W*\A AW Q«xP\Ic'r‘\”' wuz_J()\mcD QO\J
o d st do = swaple cad el adton
A WAONVE 0\/\7 The ANA IR (g sk

expleiy wetods ave some fiwes
VA S“‘(‘&\o\q_ ‘gov \‘vx)t'e v u'\"\kj la m'g\e,wts !
T\AJL ng@ﬂx\" Q_Ke.m\o\,c; uol«m >

ANl octmr s

/
Y= Y S ve= A sdotion Vim0

v Ao V(£)y —>o©

!
-—\.\Au&/ Q‘l_*_.‘ﬁ aww._},\ Jh e arrm\-\mod(t.m
"ko U Y)mlq\a,w U an \b\s—\—a\\o{\i'\'l.
Comsiden M dwo Ealen wmeMuods s

as -\:-3boe_

E‘?_"'__"}‘_.‘Z‘_’_“.Pl-‘“ Y = Y\A"\'\/f\ Yn) YV\‘: (A"%"x}% ‘

Rackwarnd * \[M*‘YM"—E‘,)‘YMH ; Yh"(\-—\\&a\’“-

For M\ >o *\\A\CL o e

)

\oa o\rtw ouu; Ew\U-

m(a(arbx.\w\a'\'\w \’“"‘50
s W, L& s

0\\ wa ‘&S S—}c‘a\.\Q\a_ !

38

Yor ™ >0) ’*\.\L(ex 13\(::\‘\'} 'vaww:&
EU\.\—QJL- WUL%NO& (4 g-)ra\o\L \—Q— awu;u m\a
g |4~ Bl <A Thie o
eﬂ\/w‘vc«\w'\: Yo

A< A-8h< +L o “E\<%.
\

WV“S.('& Maw Qfa’h. coms-\‘owv\‘t)/}\ i§ \:e,\,a
\OW%@, (e.q. I/r\" lowo) *
K’:\:\AL Yvar SoluXiom \’[‘t\——“ﬁo Ve Lost
T Culn aFf\mvdw‘ﬂJ(W"\ Yo —> 00
APV Lo Vorry suaall [ea_Je\(S—!;J‘

31

| V@) = FEu®) = yltars) — yltnom) = f " () dt.

T m

If the integral is approximated by a weighted sum of function values

wﬂf(tn+lgyn+1) -+ 'wlf(tn: yn) +... + wm+1f(tn—ma yn—m)

a multi-step method results.

As an example, (purposely chosen to be an example of what can go wrong)
consider the 1-point Gauss rule (i.e., the midpoint rule):

/ T Ry)t = (smes — 5n1) ()

-1

This yields the two-step method:

Yn+1 — Yn-.1 = 2h f(tmyn)
where b = 2,09 —z, = 3;” — Lp_1.

This scheme is more difficult to start than Euler’s method (how do we calculate
1n?). It is more difficult to change the step size from ome step to another. On
the other hand, it is much more accurate - 0(h?) vs 0(h) and quite inexpensive.

¢ Unfortunately, it is also unstable!

To see this, consider the simple IVP:

Y =—ay, y(0)=1, a>0is constant;

the solution is:

y(t) = e =0, ast — 0.

Thus, any growth in the approximate solution is introduced only through the
numerical method. Applying the multi-step method to this equation gives: -

VA

Ynt1 — Yn—1 = 2ha yp, or,

Ynt1 + 2ha Yy —yn—1 = 0.

This is a linear, constant coefficient, homogeneous, difference equa-
tion. Solutions to these are known to be linear combinations of power functions
(yn = c17] + cor3). In the case of ordinary differential equations the analoguos
solution is y(t) = c1e™? + cpe*,

Substituting ¥, = r™ into the difference equation gives: r"*t1+2ghr*—r=1 =
or:

q0

r? 4 ahr — 1 = 0.

The roois Ty are

r1=~ah+/1+ (ah.)2,ry = ~ah — /1 + (ah)2

The approximate solution produced by this method is then:

n
Yn = 17 + cary.

Note that |71 <1 but ry <0 and |ral > 1. Thus,

[yl — +oo while y(t,,) — 0.

Exercise: Consider the last example problem:

y' = —ay,y(0) = Ly(ty=e™ - 0ast— oo,fora> 0.
Approximate this by Euler’s method and show Yn ~+ 0 az n — oo for A small

enough. Repeat this analysis for the backward Fuler method. Show y,, — 0 ast,, —
oo for any A > 0.

4.2 More on Eulér’:@, Method.

Euler's Method isn’t really used in any practical calculations. Still it is very
handy to use it to introduce in a very clear way ideas that are commonly used
for other methods in practical caleulations and in the mathematical theory that
supports them. In this section, we will use Euler’s method to show

¢ solving systems of equations is as eagy as solving one equation.
e roundoff error can be controlled in a practical calculation.

¢ convergence of y, to the true solution Y(tn) reduces to stability of the
numerical methods used-which is tested for y = —Ay.

Systems of Equations

Buler’s method for a scalar problem

y’ = f(t:y)

at its most simple might read something like this:

Ynew = Yoid B - f(told, Yo1d),
which becomes something like the following.

ALGORITHM: Euler’s method

11

T

FUNCTION F(I,Y) specified
Yo specified

H specified

TFINAL specified

You = Yo

T = 0.0

COMPUTE UNTIL T > TFINAL

(*) Yoew = Youu + H - F(T,Y54)

I'—<T+H
PRINT T,Yiew
Yolg = Yoew

4.1,
Exercise:™ Suppose we wish to change H step by step by some formula such as
Hyew = g(Hoa). Rewrite this algorithm for varying stepsizes.

If we are solving a system of equations with N equations the addition required
i that we must define Y'(NV), Yo14(N), Yo(IN) to be vectors and F(N,T,Y) to be a
vector function with NV components. The statement (*) is replaced by a loop:

For J=1,...,N
Ynew(J) = Yold(']) + H F(J: T} Yold)

otherwise the program is esentially the same.

It’s sometimes useful to write the aigorithm without indices the cage of the two
equations:

Z(t) = 9(t,2(),9(0), ¥ = ft2@),u), 20)= =z, ¥(0)= .

In this case the algorithm reads:

ALGORITHM: Euler's method for 2’ = g(t,z,y), ¥'= f(t,z,v).

13

J FUNCTION: F(t,X,Y) specified
FUNCTION: G(t,X,Y) specified
H specified
Xo specified
Yy speqiﬁed

Xotia = Xo
Youa = Yo
T = 0.0
COMPUTE UNTIL T > TFINAL
Xnew = Xog + H G(T, X,ld, Yld)
Ynew = Yoa + H - F(T, X,id, Y,ld)
T <= T+H
PRINT T, Xynew, Ynew
Xold = Xne'w
Yotd <= Ynew

- Control of Round off Error

| - Suppose we wish to solve

y(t)=fty) y(0) =y ,
for 0<¢<1,by Buler’s Method:

f(J—
M};‘—& = f(tn:yn) y Yo =yU:Nh:T'

At each step we actually compute

gn-{—l = ﬂn -+ h'Agn + &n,

where,

€n = round off error contribution = 0(machine accuracy).

The effect of the accumulation of the e, depends on a number of things, including

1. the kind of arithmetic ﬁsed,
2. the way the machine rounds,

v
a4

| P—

3. the order of the operations,
4. the numerical method used,

and so on.

If, for example, the error is additive, then the total effect of rounding error is
going from £ =0 to £ =1 is 0 (machine tolerance *N) = 0(%).

On the other hand, a stable method applied to a stable problem may not expe-
rience an additive accumulation, only a loss of accuracy of 0(g). The effect of these

roundoff errors on unstable methods or unstable initial value problems, however, is
catastrophic.

One way to control the effect of roundoff errors is through partial double
precision accumulation;

(i) Each y, is stored in double precision.

(i) RhAy, is computed in single precision{only the single precision part of
Yn 18 used for function evaluations.)

(ili) yn + hAy, is formed in double precision and stored in double precision
Yng1.

4
Cost: Ouly 1 double preciEgn sum/step.

Notice that we evaluate f(t,y) in single precision and form the sum Yntl =
Yn + hAy, in double. This is very economical and minimizes the roundoff resulting
from addign a large number to a small number (since g, + AAy,, = 0(1) + 0(R)).

e Ho .S | |
._C_ON\P‘I;E& iKEE 'Zm_qfé ME'\'\&uc‘ (Fm\irﬂ,\m\ Ugg 1—\' —\1, go\v.g_
\/’CQMZY nam&"* —~ 09 7-4') ovd + 4, How does H evvor
- >

o B Bxed Woas T Ee werases 7
e

45

Convergence of Euler’s Method. Let us consider again the scalar problem:

y' = f{t,y), 0 <t <T,y(0) = yo,
and Euler’s method. Pick 0 < h < 1 and compute:

Yntl = Yn + h.f(tm yn): tn, = nh.
Theorem 4.2.1 Suppose y” and %5 are bounded:

o<y Lgenist frosisr
Then, the error in Euler’s method satisfies:
ly(tn) — yn| < hwlf—[e“ —1] ,for ¢t > 0.
iz} 2) — a—L)
Note that this implies:
e the error is O(h) as h — 0.
¢ the estimate of the error increases exponentially as we leave ¢ = 0.

