
Nonlinear equations:
Newton’s method for systems

MATH2070: Numerical Methods in Scientific Computing I

Location: http://people.sc.fsu.edu/∼jburkardt/classes/math2070 2019/nonlinear newton system/nonlinear newton system.pdf

Newton’s method can be extended to multiple dimensions.

Rootfinding (Newton version)

Estimate a solution x∗ of a system of n nonlinear equations f(x) = 0 in n unknowns, given the
jacobian f ′(x), and a starting point x.

1 Newton’s linear model for F(X)

Newton’s method for solving a nonlinear equation f(x) = 0 can be generalized to the n-dimensional case.
The value of the variable and the value of the function are now n-dimensional vectors, and when we can, we
will write these as X and F (X) to remind us that they are no longer scalars. Since our examples will all
be two dimensional, we may sometimes write (x, y) instead of X. The derivative now becomes the jacobian
matrix (or simply, “the jacobian”), which we will write as the n× n matrix DF (X). The (i, j) entry is

DFi,j =
∂fi
∂xj

Assuming sufficient differentiability, we can again use a Taylor expansion at a point X near the root X∗:

F (X∗) = F (X) +DF (X) ∗ (X∗ −X) +O(||X∗ −X||)2

Noting that F (X∗) = 0, and dropping the error terms, we arrive at Newton’s estimate for the root:

X∗ = X −DF−1(X)F (X)

1

where formally, DF−1(X) denotes the inverse matrix associated with DF (X). In fact, it is preferred to
write this system in the equivalent form:

Solve for DXk: DF (Xk) DXk = −F (Xk)

Update: Xk+1 ← Xk +DXk

By writing the process this way, we are suggesting that instead of computing the inverse matrix and multi-
plying, one should set up and solve the given linear system, which will be more efficient and more accurate.

As in the scalar case, we can generally only expect good convergence when our starting guess is near to a
root, so that the linearized Taylor system is an adequate model.

We hope that, once the iteration is close to the root, the norm of the function will decrease on every step,
and the size of the step ||Xk − Xk−1|| will decrease quadratically, as it becomes similar to the size of the
actual (but unknowable) error ||X∗ −Xk−1||.

2 Newton’s method pseudocode

The pseudocode for the multidimensional Newton’s method is very similar to that for the scalar algorithm,
although we now need to do a linear solve in the middle of each step.

1 ## newton system1 pseudocode . txt
2
3 function newton system1 ()
4
5 Input : f () , fp () , x , xto l , f t o l , itmax
6
7 i t = 0
8
9 Begin loop

10
11 i t = i t + 1
12 Solve for DX: DF(X) ∗ DX = − F(X)
13 Set X = X + DX
14
15 i f | |DX | | i s l e s s than x to l and | |F(X) | | i s l e s s than f t o l , s u c c e s s
16 i f i t > itmax , f a i l u r e
17
18 End loop
19
20 Output : va lue s o f updated X and i t

Listing 1: Pseudocode for simple Newton’s method for systems

This pseudocode is implemented in MATLAB as newton system1.m.

Notice that, where the scalar Newton code set

1 dx = − f (x) / fp (x) ;

the Newton system code must write the analogous matrix/vector statement:

1 Solve for DX: DF ∗ DX = − F

In MATLAB, this can be accomplished by a command like:

1 dx = − fp (x) \ f (x) ;

Here the backslash indicates that a linear system is to be solved.

2

3 Example: The Trig2 problem

In class, the following system of two nonlinear equations was considered:

F1(X) = cos(x)− y
F2(X) = x− sin(y)

The corresponding jacobian matrix is:

DF =

(
− sin(x) −1
1 − cos(y)

)
To use Newton’s method, we prepare these two functions as MATLAB files trig2.m

1 function value = t r i g 2 (xy)
2 x = xy (1) ;
3 y = xy (2) ;
4
5 value = [. . .
6 cos (x)−y ; . . .
7 x−sin (y)] ;
8
9 return

10 end

Listing 2: trig2.m

and trig2 fp.m.

1 function value = t r i g 2 f p (xy)
2 x = xy (1) ;
3 y = xy (2) ;
4
5 value = [. . .
6 −sin (x) , −1.0; . . .
7 1 . 0 , −cos (y)] ;
8
9 return

10 end

Listing 3: trig2 fp.m

Let us apply our Newton system code to this problem, using a starting point of (1, 1):

1 x = [1 . 0 ; 1 . 0] ;
2 x t o l = 0 .00000001 ;
3 f t o l = 0 .00000001 ;
4 itmax = 50 ;
5
6 [x , i t] = newton system1 (@(x) t r i g 2 (x) , @(x) t r i g 2 f p (x) , x , xto l , f t o l , itmax) ;

Listing 4: Newton’s method for the trig2 system

The algorithm returns after just four steps. Here are the intermediate results:

it x y ||f(x, y)||
0 1.0 1.0 0.486265
1 0.7202728496702477 0.7756845865336229 0.0313296
2 0.6949521502342055 0.7683270627718570 0.000243455
3 0.6948196999805071 0.7681691575522178 1.09748e-08
4 0.6948196907307875 0.7681691567367960 0

While the values f(x) seem to be showing quadratic convergence, the true quadratic behavior is in the
successive values of x and y, in which the number of correct digits seem to roughly double on each step.

