Detection and Disabling of Explosive Devices

http://people.sc.fsu.edu/~jburkardt/isc/week12
lecture_23.pdf

ISC3313:
Introduction to Scientific Computing with C++
Summer Semester 2011
John Burkardt & Detelina Stoyanova
Department of Scientific Computing
Florida State University

Last Modified: 28 July 2011

1/1

Detection and Disabling of Explosive Devices

Introduction

The Minesweeper Game
Sample the Game

The Look and Feel
Game Data

Game Functions

Run the Emulation

Conclusion

INTRO: Schedule

Next Class:

e Final Project Presentations.
Tuesday, August 2 will be our last class!;

Assignments:

@ Homework Program #9 is due today.
No late work accepted after class on Tuesday, August 2!;

Evaluation:

@ Go to http://campus.fsu.edu/esussai and log in.
The evaluation is anonymous.

INTRO: Almost No Time Left For Projects!

Please remember that your project is due on Tuesday, August 2nd,
at class time, 11am! This includes:

@ a 5 minute oral presentation;
@ a 3-5 page report to be turned in;

@ a C4++ program, to be turned in.

If you do not present your talk and turn in your report and
programs on time, you will not receive a grade for the course.

INTRO: Implementing the Minesweeper Game in C4+-+

Today, I'd like to show you what goes into the creation and
design of a C++ program that is a little bigger and more
ambitious than the examples we have worked on in class.

You may not realize it, but FireFox, Internet Explorer, iTunes,
NetBeans, MATLAB, Angry Birds, Microsoft Word, and even the
G++ compiler are all programs, and that means they are written
in a programming language, which might be C++4-.

So it's important to realize that the small programs we have dealt
with are stepping stones to the big programs that run the world.

We'll try to get an idea of how a larger program works by looki
at the Minesweeper game, and wondering if we could write a
version in C++.

5/1

Detection and Disabling of Explosive Devices

Introduction

The Minesweeper Game
Sample the Game

The Look and Feel

Game Data

Game Functions

Run the Emulation

Conclusion

MINESWEEPER: An Outline of the Game

The game is played on a rectangular grid. A grid of 16 rows and
30 columns is common.

A number of squares in the grid are “mined”, as though a land
mine had been placed in that location. For the 16 x 30 game
board, the number of mines might be 99.

As the game begins, the user sees only a uniform grid of gray
squares. Using the mouse, the user selects a square, as though
“stepping” on it. If the square is mined, the mine explodes and the
game is over.

MINESWEEPER: A Sample Minefield

B €l et

MINESWEEPER: Stepping on an Unmined Square

If a square is not mined, then stepping on it “clears” it.

If any of the 8 neighbors of the cleared square is a mine, then the
cleared square will now display the number of neighbor mines.

But if no immediate neighbors are mines, then the program

automatically clears these neighbors, and the neighbors's neighbors,
and so on, continuing until it has identified a continuous border of
squares that do not contain mines but which have mine neighbors.

The user tries to use this information to choose the next step
wisely.

MINESWEEPER: A Sample Minefield

HE ©)

I T I A Tt it i e o e 5 P
[o i e e i ot e e o fi ey e DB oo D e et
O D B [1 D T B e D [ot e Tt DTl
JJJJijjjjJJJJ i] JJJJjjJJ

=
= I =

EN
o L B L]
I Y
LLLLLL NNwe | |

EEEEEEEEE
I VT T
i i e o e e o e
EEEE T EEE
i e B B |
]))) 5)

= 1 T o Wt [I T
I T T i

LLLLL Maew

It
I}
I
|
1
B
]
i}
=
1

] o e] o] g 1] oI}

|2 s | o i e e e [i
| o e e e [

i
3]
H
|
H
=
Il
H

MINESWEEPER: The Game Ends

At some point, the user is likely to step on a mine.

At that point, the program reveals the location of the remaining
mines and stops.

The other possibility is that the user never steps on a mine, and
does “clear” every safe region, in which (rare) case, the user wins.