This last effect can be pessimistic. In the first example with Euler’s method it
did, however, occur. We wsil} e o detaniled fﬂ“g of Hats Meorenn iw Sec_-\-im'-\-':’:’
Systems of Equations ‘
The problem with any first order accurate method is that it is very hard to
get more than two significant digits of accuracy before roundoff error swamps the
calculation. To attain higher accuracy we need a method which is (of course)
stable and whose local truncation error is 0(A%) or smaller. Just as in numerical

diffrentation, truncation error is assessed by a Taylor series calculation with the
true solution.

Let y(t) be the true solution of

(4.3.1) y'(t) = fty()
Expanding y(tn+1) = y(t, + h) in Taylor series about
Y(tnt1) = y(tn + 1) = y(tn) + hy' ()
h2 h3

(4.3.2) +E~y”(tn) + Ery'"(tn) +...

Interestingly, all derivatives of y can be calculated from (4.3.1):

16

(y’(t) = fltn, y(tn))
y”(tn) = gg[f(tn:y(tn))] = %{‘(tn:y(tn)) + %(tmy(tﬂ)) Y (tn)

= fﬁ(tﬂa y(tn)) + fy(tm 'y(tn)) f(tﬂ:y(tn))-
| y" (tn)) = gg[ft + Jyfl = [Fos =+ 2fsy f + S £ + Fefy + FoF)lbn wien)

and so on.

This expansion is most important for deriving good higher order methods such
as the Runge-Kutta methods of the next section. It can also be used to generate
methods that, while higher order, are too costly. Here are a few examples:

Example: Euler’s method.
If (4.3.2) is truncated after the 0(h) term we get:
Y(tns1) = y(tn) + hy'(ta) (+0(h?)).
Using ' = f(t,y) gives Euler’s method:
Ynt1 = Yn +hf(tn,yn) (+O(R?)).
Its "truncation error” is, 0(h?), and its global error is 0(k).
Example: A Globally 0(h?) accurate method.
Taking one more term gives:

ins) = lta) + By (6) + g/ (t) (HOU)).

Using the above formulas for ¢ and g gives:

2
Ynt1 = Un +hff(tmyn) + %[ft(tmyn) -+ fy(tn:yﬂ).f(tm yn)]a

which has 0(h%) local truncation error and 0(h?) global accuracy.

For scalar equations, this quickly becomes too expensive as we seek still higher
accuracy. For n x n systems even the second example is too costly, because [y
is now the n x n Jacobi matrix. Evaluating f,(,,ys) thus requires n? function
evaluation! \quy

Exercise: ¥ It is instructive, although painful, to calculate y"”(t,) as above.
Equally painful is to write down explicitly a Taylor series method for a system of
two ordinary differential equations. Frwd the W) accurate Tadlw @A (e
method Lor W=fk xyy, yl= 3(%,‘#:‘/)-

A%

I

» ‘_Wij e i Wé&&fgﬁ v AULJCYAKM

%‘Jvﬂ)og J\ “\'\M rd\/\uéz&.mm “‘\';‘ZM_MMA %f\ﬂmq .,]

' Lr[\k- Dmmo-{1 s wr*e;\m-\ﬂwf \QQLM-W& t:\‘ &L&gwi e e e e e
"‘“\&k‘ (N O (LML L)nam; !ﬂu a. {mm U ey

— SJS,’CMAM - m_wmud; %« Fwo. m&u ,,,,,,,,,,,,,,,,,,,,,, .
Y o -emm +o vem&.q (or_ Swow falsel)

() gimmmtb S TR vw%uﬁ \/wu\

Tau\w SEAILSS | TR M.HCMQ&C mmmmmmmmmmmmmmmm

- d m&%@)

(. ey \’ A f—ar He lwamn / Conarraud
Coeiffr\‘wue,uj‘ @W?Aﬁm

CV**" L&M——Y y LY _constanty,
M‘XA\S e VM\\RKLJ 1’31 ‘S\w»m\m \%«C\&&?Q\IM@ .
jr\m Ve CUASTUA (L OWA \w -Cmm _ﬁh#mﬁ&w_lﬂw_m _______ !

T\m& VQAU(‘_,)(\Q\/\ 55'% A A\‘Q‘ffcui&* \OVC&-
S ;c’.i SS Q.a.()i \QJW _,m:;vg \MM JL_W LM&&&&A&L_ 1vx+ Q|
wodn

.")t:wm rou’*\(’\m&_ /X1 Cabl)Lh a*\".?{swi LS
PR = w AT wwesw G

) 5\’&\0\&(‘“ “"r (owsx&{@uﬁ.(m “—%) CQMW&W&

it roem A sesiare el

j

a8

ke

L Pl L Theorew Uz

= - Q o L wawm TN

.VQ.VU\ m’\“everhj ke camse 34 Lvmi{s down |
F'A"'a +io se 239

e iﬂ%ﬂ"@b&ﬁﬂ,.j;_ j’H/\L locad :}:mmudtumw eVyor =20 ...
(23]/\ -2 (.

7 Wﬁ) Q\)r "HM- l‘w .Lmy{-v\v.\’*' C&&—%c&uﬁh

pablewm = yl= Ly L8 (1 £ wnstonk)

A s a2t i sl o et e 1

E‘ﬁc-/lr\ O'I: ‘I'L\e_\:—e. C‘ax;\. L.\e Qm%xi\ﬁ C_LQCL(&J lma’l\/liud\i

0 'C‘il'e” "H" 'y L‘(-Lcomn. esthioa 11 de Sc%mlaaalm [Z.L, _,._ l

- o e —

) Sy‘k‘a\a ‘ “‘ "*‘ (,owa\(“)Qw > Cd“'“i_@’\ EAACK L

L %&Gﬁm WJ’ ._ ‘\& o \Q%M—H&L?,moﬁ

34& j_ 05;; QJMSW\;@MCQ _h JQ . w{ - w
A Q"g emuﬁ. _ eﬁ/m«hm —@sr ‘HAk C¥vor,

LT b slehon Y sm«rtg.__«@;@{f'fﬁ"fjff_".f

— \,L(—HM IR RS UCRIEL WA TAN
e rgowe S Lei—w%m ,+w wt{m,

"[‘wm%@_ s Y-V, we shbud:

- I

yd’mh) ~ \/ d’m) ’l"e\ '? o Jy('!é'h)) + .= yi}{g"&)

\/V\—H ~ _/ivx + /EA Y; (JCM, | Yh}

Sy = tn +RTEM o) - Fon ga) 18 YD

St h2 Conveat 'HM'S.‘ Yo o linean irdM..SZ\"aw_;i;)
: _ (ne-@'f\:;'ciau& y d\@"\:eJ\MML \Mﬂ,qvudr\h i

N WS uses Yo Ywo asaowed "oodw% Y

SR e Bt cwe U S Y Conetnd)

\ -{"‘%L‘ ":\l‘ (gn') \ = %«Y \ gor G, A,

b LW TN

;\lt’tml‘sﬁ‘km\\, — 'P(%v\ '\:.\5“3“"' - «%-é% ('tuﬁvx\) (‘:\J L%“')*:S‘c)w’u*w

V“’%\QM. i,“ 18 (\cﬁtv\U‘P\M/_) umkmom POM‘\!‘ _\oakw%h

) {
}jh e *ﬁcfm\. A \wf:;\iem A \mqvw-i\ o

YO S TR G MR A

bk o called o “Lipscite codibion o §7)

WAz |

L: wAz K \%35‘; \.
|00

..... ;7 } . U =g Heose {(M’\” ‘ et e. iﬂod_\@@nmﬂ WL e :

e VWA ._mv‘fai‘tw uven

Lol = Lol + A b yoy - Sy |

AR I
= ‘e“*kL\em\ N EZY ;

.L"f o o\\li’ cj\j‘ Vot “\'Q/\,W\ -)
/ %
leand = (b ten 2¥Y.
N @M&wh Aats com ‘% et Row an o

| ‘ E“M ‘ o ‘ e ‘N.m\ '4 PR, TN i,_:,:.:._:' e e e s i et e < 1 1 AR, S e or ¢ e s :

" MSO \"‘\' ‘o Jx;) mu- E*«&Us o taod Qw —

v

\/ L7+ L e lask s M‘nm_
S-\Cc;b\\ J(:) og ﬂAﬂn AQ\A“‘HA\S eﬁ/mi‘rd/! e

ol

————— (‘ } "
P

TSkt Ue Skbid b beed e 00 .