3

4 Exercise: The bill2 function

As an in-class exercise, let’s see what we need to do to apply Newton’s method to a new example, the bill2()
function, defined by:

F1(x, y) = x− y + sin(y)

F2(x, y) = 3 sin(x)− y

Do the following:

1. Copy the file newton system1.m from the website;

2. Create a function file bill2.m;

3. Create a derivative file bill2 fp.m;

4. Assume that (1, 1) is a good starting point;

5. Write a script, or interactively issue commands, to call newton system();

6. Report your solution, and the number of iterations required.

5 Example: Estimating the convergence rate with poly2

Just as in the one-dimensional case, we are interesting in observing the convergence rate of the Newton
method in higher dimensions. If we simply replace absolute values by norms, our calculations of alpha and
r are pretty much the same.

The code becomes more complicated, because of the bookkeeping, but we did the very same calculations for
the scalar case:

1 ## newton system2 pseudocode . txt
2
3 function newton system2 (f , fp , x , xto l , f t o l , itmax)
4
5 i t = 0
6 DX = 0
7 alpha = 0
8
9 Begin loop

10
11 i t = i t + 1
12
13 Set Xold to X
14 Set DXold to DX
15 Evaluate F(X) and DF(X)
16 Solve DF ∗ DX = − F for DX
17 Set X = X + DX
18
19 Set a lpha o ld to alpha
20 i f | | DX old | | i s not 0 , set alpha to | |DX | | / | | DX old | |
21 i f a lpha o ld i s not 0 , set r = log (alpha) / log (a lpha o ld)
22
23 i f | |DX | | i s l e s s than x to l and | |F(X) | | i s l e s s than f t o l , s u c c e s s
24 i f i t > itmax , f a i l u r e
25
26 End loop

Listing 5: Pseudocode for newton code #2 to estimate convergence rate

4

This pseudocode is implemented in MATLAB as newton system2.m.

In order to demonstrate the estimation of the convergence rate, we will use a new example function called
poly2:

F1(x, y) = x2 + 4y2 − 9.0

F2(x, y) = 18y − 14x2 + 45.0

We use a starting value of X = (x, y) = [1,−1] and call newton system2(). Because we are using new-
ton system2(), we can set the global variable print r to true so that the convergence rate estimates are
printed. Our results are reassuring:

it α log(α) r
2 0.177797 -1.7271
3 0.0329564 -3.41257 1.97588
4 0.00110876 -6.80451 1.99396
5 1.21189e-06 -13.6233 2.0021

The starting point must already have been close enough to the region of quadratic convergence, since all our
estimates for the convergence rate are close to the optimal value of 2.

6 Example: A failure with multi2

Let us consider a new test function multi2(), which has the form:

F1(x, y) = x+ 3 ∗ log(|x|)− y2;

F2(x, y) = 2 ∗ x2 − x ∗ y − 5 ∗ x+ 1

If we start from X = [2, 2], the iteration does not proceed well:

it x y ||f(x, y)||
0 2.000000 2.000000 5.000631
1 -18.158883 -10.579441 572.197274
2 -8.371007 -5.228726 142.299878
3 -3.552491 -2.719070 35.078319
4 -1.201458 -1.472826 8.600258
5 -0.000412 0.094904 23.408007
6 0.045101 -1865.231218 3479096.751689
7 0.022073 -932.612712 869777.890008
8 0.010018 -466.299349 217448.883733

The iteration runs to the limit of 50 steps without convergence; the norm of the function value rises and
falls as the method seems unable to converge. Such a problem can arise because the starting point is too far
from the root, because of errors in the jacobian, because the linear approximation breaks down or is only
valid extremely close to the root, or because the function has several distinct but adjacent roots which are
“confusing” the iteration.

7 Damping an unsatisfactory Newton step

In the results for the multi2 function, we see on iterations 0 and 4, on the next iterate, the function norm
increases. Assuming the jacobian DF has been correctly calculated, the quantity DX = −DF−1F (X) must

5

be a descent direction, that is, if we start at X and take a small enough step β in the DX direction, the
norm ||F (X + β ∗DX)|| must be smaller than ||F (X)||. Since the standard Newton step is taking β = 1,
if we notice that this step results in a rising function norm, we can try recomputing the new iterate with a
smaller value of β. If that doesn’t help, then we can try a few more reductions before we just give up. This
kind of stepsize reduction is known as damping.

1 ## damped system pseudocode . txt
2
3 function damped system (f , fp , x , xto l , f t o l , itmax)
4
5 i t = 0
6
7 Begin loop
8
9 i t = i t + 1

10
11 Set Xold to X
12 Solve for DX: DF(X) ∗ DX = − F(X)
13
14 Initialize beta to 1.0
15 begin loop
16 Set X = Xold + beta * DX
17 if (||F (X)|| <= ||F (Xold)||
18 Optionally print it, beta, ||F (X)||
19 break from this damping loop
20 if (beta < 1.0 / 1024)
21 return with failure
22 beta = beta / 2.0
23 end loop
24
25 i f | |DX | | i s l e s s than x to l and |F(X) | i s l e s s than f t o l , return su c c e s s
26 i f i t > itmax , return with f a i l u r e
27
28 End loop

Listing 6: Pseudocode for damped Newton

8 Assignment #5: A damped Newton method

1. Starting with the code newton system1.m and the pseudocode for a damped Newton method, create a
new code damped system.m that implements the damping idea.

2. Apply your code to the multi2 function, again using the starting point of X = [2, 2]. Insert a print
statement that displays the values of it, beta and ||f(x)||.

3. Run your code and demonstrate that it converges to a root of the multi2 function.

Turn in: your file damped system.m by Friday, September 27.

6

