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MATH1090: Directed Study in Differential Equations

http://people.sc.fsu.edu/∼jburkardt/classes/math1090 2020/convergence/convergence.pdf

Can we anticipate the problem areas ahead?

Stepsize

If we can estimate how “rough” the ODE solution is, we can adjust our stepsize so that we are both
accurate and efficient.

1 Sometimes, if it looks wrong, it is wrong!

Last week, we finished with a convergence study of the flame ODE. However, when although I repeatedly
decreased the stepsize, the convergence plot showed no improvement at all. It’s natural to believe that, when
we write a program to do something, that’s what it does. If we don’t see an error message, we assume things
are going well. But the bad convergence plot was a kind of error message, and I was not paying attention to
it.
I sat down and tried using a thousand, ten thousand, and a hundred thousand steps, and still the pro-
gram showed no convergence. Finally, I started to doubt my program. And when I looked at the file
flame euler backward.m, I discovered two mistakes:

1 function [ t , y ] = f lame eu le r backward ( n )
2
3 t = zeros ( n + 1 , 1 ) ;
4 y = zeros ( n + 1 , 1 ) ;
5
6 a = 0 . 0 ;
7 b = 250 . 0 ;
8 dt = ( b − a ) / n ;
9

10 t (1 ) = a ;
11 y(1) = 0.0; % Wrong i n i t i a l cond i t i on
12
13 for i = 1 : n
14 t ( i +1) = t ( i ) + dt ;
15 y(i+1) = ( y(i) + dt * 50.0 * cos ( t(i+1) ) ) / ( 1.0 + 50.0 * dt ); % Wrong d e r i v a t i v e
16 end
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17
18 return
19 end

Listing 1: The incorrect backward Euler code for the flame ODE.

I first noticed that derivative was completely wrong. It’s the backward Euler formula we came up with for
the stiff equation, not the flame. It’s harder to make the flame derivative into a backward formula, so I made
a new file, flame euler.m, which uses the forward Euler method instead.

But this program produced a zero solution for all time. That’s when I noticed that the line y(1)=0.0;

should have been y(1) = delta;; the flame must start out with an initial nonzero radius, otherwise it stays
at zero for ever.

The forward Euler code can be made to work, so let’s go back and repeat the investigation that I botched
last week. Then we’ll go back and see about make a backward Euler solver...

2 The forward Euler code

Just to be clear, here’s the forward Euler code, which needed the additional input quantity delta:

1 function [ t , y ] = f l ame eu l e r ( n , d e l t a )
2
3 t = zeros ( n + 1 , 1 ) ;
4 y = zeros ( n + 1 , 1 ) ;
5
6 a = 0 . 0 ;
7 b = 250 . 0 ;
8 dt = ( b − a ) / n ;
9

10 t (1 ) = a ;
11 y (1 ) = de l t a ; % Correct i n i t i a l cond i t i on
12
13 for i = 1 : n
14 t ( i +1) = t ( i ) + dt ;
15 y ( i +1) = y( i ) + dt ∗ ( y ( i ) ˆ2 − y ( i ) ˆ3 ) ; % Correct form for forward Euler
16 end
17
18 return
19 end

Listing 2: flame euler.m the (correct) forward Euler code for the flame ODE.

3 Convergence of the forward Euler method for the flame

Now our results will make some sense:

Stepsize and error

n h e

20 12.5000 NaN

40 6.2500 NaN

80 3.1250 0.2826

160 1.5625 0.0854

320 0.7812 0.0470
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640 0.3906 0.0244

1280 0.1953 0.0124

Step ratio and error ratio

n hold/h eold/e

40 2.0000 NaN

80 2.0000 NaN

160 2.0000 3.3094

320 2.0000 1.8155

640 2.0000 1.9265

1280 2.0000 1.9747

Log(h) versus log(error)

n log10(h) log10(e)

20 1.0969 NaN

40 0.7959 NaN

80 0.4949 -0.5489

160 0.1938 -1.0687

320 -0.1072 -1.3277

640 -0.4082 -1.6124

1280 -0.7093 -1.9079

The step ratio versus error ratio table makes it easy to see that the error and stepsize are decreasing together,
so that we can guess that e ∝ h1.

Convegence plot for Euler on the Flame problem.

Looking at the convergence plot, we can also feel comfortable in assessing the convergence rate as 1.
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4 Making a stab at a backward Euler solver for the flame ODE

The problem with writing a backward Euler solver for the flame is that the right hand side is nonlinear in
the solution y. Thus, formally, the backward Euler solver would be

1 y ( i +1) = y( i ) + dt ∗ f l ame de r i v ( t ( i +1) , y ( i +1) ) ;

but when we write out the flame derivative and move it to the right hand side we get

1 y ( i +1) − dt ∗ ( y ( i +1)ˆ2 − y ( i +1)ˆ3) = y( i ) ;

and we can’t see an easy way to ”solve” for y(i+1). As a quick fix, we can write instead:

1 y ( i +1) − dt ∗ y ( i +1) ∗ ( y ( i ) − y ( i ) ˆ2) = y( i ) ;

resulting in a “implicit-explict” or “semi-backward” Euler method:

1 y ( i +1) = y( i ) / ( 1 . 0 − dt ∗ ( y ( i ) − y ( i ) ˆ2) ) ;

When the derivative is nonlinear, we can either try a method like this, to allow us to extract a linear factor.
A better and more reliable solution is to try to solve the nonlinear equation using a numerical technique.
We will put that idea off until next time.

5 Heun’s method: a second order ODE solver

The Heun ODE solver can be written in the following Runge-Kutta form:

k1 = dt y′(tn, yn)

k2 = dt y′(tn+1, yn + k1)

yn+1 = yn + 0.5 k1 + 0.5 k2

Thus, the method involves the computation of two stages, k1 and k2, which are then combined to form the
solution estimate. Heun’s algorithm has order 2, so it is more accurate than the Euler method.