1/1

=
L
U

(O]
=
=
=

o

S

T
(9p)]
<<
o
L
([
L
=
9]
L
=
=

©

y - Jl\
?@

v
J# WJJJ\
ffiflﬂf
L A JJJJJJ
iJ JJJ‘J
JJ ﬂi
JJJJ J
JJJJJ

HEAR

T
e
I aJJﬂJJJjMJj
EEEREE EEEEEEEE
T e i e
U g LT e
I

INSm- | -
T) i .

1T V] (s 111
JJJ*a:azIﬁ

IJJ L 3 I
HJJ
JJJ 1]
JJJJJ ﬂ *#
*JJJ L QJJ
JJJ L

JJ #JJJ IJ
_ t JJ
JJ JJJJ JIJ

12/1

Detection and Disabling of Explosive Devices

Introduction

The Minesweeper Game
Sample the Game
The Look and Feel
Game Data

Game Functions

Run the Emulation

Conclusion

13/1

SAMPLE: A Demonstration of the Game

Believe it or not, it is now necessary, as part of our class, to take
a few minutes to play minesweeper, so we are familiar with it.

Nobody installed the game on our lab machines, | guess because
these machines are only for work. Of course, we happen to know
that computer games are actually a huge business, so this really
counts as technical training!

To begin with, let me start up a copy of the game and take a few
steps to demonstrate how it works.

14/1

SAMPLE: Now You Try It!

Now please take some time to try out the game yourself, by
going to a website like this:

http://birrell.org/andrew/minesweeper/

Play a few games, and try to convince yourself you understand
what is going on.

After playing a few games, ask yourself:
“What would | need to do to make a game like this?”

Now turn off the game, please, so we can have a quiz!!!

15/1

SAMPLE: Quiz

How many rows and columns of squares were there?
Can you change the number of rows or columns?
How many mines were there?

Can you change the number of mines?

Can you mark a square as a suspected mine?

Can you unmark it?

Do you know how many mines are still unmarked?

Can you lose on the first step?

16/1

SAMPLE: More Quiz!

What information must the program set up, update and
remember?

On each step, what must the program do?
When is your step (choice of row and column) “legal”?
What happens when you click in a square already cleared?

If your step clears a square, how does the program decide
what other squares to clear automatically?

Can you undo a move?

Can you quit early?

Can you get help or hints or information?
Is the puzzle always solvable by logic?
When have you won the game?

What is the shortest possible winning game?

17/1

Detection and Disabling of Explosive Devices

Introduction

The Minesweeper Game
Sample the Game

The Look and Feel
Game Data

Game Functions

Run the Emulation

Conclusion

18/1

LOOK: Emulating a Program

When a mathematician sees water move, and thinks up an
equation of motion, the equations simulate the water. But when a
computer person sees a program, and tries to write another
program that does about the same things, we say we are trying to
emulate the other program.

So our goal is to try to “emulate” the minesweeper game using
C++, that is, to write a program which works in a similar fashion.

The first thing we think about when emulating a game is the look
and feel, that is, what do we see and how do we interact?

19/1

LOOK: OpenGL

OpenGL

Programming Guide

LOOK: Interactive Graphics

To make a good emulation of the game, we need interactive
graphics.

An example of an interactive graphics program is the “Lights Out”
game which was demonstrated in week 3. That program used the
OpenGL graphics library so that a C++ program could control the
game data, but also receive input from the user's mouse, and
create and update color graphic images on the screen as the game
progressed.

21/1

LOOK: OpenGL Graphics for Lights Out

LOOK: Interactive Graphics? No Can Do!

Since interactive graphics were not part of this course, we will
consider using a simple text graphics system instead.

We will keep the screen size small, say 8 by 8 squares.

The grid will be an 8 by 8 array of characters. A square that has
not been examined will have the “-" character. A cleared square
will be blank. A mine can be represented by the asterisk “*”.

When the user chooses a square, we will have to “type out” the
new status of the board once again.

Since we can't interact with a mouse, the user will have to type in
the row and column of the square to be examined.