Q.(L Etﬁ—\\\ l\em \ 5;:#3(‘:3. Q\@A "
ol=o owd
\EV«.-\-_\ = (\’\”E\L \’eu\\ "“(j/: ; g\,_ V‘\:;C))\JZ} can

M AAs. "’Jﬁac i.’)o b:‘-.\\/;LL man_; (=] rl{awcrt_in. m . 5
Mﬂ)(%h;é\m A F\)\ve,c.‘\‘ es san ! ;
| @@ck&er\g "'\‘\'\\.5 H/ULW s.m.f\ {14 ﬁ\wﬁx 4

clewt = (W) (@u (YT Ao leen) sl +4 E)

s

(i%—\/\L\Y (1xbL) \ewa | A.Ll«ii ,\”L"‘" g

a

(ke = (43hlyieus| A ¥ 7)

o 7Y lﬂ—‘

< (Qrhi)les) « 3 L) =T

%WL{A €, o '*\‘Lt (4 ﬁw\.e/ai

A=\

leu| < ._,2‘3_‘ j_ L*%\’L)

T Mo L Mmo\f\ oM
; "T\/t (< ﬂ“ LA %lu S0, s ﬁoomﬁﬁ an m.\o e
S0 we Wil ek g vops

: j @ﬁ%ﬁhf%éﬁfakmﬁﬁ

o \eaml = Gabl) e} x5 Y

CAV) LU im?)Y\/\.&?\\‘Q VTIPS Lo cj L

e H_MM‘?V‘&%@)(S o
|] $, = \edl

k= oY

ff : (,TJL‘ ‘S Vs, QﬂiﬁH 3_5 AL S mﬂ’@m:ﬁ ‘gw e |
bl La¥Y |, ¢© r—*\@‘i“wj S

A b o s

'; \,GLﬂvvwhﬁh ' l E?v»\ < AF%A £3£>V Cvea . N,

. - o o
N FVD°£“W_\M>»t: A New Sawepls \mAm.hwawmﬁmMﬂ

Mra\\%\wﬁr fomded ot solee e
. W&} . %ocﬁfxii&gug&@/‘f& & e

R T
N &:;wu“ b, 2, @m;’“{i

J=o |
L s we g =57 (LY

ez

SXp Y _ Pt éﬁhmm [AR %@a\@\&.&m.

Cﬂ\'\‘:';.wﬁ&z\ O uA ww(}uw-oﬁ

b mﬂ{i’ £ R‘
len\l < B Y . el

j\ gy

l’5'[\f~n. W\w&*ﬁl Senten (o M2 sommweed @G
oo

/lM& M\VM

e

lenl %.i (U+ﬂL;)g mmmmm - :.L \,_ Y(L\%«}):_L‘)

S Se Wk

(:Lf‘(\,i_) < e

Aty ¢ e Bcall Mok tamuh.

T\A{-B c‘& L=

| » o JE
lew] = B Y (=]

PvoNuag .lglmvg Moeqom. =

4.4 Runge-Kutta Methods.
Runge-Kutta methods attain the high accuracy of Taylor series methods without
needing derivatives of f. The simplest interesting R-K method can be derived as

follows. Suppose we seek an update formula of the form:

Yntl = Yn +a ki bko

where

(441) kl = h'f(tnvyn)&

k2 = hf(tn + ch,yn + Bk1)

We determine a, b, o, 3 so that (4.4.1) will agree with as high order Taylor series

method as possible.

Expand:
? h’z I h3 i
y(tnﬂ) D= yte) +hy'(t) + ‘é‘y (tn) + F'y (ta) + ...
= y(tn) -+ hf(tn';yn t ffy) (b rtim)
h® 2 2 4
(4.4.2) + ’é"‘(.ftt + 2f foy + fuu F° + fofy + Fy It ga) + 0(RF)
On the other hand, another Taylor expansion gives
ko
"E = .f(tn + ah, Yo+ Bk1)
= f(tmyn) + ahf +ﬁk1fy
a2h2 2k
+ foo + ah Bkify + ﬂ * Ly + O(R®).

Insert this in (4.4.1) for ko, and use k1 = hf(zy,¥,). Collecting terms gives:

v
Ynt+1 =Yn +(a+D) hf‘l‘l:%f\aft‘f‘ﬁffy)

2 2
(4.4 A0 (5 fu+ by + P) + 0%,
: 11

105

ol

The coefliecients a,b,c, § in (4.4.1) are chosen to make (4.4.3) as accurate as
possible by matching (4.4.2) as far as possible. This gives the equations:

(4.4.4) a+b=1 ,ba=bf=

[SR

This is three equations for four variables. Typically, there are an infinite number
of solutions. One commonly used parameter set is:

1

— b —= — = =
l\\!‘\-\/ a 510 g=1
Exercise:Y Verify that one further term cannot matched.
Any of the solutions of (4.4.4) gives a second order RK mewthod. This last

-solution is often called "the” second order RK formula:

Example: The RK2 method:

Given h and y,, compute :

k1 = h'f(tn: yn)
ke = h'f(tn + B, yn -+ kl)
1

1
2751 + §k2

Yn+1= Yn +
The local error in this method is 0(h%) and the global error 0(A2). It is also quite
inexpensive, costing only two function evaluations per time step.,

There are, in principle, RK methods of every order accuracy. The most common
ones are the RK4 method and the special RK-F methods of the next section.

Example: The RK4 Method.

Given h and ¥, compute:

ki = h f(tnayn)

ky = hf(tn‘[“%,yn‘[‘%kl),

ks = h f(tn -+ %h.,a Yn - %k2):
hf(tn"'h': yn+k3)1
Ynt1 = Yn + g(ks + 22 + 2k + k)

RK-4 is globally fourth order accurate (0(h*)) and costs only four function eval-
uations per step.

&
fl

The higher order RK methods are fantastically attractive in that:

e they are explicit, one step and high order methods.
* adaptive error control can be done easily and efficiently.
12

106

— \v\Su‘\’ o ?"Vzm“

A Consin N s panddion St =0,

el=y, o' = mem\ﬂl- W=l aud

et e o

o i

Cona n V\‘\&. OV G‘\Qﬁ W\MLF\'\UV\ "l’o @(:{,j

vng REZ () Wath Mo BEZ ddeordbaun

fQ,w- @ Sgr\:mm a’{— o eq Srr TV \u'\

?C?u (&Q { &-AL_ .

 YHalomparie Exspeise
RudngT&W \«pvw’ fm\eu M!Z_‘H’A.ace PNc:,.raw\ Cowp@
. Ok)r 8&6\" S)Cib \orpm Yo Culeas M!L'Hﬁ-u appv‘vﬁ’wwa 1A
avtcé\ -P\«L RKZ amrvx-maq’lw‘ RrLﬁ”*’c”ff*)r -}M
_jm\c,mf\a'\’uo\n Moo o\uo\ Vedwe of Mo \wean Demdoluw\
'JYc'w cL:a 3&-& msuﬂt (o pare. for eaeln 'l“m
&&& o cAdudodon of q'\ﬂk -Eo\lowuw es+qua3cp.
— (:)L jr\ul— AL AL, S V.
| Estto= Y 1% |
. N\—\owc\a&e e -W.ss __‘E: e '\‘r% eveoy !
WE.‘- e O S
R A

Their only drawback, which we will see later, is for so-called stiff initial value

} problems. ; \“2)\‘\" WAL &
The Runge-Kutta-Fehlberg RKF Methods

Runge-Kutta methods are explicit, simple, higher order accurate, one- step meth-
ods. Thus, they hardly seem improvable. However, they are at least two very
important further developments in Runge-Kutta methods. We shall sec in a later
section that diagonally implicit RK methods are an important tool for the types of
problems (”stiff” systems) upon which all explicit methods fail. The other impor-
tant extension is the RKF pairs.

RKF formulas are, like RK methods, high order accurate, one step methods.
They also give an automatic estimate of the local error at each step at no extra
cost. Recall from the section on adaptive quadrature that the most basic way to
estimate a local error is to compute two approximations of different accuracy. The
number if significant digits of agreement is a conservative estimate of the accuracy
of the less accurate approximation. (A more careful analysis can, as we will see,
produce an estimate of the local error in the more accurate approximation.)

The brilliant idea of Fehlberg was to use the fact that the nonlinear equations for
the coeffiecients in the RK formula, like (4.4.4) have an infinite number of solutions.
He found pairs of RKF methods where the function evaluations of the lower order
ones are used again for a higher order approximation. Thus, one can compute a

) lower and higher order approximation for the cost of the one higher order one alone.
i . The most popular RKF formula is the fourth and fifth order RKF pair.

ALGORITHM: The Fourth and Fifth Order RKF formulas.

These procede as follows. Given y,,, compute a Yn and F,, by the following fourth
and fifth RKF methods:

k1 :f(tn:yn):
h 1
ke =f(tn + Tt gh k1),
B =F(tn -+ 2By g+ B by + k)
3 =J\in g 1Un 39 1 35 2]),
12, - 1932 7200 7296
b4 =Fn+ 5P vn + R(Grgehn = grgehe + g7g7he)
439 3680 845
and
1 8 3544 1859 11
ke =f(tn + ih’y"’ + h(“'é?kl + 2kg — 2565k3 - 4104:164 - Eks))

After these six funtion evaluations, compute

{{) 13

lo3

2b 1408 2197 1
Ynt+1 = Yn +h[—k + ks +

216 2565 4104 Ek5]
16 6656 28561 9 2
I 9, L2,
Uniir = Un+hlgschs + Joorhs + ks — ook + pokol

This requires four function evalutaions to get an approximation yn..1 t0 y(tny1).
With two extra ones we obtain a higher order approximation ,,., and the following
estimate of the.local error a : ' ;

1 128 2197

36071~ 4275 % 7 75240

— yrieAk
4.5 Adaptive Time-Step Selection.

- . 1 2
Yn1 — y(tn+1) = _h[kqy + 'g-é"kz, -+ ‘ggk(i]

This chapter stresses one step methods over (often more efficient} mmltistep
methods because of their ease of use in an adaptive program. The modern view of
scientific software is that a program should not just compute a table of numbers
?approximating” something. It should compute an approximation with guaranteed
accuracy! It is, of course, possible to use multistep methods adaptively. In fact,
adaptively variable step and order multistep methods are near the leading edge in
initial value problem solvers. Nevertheless, one step methods are quite efficient and
the ideas of an adaptive program based on a single step method are very simple
and clean-hence our focus on them here.