1 Name : rk2
2 Input : yprime , n , tspan , y0
3 Output : t , y
4
5 yprime eva lua t e s the r i g h t hand s i d e o f the ODE.
6 n i s the number o f s t ep s to take .
7 tspan i s a vec to r conta in ing f i r s t and l a s t t imes .
8 y0 i s a vec to r conta in ing the i n i t i a l c ond i t i on .
9

10 t i s a vec to r o f computed t imes .
11 y i s a vec to r o f computed ODE so l u t i o n s .
12
13 BEGIN FUNCTION
14 Set t to equa l l y spaced va lue s in tspan (1) to tspan (2 ) .
15 Set dt to the s ize o f s i n g l e time step .
16 Set the f i r s t entry o f y to y0 .
17
18 LOOP N TIMES ON I
19 Set k1 to dt t imes the d e r i v a t i v e at t ( i ) and y ( i )
20 Set k2 to dt t imes the d e r i v a t i v e at t ( i )+dt and y ( i )+k1 .
21 Set the next y ( i +1) to the prev ious y p lus ( k1+k2 ) /2 .
22 END LOOP
23
24 END FUNCTION

Listing 3: Pseudocode for rk2.m

We could do a convergence study on Heun’s method to verify that it has an order 2 convergence rate.
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6 Error estimation

Since Euler’s method has order 1 and Heun has order 2, we could consider the following idea for estimating
the error we make at each step:

1. y1(i+1) = Euler step from y1(i);

2. y2(i+1) = Heum step from y1(i);

3. Error e = ||y2(i+1)-y1(i+1)||;

In our textbook examples, we are able to compute the error exactly, because we already know the exact
colution. In real life, that information is not given. By using a pair of solvers whose accuracy differs, we
have a chance of roughly estimating the error. In other words, the higher order solver is presumably so much
closer to the right answer that we can take the difference between our two solvers as a good error estimate.

The file rk12.m implements this idea, calling rk1.m and rk2.m and returning the error estimate e along with
the solution:

1 function [ t , y , e ] = rk12 ( yprime , n , tspan , y0 )

Let’s examine the reliability of this idea for a particular example, comparing our error estimate to the true
error. Consider the problem

y′(t) = cos(t) ∗ y
y(0) = 1.0

yexact = esin(t)

For this case, I will actually run the two solvers separately, so I can plot both errors.

The Euler error (G), Heun error (B), Estimated error (R)

7 Adaptive stepsizes

We have seen problems where the error is large over some time intervals, and very small elsewhere. To
control error, we reduce the stepsize. But an efficient algorithm would reduce the stepsize in places where

5



the errors seem large, and increase it when the errors are so small that a larger stepsize seems safe.

Although we can’t know the true error, we can use our error estimate for this process. A reasonable adaptive
scheme to estimate the next step, might be

dt: current step

e: current error estimate

t: tolerance

if ( tol * dt < e )

dt = dt / 2

else if ( e < tol * dt / 16 )

dt = dt * 2

else

dt = dt

end

The code rk12 adapt.m uses this idea to vary the stepsize according to the error estimate. Note that there
is no input quantity n, because we no longer ask for a fixed number of steps. Instead, we give an initial
stepsize dt and an error tolerance tol:

1 function [ t , y ] = rk12 adapt ( yprime , tspan , y0 , dt , t o l )

The code expsin rk12 adapt.m solves our test problem using rk12 adapt. We plot the approximate solution
as dots, rather than a line, so that we can see how the stepsize varies.

Exact solution (B), RK12 estimate (R), Error (G)
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8 Report:

Consider the pendulum problem:

u′′ = −g
l
u

u(0) =
π

3
u′(0) = 0

u(t)exact =
π

3
sin(

√
g

l
t)

Here the gravitational force g = 9.8, and the length of the pendulum l = 1. This implies that a single period

is p = 2π
√

l
g ≈ 2.0071. The problem is to be solved over 0 ≤ t ≤ 10. The following files are available on the

web page:

• pendulum deriv.m: duvdt=pendulum deriv(t,uv) returns the right hand side of the pendulum prob-
lem;

• pendulum exact.m: uv=pendulum exact(t) returns the exact solution (u,u’) of the pendulum problem
as a pair of values;

• pendulum euler backward.m: [t,u,v]=pendulum euler backward(n) solves the pendulum ODE using
the backward Euler method;

• pendulum midpoint.m [t,u,v]=pendulum midpoint(n) solves the pendulum ODE using the midpoint
method;

• pendulum rk4.m: [t,u,v]=pendulum rk4(n) solves the pendulum ODE using a 4th order Runge-Kutta
method;

• rk4.m: a fourth order Runge Kutta ODE solver, needed by pendulum rk4.

Note that the derivative u′ will be stored as the variable v, and that in some cases, we cram both u and v

into a pair uv.

The backward, midpoint, and rk4 codes are set up to solve the pendulum problem over 4 periods using n

equal steps. Do a convergence study to each of these methods. You might start with n = 50, followed by
100, 200, 400 steps. Compute the error ratio, and also the ratio of the log of the error ratio to the log of the
stepsize ratio:

nold/n hold/h eold/e log10(eold/e) / log10(hold/h)

-------- ------ ------ -----------------------------

50/100 2.0000 ...... .............................

100/200 2.0000 ...... .............................

200/400 2.0000 ...... .............................

400/800 2.0000 ...... .............................

The last column should approximate the order of convergence of each method.

Also create a convergence plot of log 10(h) versus log 10(e) for each case.

Bring your tables and plots to our next meeting, at 1:00pm, Thursday, 27 February, room Thackery 624.
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