stiff_answers
MATLAB:
-
backward_euler.m,
uses n equal steps of the backward Euler method to solve an ODE,
using fsolve() to handle the implicit equation.
-
euler.m,
uses n equal steps of the Euler method,
to solve an ODE.
-
func.m,
an example function whose root could be found by fsolve().
-
quadex_backward_euler.m,
computes an n-step backward Euler solution to the QUADEX ODE.
-
quadex_deriv.m,
the right hand side of the QUADEX ODE.
-
quadex_euler.m,
computes an n-step Euler solution to the QUADEX ODE.
-
quadex_solution.m,
computes the exact solution to the QUADEX ODE.
-
rk2.m,
uses n equal steps of the Runge Kutta 2 method,
to solve an ODE.
-
stiff_backward_euler.m,
computes an n-step backward Euler solution to the STIFF ODE.
-
stiff_backward_euler_explicit.m,
computes an n-step backward Euler solution to the STIFF ODE,
by converting the implicit backward Euler step to an explicit formula.
-
stiff_deriv.m,
the right hand side of the STIFF ODE.
-
stiff_euler.m,
computes an n-step Euler solution to the STIFF ODE.
-
stiff_rk2.m,
computes an n-step Runge Kutta 2 solution to the STIFF ODE.
-
stiff_solution.m,
computes the exact solution to the STIFF ODE.
-
trigger_backward_euler_explicit.m,
computes an n-step backward Euler solution to the TRIGGER ODE,
by converting the implicit backward Euler step to an explicit formula.
-
trigger_deriv.m,
the right hand side of the TRIGGER ODE.
-
trigger_euler.m,
computes an n-step Euler solution to the TRIGGER ODE.
-
trigger_solution.m,
computes the exact solution to the TRIGGER ODE.
Last revised on 29 October 2020.