As usual, adaptivity needs two ingredients : a method of estimating errors and
-a strategy for changing the step size in response to those estimates.

Estimating Local Errors

Suppose we want the global error < £,6.8.,

max |y(t,) —ynl <e, tNn=N-h=T,0<t, <T

then we wish to make the local errors/unit step < Ne. So we must estimate the
local errors.

Example: Euler’s method.

The local error is given by

(4.5.1) Ep = %hzy”(é)

s0 where y'' is large we must take A small and vice versa. We can estimate (4.5.1}
directly since

y' = [t y(t)
¥'(&) = felt,y(t)) + Fy (& y(0) £, ()

14

o9

— \b\sak M P*lq"'"""

R a8 4 o 51 AR e 3 A B R e et b - a2 et g 7 AU P U 7 OO DA S

i

..;_M_M_u_.w i E AC CCASE,

FU»LLI @Xwd _an et L Yl sleove

K i< ymv AV K K i ('%v&w@ I

el) and REZ = Ly

Uo) kono&'k (&) —Eav” i %wbﬁw d/\ uo

eqvm%@vxs ®= Lo, x N_, \ﬂﬁv ZIAINAY

e 110

T

"Thus given, y, = y(t,,} we pick hy,eq such that 202 o (| Filtn, Un)+ Ly (s Un) Fbny tn) |} <
Ne and calculate yy,,..1 2 y(t,, + hpew) by:

Yn+1l = Yn + Bnew f(tn: '.'/-n)-

This method doesn’t work well for systems of equations or higher order methods;
e.g., for 2nd order Runge-Kutta the local error is

§h L5 G+ 26y 1+ = fo = 1)

which is not so easy to compute. We usually settle for a more easily computed
estimate for the local error. We now consider two methods for doing this.

Method 1. We calculate an approximate to Y(Tnt1) twice, using a method O [)acewate
ona an 0(h?) method ¢ > p, giving Unt1-

The first local error is expanded by Taylor series as

By = 1hPTl 4 0(RPH),

and similarly Ej ;. Ignoring the error at %, (i.e., assuming y, & ¥,) we expand

Ynt1 =Y(tnp1) + T hPTT 4 O(RPTE)

Tni1 =Y(tng) + Tuh?t + 0(ATT) | cobdvacy
Yn+1 = Upi1 =T — Tah? P)RFPHL 1 0(RPTE), ¢ > p,
Ynt1l —Unp1 = @ffi + O(hPT?), (recall ¢ > p).

E{ . ¢ leading order term

Thus, if p < ¢ we may take as an approximation to Ey g

Ei 2 Yptr — Tner (+Higher Order Terms)

Sl .
Exercise:&\fflf)p = g we must be more careful. Show that we can estimate the
local error as

Ep = (Tn/(Tn — 7o) (Ynt1 — -@’_n-l—l)'

Example: Fourth and Fifth Order Runge-Kutta Fehlberg formulas
} 15

Y

25 1408 2197 1
Ynti =Yn + k1 + S —kg + ks +

216 2565 4104 5k5]
_ 16 6656 28561 9 9
=ty + Bk b kg — kg + —
U1 =t + blgzeky + oooshs + 56430~ 55 + g5 kel
where,
k1 = fn)

h 1
ky =f(tn + Ut 4—’1’“1)3

3 3 9
ks :f(tn + ""ha Un + h(_kl + Ekz))a

8 32
12 1932 7200 7296
ki =F(t — —
8 =P+ b o+ h(Gr ks = Sreoke + Sromks)),
439 3680 845
ks =F(t skt S -
and
1 8 3544 1859 11
ke =f(t —h _ — — =)
6 .f(n+2 sUn + B{ 27?614-2392 2565k'3+4104k4 40k5))

Using these, we have an estimate for the local error in Yn+t1'

oy

1,128 2197
360" 4275 % 75240

1 2 _
ka -+ B“O-ks + —5-—5]66)

Ynt1 — y(tn+1) = Ynt1 — gﬂ,*i—l =—h

Method 2 In this approach, we compute two approximations to y(t,.1) with
a single 0(h?) acqurate method by halving the stepsize. Let

Yni1 = y(tn~|~1) + Tnhp+1 + D(hp+2)0
M\P\r\e.m‘ MU Yoo, O tompeted wth Ao she ps of size \"/1 !
_ h h
Unt1 = Y(tni1) +2’Fn(§)p+1 + 0((5)%2),
P

Thus jwe have by sWhtvickion Yar = Yougy = 2T (B) {27 -2 + HOT, ads

o eyl . 1 .
(4.5.2) £Tn B = local error in 3, 2 W(yn+1 ~ Ynp1)lr \x&hm ovditn- Xerus),
This method is particularly simple and produces an estimate of the error in the
more accurate approximation.
Step-Size Control

Given an estimate of a local error in the n®* step, EST, the strategy is to keep
the local error per unit below the preset tolerance by cutting h. If EST is so small
o) 16

12

T

that A can be increased and still keep the local error per unit step smaller than the
tolerance then A is increaged.

The simplest implementation of this idea is mesh halving and doubling. Suppose
we are using an 0(h”) accurate method. Then, the local error is 0(h?*1) and if h
is doubled/halved the error in one step is changed by 2741/ L. Given our preset
tolerance Tol: we compute ToL/ = ToL/2P+2. We seck to maintain:

Tol' = ToL/2%12 < —E; < ToL

There are three cases:

Case 1. Tol! < E—;fi < Tol.
Accept ¥, and continue onto the next time step with the same h.
Case 2. Est > Tol.

The error is too large. Return to (f,,4,) and reduce h,say h < %, and recompute
Yn+1.

Case 3. E—,f’i < TOL.

The error is too small so the program is performing more calculations than
needed. Accept (£n-11, Ynt1) but an increase h, say h <= 2h, to compute ¥, 2.

Remark. It should be clear that we don’t have to restrict the program to
mesh halving and doubling,.

For example, suppose we compute one estimate by (4.5.2) by computing
¥n+1 = One Step with O(h?) method with At = A,
Yn+1 = Two steps of O(h¥) method with At = /2,
EST(¥,,,) = Iﬂnzi;.;-i-zinlwl.
If the local error in y,,,; is

Y(Ent1) = Yntr = CphPTl

then the local error in %, +1 18 roughly
_ , "
Y(tnt1) = Tpyr = 20 (5P = G, 2272

Since the local EST (¥,,;) is computed, we can get a rough estimate of the
unknown constant ”C,.” in the above:

»+1

EST(yn+1) = Cnh_;,)ﬁ" — Cn = T,,'%:—T EST(§H+1)

"To pick the new stepsize hpeq S0 that the new error per unit step is roughly ToL
set

New Error - 2 Ch h'?v;ig = Tol
New 8tep = Apen 2Pt — '

17

I3

Solving for Ay, ey, gives:

hinew = 2[T2L]1/P = 2z st

Simplifying gives:
hnew = hoi,d[hold ESTC;i_'_])]l/p
4.6 Stiffness and Implicit Methods

We have seen that explicit methods(such as Fuler’s method) converge over
bounded time intervals for A small enough. This is certainly important but it
leaves open two unanswered questions:

® How small must & be for the error to begin decreasing?

o What happens to the error and the approximate solution as the problem is
solved over longer and longer time intervals?

Numerical analysts search for the most simple example for which these two
questions are interesting. This test problem is:

(4.6.1) y'(t) = +Ay(t) ,y(0) = 1, where X < 0.
The solution is:

y(t) =e =0 t— oo

The more negative X is, the faster y(t) — 0. Thus, any growth in an approximate

solution to (4.6.1) is a serious error. More generally, we can consider the test
problem (4.6.1) with

Re(A) <0

gince then too

y(t) = e = PN (cos(Im(N)E) + sin(Im(A)t)) = 0

a8 T —+ 00. Let us consider a few examples applied to (4.6.1)

Example 1: Euler’s Method This reads:
yn-t—lh_ U =)\yn: %o = 1,

or yp = (1 + hA)". For |y,| — 0 as t, — oo we must have |1+ hA| < 1. If X is real
this means —1 <|1-4AX <+1or:

~2<hh<0 , for X real
18

LY

e
—

If A = —4 then for stability over (0, c0) we must have

h < % for stability with A = —4.

This is no serious restriction. Consider however \ = —1000 the true solution is

e~ 19%% It approaches zero so fast it isn’t very interesting. On the other hand,
Euler’s method requires

1

' o g . - _1 .
h < 500 for stability with A 000

If b > 5—(1)0 the approximate solution will blow up exponentially as £,, — oo!

The bad side of h < & is that we are forced to pick a very small stepsize for
stability rather than to attain a desired accuracy.

Example 2: RK 4

By a similar calculation it can be shown RK4 will be stable as t, — oo ift

—-2.8< hA <.

The RK4 approximation will blow up exponentially if A isn’t small enough! Thisg
blowup is espcially common with the systems of equations.

Examples:Consider the second order IVP:

y” + 1001y’ + 1000y = 0 ,»(0) = 1,7/(0) = —1.