Our graphics are limited, but the game logic is the same!

23/1

LOOK: Text-Based Graphics

12345678 12345678
1--=----=-- 1 1----
2-------- 2 1----
3-------- 30 12---
4-----=--- 4 1-- -
5-------- 5 1222-- -
6-------- 612------
7----=-=--- 7-----=---
8- ------- 8- -------

Enter row and column: 3, 2

24/1

LOOK: Compromise on Graphics, Try Hard on Game Play

If we knew how to work with OpenGL or other interactive
graphics libraries, we could develop an emulation of Minesweeper
that looked as good as the real thing.

This is a first class in C++; there's even a whole semester course
on computer game design that you could take to learn more about
how to get graphics in your games. But we'll assume that we can
still learn a lot by compromising on the graphics, and
concentrating on the game play.

25/1

Detection and Disabling of Explosive Devices

Introduction

The Minesweeper Game
Sample the Game

The Look and Feel
Game Data

Game Functions

Run the Emulation

Conclusion

26/1

DATA: Two Tables, One Complete, One Partial

Our program data will be information that describes the status
of the game.

The most obvious thing we need to keep track of is the map, that
is, the table of mine locations.

Now the whole point of the game is that player starts out not
knowing the information on the map, and gradually reveals it. One
way we can make this happen is to have two copies of the map:

e real _table[][] records all the information;

e vis_table[][] records the "visible” information the user see

27/1

DATA: We Think of a 2D Array, But Use 1D

We will describe the two tables as 2D arrays; inside the program,
we will need to squash these 2D arrays into 1D arrays. If we use an
8x8 array, then here is how the two methods of storage compare:

TABLE[I][J] VECTOR[I%8+J]

0t 2 3 4 5 6 7 0123 4567
ol 0,0 0,10,20,30,40,50,60,7 | 0 1 2 3 4 5 6 7|
11 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 | 8 9 10 11 12 13 14 15|
21 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 | 16 17 18 19 20 21 22 23|
3| 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 | 24 25 26 27 28 29 30 31|
4| 4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 | 32 33 34 35 36 37 38 39|
5| 5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7 | 40 41 42 43 44 45 46 47|
6l 6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7 | 48 49 50 51 52 53 54 55|
71 7,07,17,27,37,47,567,67,7 | 56 57 58 59 60 61 62 63|

Thus, TABLE[3][5] corresponds to VECTOR[3*8+5] =
VECTOR[29]. We can store a 2D table as a 1D vector, it's j
little painful.

28/1

DATA: The REAL_TABLE Data

The variable real_table will store the true map, with all the
information. We can put a blank for safe squares, and a ‘*’ for
bombs. That means we want the type of real_table to be char so
that it can store characters.

However, when we played the game, when we uncovered some safe
squares, they didn't show up as blanks, but rather contained a
number indicating the number of neighboring bombs. This is also
information we could store.

So an entry of real_table will be
@ blank, if the square is safe, and isolated;
@ a digit, if the square is safe, but has mine neighbors;
@ an asterisk, if the square is a mine.

This information can be set once when the game begins.

29/1

DATA: The VIS_TABLE Data

The variable vis_table stores information the user has uncovered.
We initialize this array to dashes, and “uncover” entries gradually.

Moreover, the user may wish to use the array to record guesses as
to the location of mines, or questionable squares. That information
can be added or deleted from the map based on user input.

So an entry of vis_table will be

a dash, if the square has not been touched;

blank, if the square was touched, and is safe, and isolated;

a digit, square was touched, is safe, but has mine neighbors;

a question mark, if the user thinks the square is a mine;

@ an asterisk, if the square was touched, and is a mine.

This information is updated every step and redisplayed.

30/1

DATA: Other Data

The tables are the most important items in the program.

However,some other pieces of data include:
@ n, the number of rows and columns;
@ row and col, identifying the user's chosen square;
@ pos, converts row and col to a 1D array index;
@ mines, the number of mines;

@ counter, the number of safe squares uncovered.