The solution is

y(t) = Cre™® - Cp 1000

where C'; 5 are picked to satisfy the initial conditions. If this is written as a first
order system: (y1 =y ,y2 = ¥')

Y1 =12 y1(0) =1
¥y = —100Llys — 1000y ,y2(0) = —1,

it can be approximated by RK4. The RK4 approximate solution will converge

nicely if & < 0.002 and smaller and blow-up if A > 0.003. This system is said to be

stiff. It's stiffness is measured by the eigenvalues of the coeffiecient matrix:

—-1000 —1001

This is typical behavior of a numerical method for a stiff system: the scheme
blows up and up and up until the mesh width is reduced to a ridiculously small
size. Many implicit methods, such as the backward Euler method:

19

s

(0 ;)) /\1 = “1000,)\2 = —1.

Backward Euler: y—"t-}fﬂﬁ = Fltnt1, Ynat),

are stable and convergent for all mesh sizes. On the other hand, at each step a
nonlinear system must be solved.

With these examples in mind, consider a one step method applied to (4.6,1). The
one step method produces an approximate solution Yn = " where g =
B(RA).

Definition. A one step method applied to (4.6.1) is

¢ strongly stable if |3| < 1 for all negative real X
o A-Stable if || < 1 for all complex A with Re() < 0.

Definition. The stability region of a onestep method is the region in the com-
plex plane:

{z : 2z =k and |B(hN)| < 1).

For stiff sytems, it is clear that A-stable methods are the ones that should be
used. Unfortunately, there are no A-stable, explicit methods.

Theorem 4.6.1. [Dahlquist]

¢ There are no A-stable, explicit single or linear multi-step methods.
e A single or multi-step method that is A-stable has at most second order
accuracy.

o The A-stable method with the smallest truncation error is the trapezoid
rule.

Example3. The trapezoid rule: If we integrate (4.6.1) from ¢, to tnt1:

tn+1
Unt1 —Yn = / Ay dt.
t

n

If the integral is approximated by trapezoid rule the *trapezoid rule” for numerical
integration arises:

Un-t1 + Un)

2 :
For the nonlinear problem y' = f(Z,) there are two natural interpretations (called
a "two-leg” and "one-leg” trapezoid rule):

Yntl — Yn = h '\(

yn+1h— o = (f(tn:yn) + f(tn+1:yn+l))/2 3 (Htwo - leg”)

Yn+1 — Un _ f(tn i1 Yn t Yngt
h 2 ’ 2
The trapezoid rule has some amazing properties. For example, its stability region
is exactly the same as for the continuous initial value problem:

Y, (Yone —leg”)

{z: Re(z) <0}

20

W16

Fxaw ples
i \

} = TL\L s {_5‘\0‘1‘) !)'3 V‘eﬂ jang [l E Ki {.wlﬂl‘c;[» V3
E\A\UJ WUL'HAUJS / Ryz W3 (whidh we lhore ot
c\er\\re..cl}) o & RKL\ Cov ‘De. c:\erw&c% ap pluiiep

Y= Ay gest, A= ey

Thae S’*‘Q‘\o\(‘\ﬁ vefon (s Ha ced ol 2= e ¢
soch Yeak He BX &fPV‘OK\W\a‘)ﬁO\/\ = O ag tumoo,
Tw.se. Coan lae; e,a‘;“ C.a-“\\ C.U\\G\"\'ec“ (05\ Ma\(s\L
QDV Lt avn FL{) +5 ke_b \ \8

Fiﬁuﬁ‘c P il\-a\,a\\‘)rﬂ F WAL Y g’\’a\m\@r)
@er\:s\rm o Rkd=" YT%_\’U'\A_ £ Rk? 3 .

Ev\ U\hi l’U\L)(\Wc\ -

L

34

F-\aw\i‘ gj(a\o\\\‘(’
regvaw o Q}é

Fi&or € s
g’t‘adml\ls Veg ton 4 ®hu,

Yo
R

There are other good choices for stiff systems - the ” diagonally implicit Runge-
Kutta methods.” These are all implicit methods. There are some interesting pos-
sibilifies %)(solving the associated nonlinear system,

— i GeA PoiR WL &=

Solving the Nonlinear System

Suppose we are solving th IVP

¥ = ft,¥),0 <t < T,y(0) = yo,

by the (for example) ”two-leg” form of the trapezoid rule:

Ynal — 1 1
"‘+—1h“y—n = Ef(t"’ Yn) + Ef(tn+1:yn+1)'

At each time step step we must solve the nonlinear system

(4'6'2‘) F(y) =y- %f{tn—i—ls y) = Yn t+ 'gf(tmyn)'

for y = yp41. One simple method is to use a simple iteration:

ow N o h
(4.6.3) Y = S F b1, ¥ = yn + S F (b).

and, upon convergence, set y,,1 + y™¥. If h is "small” enough this is often all
that is required.

Theorem. Suppose f(t,11,y) is Lipschitz continuous:

(4.6.4) [F(tnt1,9) = f(Eng1, 2)| < Lly ~ 2],
If 2L <1 or, equivalently,

L
h _—
<3

the simple iteration (4.6.3) converges for y,..1 for any initial guess.
Proof: This follows from the contraction mapping theorem applied to (4.6.3).

The simple iteration (4.6.3) requires an initial guess and a stopping criteria. We
can begin with y°¢ = y, but it’s better to predict y,; with one step of an explicit
method. The stopping criteria shoudl be a relative one since solutions can grow
or decay exponentially - hence are not 0(1). The combination looks like:

Given y, and stopping tolerance 7'0L
Predict yq?;.z-f-tl =Yn + h f(tn, Yn)
21

119

—3 Wy o poyt 2\

' e Exeectaes

”(ai (onsidun b = —lo “1 Y £0) A

f g\/\om Yk Y. W%C;B s koo

e e e e AOE) Wede dowm '\'\{L RKZ ep ﬁmtwﬁ?ﬂ“\

e i Yo A ﬁ'ﬂa G T\ wm‘l &\mw '\j\mj '
\V \f—‘%Q cm n=> m® \.Q b ts smal)

E',\Aoua\;« bk \Yu\ ap N TR0

\j; \f\\) '\‘Qu \&ch;ﬂ

UO) \'XOV.) BW\.O\\\ R] ‘ 'L f &VM.G\,_\ 'GV\O'\J‘;}’ ‘L“?:

— MLJ (a J&J\QLP&LAAC_ .?\Cé\flﬂw& A g-u\ ;\'\WL («’V‘E.At c%‘ov‘ (ov v‘&c:l’@r

‘i_
— !

= Yo Wlioyy,

Yo =y et &l V) 30 S, VLD |

: (i’:") \Ow\l &owm a ﬁseuﬁn code V‘LA\‘&&(W ﬁ{\
‘*\msm e Yuod Lo Sy

= £, %0y, v/-~ CM% XN) | o

wWHJ,?;WCOV\,sf&MW\)\AL e _g»eamcg AR N AR |- i{j B

Yy, ?,k Lo Yay +@(m‘, \/w)=

-ng = L\o@ M \ ‘_\, 5 53‘.@ " —3‘:-\ fj 53(-&\0\&

L{ L L\ am f)véow ﬁ gor’ jr)w., \an}z;&m é,,,,lﬁ/\ MM
.

&jYVD isiCﬁ\OL v AWM Q\r)romj{—/ e

e

Compute
new

Ynt1 — % f(tﬂr+1: .Uﬁlfl) = Yn + %f(tnayn)
Stop when:
ly,'ii“i’—yffflf < TOF
st
Such a process:
Predict with explicit, unstable method,
Correct with implicit, stable method. _
is called a "predictor-corrector” method. This particular combination is known as
"modified Euler”or ' Heun’ methed” if we stop aler only A covvection step.

The above combination can still fail to converge for "stiff” problerns. Reconsider
! *
¥ = Ay, Le.,

f(t,y) = Ay — Lipschitz constant = |Al.

I A is large and negative then the condition A < —éi is exactly the sort of

time-step restriction we are seeking to avoid by using an A-stable, implicit method!
Fortunately, Newton’s method works extremely well for systems like (4.6.2) when
gé/< 0. Newton’s method for (4.6.2) reads:

h o
Y = yoig + (F (g1 0)) " ol - E.f(tn—!-l: yod)

h
—Yn — "z“f(tm Yn)],
where F'(.} is given by:

"o .
Fl(yotdy =1 - 55—5(%“,9 y,

Note that if %5 is negative, F'(y°!?) is positive and the more negative %5 is,
the more positive F/(y°%) becomes.

Thus, even the most stiff IVP’s will succumb to the overall strategy of PREDIC-
TION for initial guess, Newton’s method for nonlinear system and Relative update
for stopping criteria.

22

121

i s 4

T

Py

5 Compref_ éxaﬁc sf,

L Consy der %’lf\& Nowing Su Khlm O()‘ ’%'wo L Es ua)('“L(JMS

{ mo&t\w oo ’Do‘mlﬁecm lewels of Eala\orkg (e '*'7<(-I~J)

e e e e 4 e

awd F()Nf‘f [FT+)~VL+J) AR

CFly=-¥0) + R 2T CF) - Fro="1 .

Rl = Rt - Rt ¥ S R=2

/h% % sdﬂ“m; B=€ porivdic b posrhve uiyval

I
a\)(a\ 'T_r-u] uswus wour . eulea- RK2 ipmjra,w

8!
) J&’o SJVQ. A‘\AL_(OV €A 0 =% ﬁ‘QO.Mam doen

—\Jm e wehave as Y ucreaces 1
T—w« (o\\u\w it aoaw\ S g Har % _______________
- é\f{b\ (ZKZ onc;rvum . How does Yo ewnnr
_f;; “ Lae,\ﬂcw-& uﬂ’PC\ 'JC \\AU\acww7 l:e«e—k—-eave:g«-ﬂezr'
44‘# Pt 2 érmp\. & —l— VS Temben I,
Sr‘c:v,og N, %:zu Compare and 'Pw o
V.“.ﬁXP\ﬂW. -)rlwa vesuly o I%P
I\‘ ‘ o . ’

e

5. Curve Fitting,

5.1 -+ .. Introduction.

In this section, we consider the tollowing problem:
Given data z;,y; j=0,---,N, find
(58.1.1) a polynomial py(z) of degree < N such that
Pr(z5) = yj.

We then say that “py(z) interpolates y at the data points {z;}”. The coefficients of the

polynomial can, in principal at least, be determined directly. Indeed, expand p ~n(z)

pn(z)=ap +az 4+ - +ayz¥

and insert into (5.1.1):

PN(mo) Zag+ ayzg+ - GN$EF;V = %o

pn(zN) E$+a1$N+...+aNm% =yn

—
(N+1)x(N+1) Linear system

(5.1.2) Va=Yy,V;j=2lij=0,... N,
E = (a’Ui"' :ap;“t- /Tag = (yU:"' 7yN)T'

Here V is called the Van der Monde matrix.

Example: Suppose we seek a cubic fit ps(z) = ag + a1z -+ agz? + a3z® of data measured
at ¢ = 0, 30 feet, 60 feet and 90 feet. The Van der Monde matrix resulting from these

points is approximately:

0 0 0 1.0
3x10* 9x102 30 1.0
2x10° 4x10® 60 1.0
7Tx10° 8x10° 90 1.0

123

i,

Note the widely varying sizes of the entries. Solution of any linear system with this
coefficient matrix introduces, due to these widely varying coefﬁc:ents so much roundoff

error that any result is extremely untrustworthy.

Theorem 5.1.1. Suppose z; # z; for all 7,7. Then

]

det V # 0.

T'hat is, (1) has a unique solution., [

However, solving the linear system (5.1.2) to solve (5.1.1) is not realizable because V
is almost always very unstable (ill-conditi_oned). Thus, we cannot solve (5.1.2) in practice

and expect any accuracy at all and we must search for other methods of finding py(z).

5.2 omy s ' -WL ‘nbpo\o{l"u,p FPO\‘-\V\CDN\[

Polynomials are so simple to manipulate by hand but they are very difficult for the

computer to work with. We now review some basic properties.

Example: Loss of accuracy:

Suppose we have the data

z;| 6000 6001
y;| 1/3 2/3

then in 5 decimal place arithmetic,

pi(z) = 6000.3 — 2

But p(2)), _se0e = 0-3, 21(2)}500, = —0.7!
Efficiency: Horner’s Rule,
If we evaluate py(z) directly and count the “Hops”:
= (g r+a s
pn(z) +a a1z o :Il_- Pt
1 2 3

+o N = O(Nz) multiplications,
N additions.

|24

B

Compare this with Horner's method

pn(z) = Go -+ zlay + zfag + -+ z1[ay-1 + anzl| - l

~ ‘
N multiplications
N addition

Control of Roundoff Error: Newton’s Form,

We pick centers ¢ ---cy and rewrite pn(z) as:

pn(z) = ag + ay(z—1) + ag(z — a)(®—c)+- -+ an(z—c)(e — c2) (2~ cq)

and evaluate it via:

pN(%) = a0 +(z — ¢1)lar + (2 —)[ag + - - + (2 —env—1)lan—1 + an(z —en)] -

where we choose the centers to minimize roundoff.

=.2.4.
Exerci?e‘:/y%mv that if ¢; = ¢g = -

-+ =¢N = ¢ then

o = PP@/3E) i=0,... N

Algorithm:. [Nested Multiplication for Newton Form)].

Given coefficients aq, - - - , a, and centers €1, , ¢y and the number z,

Fori=n-~1,n-2,.-.,0, Do:

&i =qay + (Z — Cz'-l—l)&i-}-l-

Then, dg = pa(z).

125

The Lagrange Form of the Interpolant.
Consider the interpolation problem: Find pa(2) such that

Lagrange found the solution to this via writing pn(z) in the form

(5.2.2) Pu(e) = aplp(z) + o ly(z) 4+ + aply(z)
where
- n (m - .T:i)
2.3 £ = I =
(5:29) €)= L, (z& —z4)
ik
are the Lagrange polynomials for the points zg,: - ,z,. Note that £, has the properties:

degree £¢(z) = n,
En(wk) = 1,

Jgl{:(wj)zo') .77[“]“
Thus, the solution to (1) is (2) where |

ay = py(z) = ys, ie.

(5.2.4) pu(e) = én ybi(z).

Theorem. If the points {z¢} are all distinct then (5.2.1) has a unique solution, given by
(52.4). O

522
Exerciset Prove that the solution is unique.

Cost of Evaluation (5.2.4). Once the denominators are calculated and divided into yy,

(5.2.4) costs, using Horner’s rule,

(2n 4 1) multiplications and (2n 4+ 1) additions.

126

Further, if a new data point is added then we must begin from scratch and recalculate all

the coeflicients.

Remark: This is a very elegant solution to the interpolation problem. Lagrange found
this at age 16!
Newton’s Solution to the Interpolation Problem

Newton derived the following formula, which gives the solution of the interpolation

problem:

Pulz) = flzo] + flzo, 21](z — o) + flzo, 21, 22)(z — mo) (2 — 1) + - -
(5.2.5)

+ f[mﬂaml'; oo 737?1](3: - 370)($ - -’31) o (33 - mnHl)-
Here the f[, -,]'s are the divided differences of the function f(z), defined via

(5.2.6) flagy @] = Flajers - mipk] = fleg, o 2ippen]
Bl [R] wj—f-k-—:cj

where f(z;] = f{z;) = y; begins the difference table.

Theorem. The solution to the interpolation problem (5.2.1) is given by (1) above, where
the coefficients are given through (56.2.6).

We postpone the proof of the above for a moment while we discuss its implementation

and work an example.

Example: Given the following data, construct the difference table and write down the

interpolating polynomial,

124

T

Xy [vy | 4T, fr,53 140593 f07791] £55559 91
O 3]
I .
1137]
\:‘... 2 .,-«:::M | ;“ '23/(p o
~1 1 PAYFS
—_3“{/,.-« \\“—-—\S/Gf

5
b

m_ OA,”" 3 %bﬂ\tfm///
@\ . Cal cwlatrouls heede |

NE-MJ C\G\'\‘('A Po W\'\‘r

B Ju = w o

Note Huok DV\\A the ul/\(il@/_l]ﬂﬁcg Vivambevrs weed lee stored
‘\'O FTCCE“;} o e C\&"EZ"\- Po\\n""_‘

The solution to the interpolation problem is then

ps(z) =8 +4(z - 0) — 6(z — 0)(z — 1)+ ?('c —0)(z - 1)(z~2) — %(m ~0)(z - Dz -2)(z - 3)

+ 3@~ 0)(z ~ 1)z 2)(z 8z — 4)

The important algorithmic fact about Newton'’s discovery is that if a new data point is
p g

added, the table need not be recomputed. In fact, only the last diagonal need be stored

for use with new data points.

Algorithm. This computes flzo, 2],k =0, n.

128

L. Input {zo, ,2n, fo, - s fn}
2. For J=0,--- ,n
dj = f;
3. Fork=0,--- ,n—1
Forj=nn—1,-- k+1
dj 1= (d; — dj1)/(zj — m5_x)
4. Output {dy, -+ ,dpyy}

This algorithm costs

n? +n additions

(n?® +n)/2 divisions

The Newton form of the interpolant has the tremendous advantage that if a new point is

added only the coefficient flzg,: - »&n, Z| need be computed, i.e. all the previous coeffi-

clents remain the same.

The error f(z) — pa() is described by the following theorem.

Theorem. Let p,(z) interpolate f(z) at z; on [a,8],7 = 0, - ,n. Suppose f(z) is
C™ta, b, then for any # € [a,b] there is a ¢ € [a, b] such that

n-41
F(3) — pu() = [{FF(I%] (B —z0) (3 —za). [

This theorem has several interesting consequences:

—

. Convergence for “smooth” f follows on bounded intervals.

[

. Extrapolation is unstable.

]

. The best choice of the z; are the Chebyshey points. On [a,b], these are given by

:ci:[a-l-b"i-(a——b)cos (22:&—:_‘; W)J/Z: 350: s 12

121

This choice minimizes max |1, (z)| = |(z — To) (T — zp)

— \nend pote Wt &—
5.g.Least Squares Approximations.

Given a table of data zj, i, = 1,--- , N the least squares approximation is defined

as follows. We specify functions $1(z), -, ¢p(z) and positive weights. wy, -+ Jwy. The

approximation is determined via

Fle) = erda(z) + - + ex(da)()

where the ¢'s are chosen to minimize the deviation:

181 = Z 0y ~ (exda(a) ++ -+ cuata,)

'This leads to the following linear system for the c;'s.