31/1

DATA: The NEIGHBOR List

There is one more piece of data, an array called neighbors]],
which allows us to keep track of the neighbors of any square.

We need to know the neighbors for two reasons:

@ When we are setting up the real_table array, we need to
count the number of mines that are neighbors of each safe
square. Safe squares with mine neighbors are then marked
with the number of neighboring mines.

@ When the user selects a square, if it is safe, we uncover that
square. But we also uncover squares which are immediate
neighbors and safe.

Given a square (i,j), the neighbors[] array is computed to contain
the 1D indices that would correspond to the 8 possible neigh
locations. However, we may have to discard some of these
locations, because a cell in the last column has no neighbors
the east”, for instance.

32/1

DATA: The NEIGHBOR List

The NW, N, NE, W, E, SW, S, SE neighbors of (I,J) or POS:

North

North
(i-1,j-1) | (i-1,3) | (i-1,j+1) pos-n-1 | pos-n | pos-n+1
West (i, j-0 | G, 3 | G, j+1) pos -1 | pos | pos +1 East
(i+1,3-1) | Gi+1,3) | (i+1,j+1) pos+n-1 | pos+n | pos+n+i
South South

The NEIGHBORS array tells us where we might find neighbors. Of
course, some of these neighbors will not actually exist, if (1,J) or
POS is in the first or last row or column.

33/1

Detection and Disabling of Explosive Devices

Introduction

The Minesweeper Game
Sample the Game

The Look and Feel
Game Data

Game Functions

Run the Emulation

Conclusion

34/1

FUNCTIONS: The MAIN Program

When you write a large program, it's important to break it down
into pieces, that is, C++ functions.

The C++ functions should each do a separate part of the task,
and the names of the functions should suggest what is going on.

Since we always start in the main() program, it is typical that the
main program simply sets aside some memory, and then calls the
underlying functions to work on the problem.

For our minesweeper program, the main program follows this
design idea:

35/1

FUNCTIONS: The MAIN Program

Include statements and function declarations up here....
int main ()

int n = 8;

int mines = 10;

char real_table[n*n];
char vis_table[n#n];

//
// 1Initialize the random number generator.
//
srand (time (NULL));
//
// 1Initialize both arrays with ’-’.
//
initialState (vis_table, real_table, n);
//
// In the real grid, replace N occurrences of ’-’ by ’*’.
// This is where the mines are.
//
placeMines (real_table, n, mines);
//
// Count the mines adjacent to each square.
//
calculateNumbers (real_table, n);
//
// Start the game.
//

play (real_table, vis_table, n, mines);

return 0;

}

36/1

FUNCTIONS: The Initialization Functions

Before allowing the user to play the game, the program must get
its data in order. It does this by calling a sequence of initialization
functions, most of which do fairly obvious tasks:

O initialState() sets real_table and vis_table to "-";
@ placeMines() sets random entries of real_table to "*";

© calculateNumbers() counts the mine neighbors of each safe
square, and puts the nonzero mine counts into real_table;

Q countMines() counts the mine neighbors for one safe square;
© getneighbors() locates the neighbors of a square;
@ isRealNeighbor() makes sure each neighbor is inside the gri

How would you carry out the task of placeMines(), which
set exactly 10 random locations to mines?

37/1

FUNCTIONS: The Play Functions

To play the game, we only need three more functions:

© play() gets the move from the player and updates vis_table;
@ openSafe() clears safe squares neighboring a safe square;

© printTable() displays the updated version of vis_table;

How would your version of play() determine if the player has won
the game?

38/1

FUNCTIONS: The Play Function

The play() function handles each choice the player makes:

o
2]
o
o
o

© 0

It prompts for a new row and column;

It deals with special user input ("Q", "M", "U");

If a bomb was chosen, it ends the game (player loses);
If a safe square was chosen, it makes that square visible;

If the safe square has no mine neighbors, it opens up safe
neighbors;

If all safe squares are open, it ends the game (player wins);

It displays the updated version of vis_table;

39/1

FUNCTIONS: The openSafe() Function

The openSafe() function is actually tricky to set up.