Ak Chxl = ?@[The'INormal“Equa,tions] .

where

'y
]

—

1 wan’j(mn)q}‘i(mn), _CF~ = (Cl,- ' ,ck)Tr(i,j =1, 1,79)

itz itz

il
fl

" wnfnﬁi’j(m'n)l

If the “standard” choice of basis for polynomials is chosen ¢, = 1, $a(z) = z,da{z) =
z2, ... y$k(z) = 21 the matrix A is terribly ill-conditioned. This is easy to understand
- a quick look at some examples shows that with this choice of basis the matrix A has
elements of vastly different orders of magnitudes. This leads to a lot of

roundoff error
under Gaussian elimination.

Thus, for an efficient algorithm, we must pick our basis functions carefully. Notice that

if we define the dot product:

ty "1
s def

(u;v) = : . X = upviwWy + ugvewy 4+ unyvyw N

UN UN

130

—|nsed MPB"‘""""

S _Z“AE’,(C«\.‘»S-'?-_“ S e et e e e s

5'23.. Conerdun g jmeC&\

Al

Mi-t o 4 Iz - q

\l* %\ X 5 o "%/c_[-1 7

e %«3 B . LT %%““Lﬂgmkgt” W ?’“’Qm"\” wwwwwwwwwwwwwwwwww i

l\lau VNG STV g = u\mP\\W By ch_mﬁjuﬁo

ch\c%z o QK pye CSim § 3

U Comprts, M Adiecona toke & T
' {}\al{(}\ G\chg‘ ‘QV\A '\"WL w\\:‘@;\,mﬂa\j{ a

g ua:;m,p *\jm, Ne ;:\jf‘d\f\ &-efw\
f . (L,\ A\I\ﬂ‘ \V\Q{‘J(M&fi‘(é\f\ (ORAES ‘V”emcl‘t\w *Crz}‘w\
‘ \7\\/&_ \@‘\'E\\'Qf@” (. NQM(N\ Qéﬂm j WV\A\\JV\AA"

’@‘Vﬂ‘w’\ lT\IUL '(‘D\('V\AU\- (L&&rmuép %-vwm)~

‘f?ﬁ‘} CéS‘I/&S.[‘cbﬂA s Mm ‘

£V

") 6 1 2 3 “i

\/:J. Woo. 4020 14 Fbo g4

fﬁ)ﬁomp»‘%; Y g\fg-p@wm ool 95‘3 Haps data
&U\c& "H,& Cm\fa\t_ \ml\m m"i\&bu'\{

l:\ CQU\ H"n (?\,\rmm Afjijf ‘}\A‘Aﬂ_ CU\-L)\L. JOl?il\‘la‘l.a\

- " \A{JA IJ\‘\'\!L W\ jr—\uc.,mhx_ mwc;%. — ﬁ WL &sj\dt\'lt

1
[
7

. /xgﬁovw%é\m GXTON wm\aji loe. Mo w\%‘:’;ﬁm{xﬂmhj wwwwwwwww

121

then

Beginning with the basis {1, .- , ¥ 1) for Pr+1 we can use, e.g., Gram-Schmidt to

Aji

construct an orthogonal basis.

Example: A heavy object is dropped from 1100 feet. It’s height after @ seconds (ignoring

air resistance} is:

= {¢;; i)

Thus, if we choose a basis for P41 that is orthonormal in (- -} then A becomes [

h{z) = 1100 — 1622

f we actually do the experiment we observe the following:

Time Height Formula Least Squares
in Secorids | (feet) Observed | Prediction h{z) | Prediction Height
0 1100 1100 1097.7
1 1080 1084 1085.1
2 1040 1036 1038.3
- 3 960 956 957.1
P 4 840 844 8417

Fit this with ¢o(2) = 1, ¢1(2) = 2y, do(z) = 2% i.e.

paAz) =co 14 ¢ -w+cz-w2,k:3,N:5points.

This gives a 3 x 3 linear system AC=b. For example:

4
Aor = i§0¢1($i)¢0($i) =0+1+42+344=10

.....

4
Azz = B ¢2(2:)d2(2:) = Tejal = 0% + 1% 4 2% + 34 4 4% = 354.

Giving the 3 x 3 linear system:

S o 39 Ca
;\o 0

']
2 1100 3sy o

Qoo
. 44 oo
1T o

30¢co + 10¢; + deg = 5020
AT =100 + 30¢; + 10¢y = 9400 =
35462 -+ 10001 + 30C0 == 27340

132

cp = —17.14985714
¢ = 4.573428573
co = 1097.714286

e

and

pa(z) = —17.142857142% -+ 4.573428573 + 1097.714286.

This pa(z) 1s a very good approximation OVER THE RANGE OF THE ORIGINAL
DATA! We can check that p2(z) is the correct form by doing a cubic fit (ps(z)) and

checking that the cubic coefficient is “small”.

g- L\ o\f"\'\/\o\ﬁ ov\t-&.\ 'PO\:}V\OM\TO\\S ‘1"'9\
LQ.‘O-S"'\' So\,u C\V‘E—f.

T\w_ \m\o\e’:‘uﬁ u%— c:oM(:-u’\‘\ Ca \6&&‘\’
P 3
SA vavia e m\dw\oA‘\“ on yeduas —Q\\Ac\\\,ﬂ
Yo eppxd g
a basis 3 Po , T;“ A ng for T
‘)D\t)vxmfo« 3 GS; de ree S w ta wheel)(*-ﬁ-
"’V\O\rwxm\ QC\’ st Ov\’& W\oith A & cliog c:va]
\[\30_ S\/\'&\\ SeL -'\‘\'\GC)R “\‘\A\'.s. L Agv\q_ \OQ o .
S q)\n “\'\Avu_ '\’erm '\‘S('g Ww\({ov\ (Ve CMV&.\"’O\/\) .
st we wall need sowa n ootvav .

K@z (> YW \f\f\\;F-A A(“ch We. ave €g (.a_ec ia\\1
"V‘)"@V‘?S‘\'e d X 'QLV‘-AW\S -\(\/\\3 \pas s ““gor'
L= YN ilid\avxoum'(c& Aeavu_ Y owall awnd
‘Qw N = e nombeen J\ Aot fo\u’in " \0&3@[,
wA < ‘) 9\/3 — —2N— chj)ﬁlc\q) ‘f*‘j (eo«.cl»\ wj>o} ,
{ ~

i=y
rbc-"rr\vn)(\dv\ . @W 1% —\\AL Se*'cre A\ Po\dndwt\“o-g!&
ok deqven S bthic & g (W) dwktnsionad yeckor
PacL .

133

Ga op 4‘;"?:@“%@‘“% . T

Ipre,\\wﬂ Nowy @5
An twner Pm&ug.t L e A 'S o iemwxaﬂ\z{thm

O'Q' M {Adea a’l} o Ao”\‘wfmc\uct v R0

I S YES SRR Y Wy Mavee ondirions 4. be

\/‘\Qa\o\i‘, \\V\ \EOLS S.G\/U el]’) Y’D&Q\QAM I3 -m“S(’L
avet e all PEY a0 , rex) e @,

)" deLiin iYre vena™
<P)P3 20 and 4\-;’?‘)':0
‘-_{: Aawd OV\\:) {Q P=0.
2 " $émw+va“
L<RA> =4
3) lo’\—\w\eam*:)“ ’{:—;\r‘ oWl veal viumloens

o a3
< peo TP, 0D = o <P KOV
< / e

<P N RAREY = PSR LP LYY

T\m"s lacst condr ¥ T on :)JSJ" waeams “Thad

< ?,9> s hwaor o]: -Qov— %—ero;zem
A\ hveav 1w a\/ "@w P 'E‘t"yecal.

TL\U?—- ave ‘M&mﬂ “W\\%ve—djﬁw\‘) QMQWPM
Oyr MWA mq)mo\df\'s Own @m,

|34

{XC’NW-P\M DQ \WAVLA ‘PW}A\J(.S CAA @“‘Ca\ '2,,17

AW e V=) y
< ?(‘L> = © P (xy I A

s QW F\N\V\U f)vncluc\: (617N @v\["\l\j-

Aoy wo.\&\,dr 'Q\JV\&.)({CN‘ cav loe gsed v tha aloove
\‘A\’%mﬁ\ os well. b weo 2o qud
Wi o Q\su.eJr -?zv a\‘?\i/\i'\l U boe v ovc
'FO\V\)CS m\/w\l— W \!awg\aw ; 'MM

g
< P(0L> Ny Sl\ 'FCX\ OLH) Wix) c‘k}ﬂ
s alio aw (PRVDN me)*‘f‘:\' "’V‘@VL—‘I\] '

3. g Wan POQ\\'\\:‘L W14 \& C \A\j CW‘A

O\\'S"\‘Wk(_—l(, ?ow\ S Yo $X <o K XN\))(\,LM &ng\‘.

ow Ca b]

M
<f’ﬂ> = Z_ POegy ﬁ{“\i) Wy -
l=o

ETD(?OSK‘\"(G\/\ . T\A \S (|> (s Gw T PWAV&‘E A
()v\ Lea (\93 !?VU\I\ 2ad e.uxo\;éL QDO\\AJFS Gre vieoh -
b M2 .

135

T\/\L FYD\Q\LU/\ 1S Vipw o 'QO\\QW(*\ \fdﬁ-

A € QAN DA c&c«\'o\ Po\'m)fs ‘cluuc\ 'MS‘Q
.

&&'Q'WUL owV VMWE \DMUA-UL‘t (‘)'\).