Remember why it exists. If you step on a square, and it's not a
bomb, then it may have a number on it, indicating that this square
is safe, but next to at least one bomb. In that case, the program
simply has to replace the "-" symbol by the number of mine
neighbors.

But if the square is not next to any mines, then not only does that
square become ‘visible”, that is, the "-" is replaced by a blank,
but all neighboring squares that are not mines will become visible...

and their neighbors, and so on.

One way to deal with this seemingly endless problem is to use
recursion. You will notice that the openSafe() function call
if it realizes a new neighbor needs to be investigated.

40/1

Detection and Disabling of Explosive Devices

Introduction

The Minesweeper Game
Sample the Game

The Look and Feel
Game Data

Game Functions

Run the Emulation

Conclusion

41/1

EMULATION: Try the C+-+ Version

The C4++ emulation of the minesweeper game is available on
the web page or in Blackboard, as the file minesweeper.cpp.

As usual, if you copy the source code, you can make an executable
by commands such as the following:

g++ minesweeper.cpp
mv a.out minesweeper
./minesweeper

Let's try to run the program and compare it with the version we
saw earlier.

42/1

EMULATION: Normal Input, Row and Column

The program displays the current 8x8 board, and expects you to
enter the coordinates of a square to investigate. Although C++
uses indices that start at 0, the program lets you specify rows and
columns the “normal way”, that is, as numbers between 1 and 8.

Thus, to investigate the square at row 2, column 5, after the
program prompt, you type these values, with no commas:

Enter row and column:
25

43/1

EMULATION: Special Input, Quit, Mark, Unmark

To quit the game immediately, type a Q:

Enter row and column:

Q

To place a question mark at a square, use the M command:

Enter row and column:

M
Enter row and column:
25 <-- Places a "?" at row 2, column 5.

Remove a question mark with the corresponding U command:

Enter row and column:

U

Enter row and column:

25 <-- Restore the "-" at row 2, c

44/1

EMULATION: We Got Pretty Far without Graphics

Our emulation of the minesweeper game is incomplete;

The most noticeable difference is the lack of a graphical interface.
It makes a big difference when we have to type in the row and
column of a square, instead of pointing to it with the mouse.

Smaller differences include the fact that the grid size is fixed, and
that in our emulation, it's possible to “die” on the very first step.

But overall, the underlying game is really the same. And you
should see that if we simply knew how to add the graphics
component, we would have seen how C++ can be used to build
small but usable “product”.

45/1

Detection and Disabling of Explosive Devices

Introduction

The Minesweeper Game
Sample the Game

The Look and Feel
Game Data

Game Functions

Run the Emulation

Conclusion

46 /1

CONCLUSION: Conclusion

In this course, | have only been able to show you some of the
basic features of C4++ programming.

In particular, | have held back from you most of the
“object-oriented” parts of C++; these features are much loved by
programmers, but | think are too much for beginners to handle.

We were only able to graphics using the gnuplot program. | would
have preferred to teach you how to use some graphics libraries that
you could call directly for scientific graphics, or OpenGL for games
and images.

If you go further in programming, these are two areas you sho
try to learn more about.

47 /1

CONCLUSION: Future Classes?

There are still some openings in our department'’s class
Introduction to Game and Simulator Design, which includes an
introduction to interaction, graphics, and programming in a team.

If you want to learn more about C++, consider a second course in
C++, perhaps from the Computer Science Department.

If you found yourself interested in the methods for computing
approximate solutions to nonlinear equations, differential

equations, and so on, you may be interested in the course
Algorithms for Science Applications I, taught by the Department of
Scientific Computing.

If you want to study the theory behind the computational
algorithms, consider Numerical Analysis, perhaps as taught it
Mathematics Department.

48/1

CONCLUSION: Programming Can Take You Places

| hope that by exposing you to many programs, algorithms, and
computational problems, you've got a rough road map of the
possibilities there are in programming, so you can choose now
where you want to go with this knowledge in the future.

49/1