We seck a basis for Py, {po, - - , pa} which is orthogonal with respect to (-,), specifically,
(piyp) =0, if i

If additionally (p;,p;} = 1 then the basis is said to be orthonormal,

Given such a basis the computation of the least squares approximation is very easy.

Expanding
q;(.ﬁ‘?) == aﬂpﬂ(m) + 01P1($) T+ C’-np.n(ﬂ?)

we obtain the equations for the undetermined coefficients, as follows.

Setting p = p; gives:

(Gopo(z) + - + anpn(e), pi(z)) = (f(2), pil2)),
whereupon orthogonality of the basis yields:

o Vas = ;) or a-=(f’—pi)
piopidai = {f,pi) or ai = ¢ o

10

136

'Thus, the normal equations become a diagonal system when an orthogonal basis is used.

Problem: Given w(z) how do we construct an orthogonal basis for 7,7

The solution is by using the CGram-Schmidt procedure, suitably interpreted. Define:

O

Note that (B, 51} = 0. p is defined by:

Po(z) = (z — co)fi(a) ~ fo folz)

where a;,8; are chosen to make Do orthogonal to po,p1. This leads to the following

equations

(B2, P1) = {xpy, pi) — ay (P, Pi)
— Ba{fo, P}, 1=0,1.

When ¢ = 1 one term drops out, leaving

(B2, Po) = (1, Po) ~ oy (P, o)

which vanishes provided:

oy — (-'17?1) f)o)
(Phpl)

Choose also

B . (mﬁlaﬁfJ)
2 =
{Bo, Po)
when ¢ = 0 this choice of #, ensures that {(p2,po) = 0 and {po,p1,pz) are an orthogonal
basis for P,.

In the general case (Py), suppose {Bo,-+,Pr} is an orthogonal basis for Pr. We now

construct pr4 such that {pg,--- , Py, Pr+1} is an orthogonal basis for Pr41. Following the

previous example of P,, set

(5.3.1) Pet1(e) = (2 — ag)pr(z) — Brpr—1(z)

13

where

— (:Eﬁk:ﬁk) . (xﬁk,ﬁk—l>

~ ~ k - e o~ o
(P De) (Dk—1,Pr—1)
As before this ensures

(Brt1,0;) =0, j=kandj=Fk—1.
HFO0<)<k—22p5 ¢ Pr_y, whereupon it may be expanded:
TPy = yoPo + Y1P1 + - + Ye—1Pko1.

Thus (:Eﬁj,pk) =0= (m;ﬁk,ﬁj).
From this fact and (5.3.1), for j = 0,--. k — 2

H

(Br+1,B5) = (2B, B;) — ar{Br, ;) + BiiBr—1,5;)
=0-04+0=0.

Thus, g1 is orthogonal to Po,** ,pr and we have an orthogonal basis for Prti.

Example: The Jacobi Polynomials Choose wlz) =(1-2z)*(1+2) -1 <z < +1

where o, 8 > —1. The Jacobi polynomials are usually normalized by requiring

(5.3.2) PP (1) = (o + 1)(+ﬁ) e (a+7)

Special Case: a =0, = 0,w(z) =1 the p(.o,o) = p; are then the Legendre polynomials,

J

These are normalized by pj(1) = 1. Constructing P;() via the general Gram-Schmidt

procedure we evaluate:

2k
ﬁk(l):zk/ (2))

(which can be proven by induction).

Thus,
23 L)
by = , szja .7:031721"'a

J

123

and the recursion relation for p; becomes after simplification:

2 41

J
Tl zp;(z) — ———pj_1(z)

J+1

pi+1(z) =

(7 + Dpjaae) = (2) + Depj(z) — jpjos(z).

For example, the first five become:

po(z) =1, p(z) =2, py(z)= 3/2z% —1/2,

pa(z) = 5/22° —3/23, py(z) = 35/82% — 15/4e? + 3/8.

Special Case 2: o = 8 = —1/2 50 w(z) = (1 — wz)_l/g,pglﬂ’l/z)(m) are then the
Chebyshev polynomials, multiplied by a normalizing factor. Specifically,

Th(z) = cos(nb), where ¢ = cosf, 0<60<m,

and

(~1/2,—1/2 1.3.5---(27 — 1) .
P T = 22 = Ty,

Example: Equally Spaced Points on —1,1].
Suppose the points are equally spaced:

2(7 ~1 .
3’1‘:'_1"'“(]\;[—_1‘)“7]mla"'>N>

and suppose the weights are all 1:

wj=1, j=1,---,N.

The resulting polynomials are then the Gram polynomials, It is easy to see that the choice

of points and weights give a = 0 for all £, so, in effect, we have two uncoupled recursions.

1239

One is for even degree polynomials and one is for odd. For example, Wlth Go=1,3 ==z

1t follows that g, = 22 — (N 4. 1}/3(N —1).

4.1
ExerciMpute the quadratic least square approximation to f(z) = |z] at the points

{-1,-1/2,0,1/2, 41}, directly (solving the 3 x 3 normal equations) and using the orthog-

onal Gram polynomials.

5.8 Cubic SPl ines.

So far, we are faced with (smooth) low degree interpolation with large truncation error
and high degree interpolation with lots of “wiggles”. The solution of the problem of finding

a smooth interpolant with high accuracy is provided by Spline Interpolation.

She pPe ’?VV‘C’\"PGM = S(‘U/

o) M(

MECH ANCAL SPUINES

P\)V\S —ﬂ(e+¢.)
-

, ~
'C\(’_\({\Q\& 5‘\"r\[> D-F L,Jooch
oV Plastc "waw& oY
Maw Pow\—\'s (v\) \;J)

i
{ } { i {

{([
t) YXn
(i) Spline must pass through knots: & s(zi) = fi, k= ILewv,n

(ii) s(z) is smooth: it doesn’t break or bend at sharp angles: < s,s', 5" are all continuous

fora <z <.

(iii) In each interval z; < z < Zr+1,8(x) satisfies the thin beam equation "' = (: « s(z
+ q

1s (a.pproximately) cubic on each z; < z < Tha1-

(iv) Among possible shapes, s(z) minimizes potential energy: < if g(z) is any other 2
piecewise cubic passing through the knots: f: s'(z)%dz < f: ¢"(2)*dz and s"(a) =
S”(b) — 0.

140

Thus, the cubic spline interpolation s(z), to the data (zj, f;),7 = 1,--- N

3

is a C? function that is & cubjc polynomial on each interval z, < < Tpag

(betWeen the knots) and satisfies

S(wk) = fi, k= L :Na Su(a) =0 = S”(b)'

Constructing the Cubic Spline.
Method 1: Crude Approach.

We set up a huge linear system for the total degrees of freedom and constraints

E— e,

& =2 £ £ 25— (\c:o
% A

niL X2 E ! s W

o b

On each interval s(z) = ag + ay + agz? + azz® so there are

4 coefficient /interval X (N — 1) intervals = 4N — 4 degrees of freedom.

Constraints: At each [7 there are

3 continuity constraints = 3(N — 2)

al each 8:1 = 2 constraints $ TOTAL Constraints = 4N — 4,

at each knot s(zx) = fr = N constraints

il

The Error Estimate.

Let Az; = z; — Tiq.

S. 5.
Theoremose fecH

a,b] then for a < z < b.

(1 £(0) = o(a)] < g7 (max Avi)* mmas 170(e))
(2) () ~ ()] < g7 (max Aa)® mas |FO(e))

If Az; = h (constant-uniform mesh), at the knots we have: for J € C%a,bl:

1
[f(:) — ' (2)] < g5 & max [FV(6). D
£
Work: Solving for s}

on — 14 additions
on — 13 multiplications

4n — 8 divisions

Bvaluating (%) (once o < Z < 2p1q)

TA+8M +4D

Minimal Curvature Property.

Theorem 5.47). Let g satisfy (i), (ii} then

b b - b
/ (g”)zdf :/ (SH)th_}_f (gn —S”)2dt

142

ki

[== [ap- [y

b
- Zf (g” _ S”)S”
a
This last term is zero. Indeed, write:

, .
/ (¢ —s))" s" = 2 / " "] and integrate by parts / = / (g —8)s"" +

L JI

boundary terms Wh](:h all ca,n(,el =0. ’ ’

Implementation _
Since s(z) is cubic on each [, 24i44], 8"(2) is linear
Ploo Y i,
(5.41) §'(2) = 8'(2:) + " (2:)(z - ;) + SBi) T8 (@), 2;)?
2(Tip1 — zq)

(s"(ziy1) — s"(2:))

S”(.‘E) — Sn(mi)_l_ r—I;

Tigy — &5

Integrating and using s(z;) = f; we obtain:

(5.4.2) (@) = fi+ (@)(e = 23) + 5" ()5 (o - 22)"
+ 5" (wig1) — s"'(z;) (z — m‘}f)s, 2 <2 < Tigy)

6(ziy1 — ;)
Thus, we need to solve for s} and s{ylet by = 2441 — ;. In (6.4.2) set z = 2,41, and solve

for s':

fomn—fi hi h;
5.4.3 L= st ey
() Sz hz’ a+1 6 ~ 8 3

Thus, we need only solve for the s{’s as the s!’s are then determmed from the f;’s and

s{’s. Inserting (5.4.1) into (5.4.3) gives the linear system:

hivisi_y + 2(h;_ 1+h) +h83+1=

fz-}-l z _ fz—l
he’~1
=2,3,-- n—l

~and (N =2) x (N —2) linear system for s/,

143

