
 

Intro Math Problem Solving
October 17

A Mountain Climbing Question
The Zero Finding Problem
The Bisection Algorithm
A Bisection Script
Using a Function Name as Input
Three Tries at a Bisection Function
Solve Some Test Cases



 

Reference

Chapter 9, Section 3 of our textbook 
discusses these topics, and can be 
useful for comparison and background 
to these notes.

"Insight Through Computing" is available 
as an ebook on the library web site, and 
chapter 9 is also in today's Canvas 
folder.



 

A Mountain Climbing Question



 

Same spot, same time?

Very early Monday morning, a team began 
climbing a mountain, and reached the top 
sometime before midnight.  

Very early Tuesday morning, they started back 
down, reaching the bottom before midnight.

At one point going down, a climber said, “We were 
exactly at this spot, at exactly this time, 
yesterday while going up.”

Another climber said, “I think that’s so unlikely.”
Another climber said, “That must always happen!” 



 

Going up



 

Going Down



 

It must always happen!

There must be at least one spot that both 
the ascending and descending parties will 
reach at the very same time.

Suppose that, on Wednesday, we put one 
team at the top and one at the bottom, and 
then one team descend and one team 
ascend, exactly following the schedules of 
the Monday and Tuesday climbers.  

At some point and time, the two teams must 
cross paths. 



 

X Marks the Spot



 

Math: There is an answer.
Computing: What is it?

So now we know that there is a time of day so that the 
Monday ascenders and the Tuesday descenders were 
at the same place.  In mathematics, this is called an 
"existence" proof...there is a solution...although we 
haven't thought about how to compute it.

If we can characterize our problem more clearly, and 
find some similar examples, then perhaps we can come 
up with a computational method to actually find 
(approximate) solutions.

In the mountain case, "to within one minute, when did 
the ascenders and descenders reach the same point?"



 

Problem: Find h that makes equation true

A mathematician will look at the mountain 
climbing problem  and think:

  ascent(h) is a function that tells me my 
height at any time h during the ascent;

  descent(h) does the same for descent.
  I am looking for a value h so that
    ascent(h) = descent(h)
  that is, “same time(h), same place”.



 

Related Problems

What does each of three people get when sharing 17 pounds of sugar?
“find x so that 3*x = 17”  
  
What is sqrt(2017)?
  “find x so that x^2 = 2017”
We want a number, not the expression sqrt(2017)!

  When will my child weight 1000 pounds?
  “find n so that “theron(n) = 1000”.

After how many seconds t will a falling penny reach the center of the earth?
  “find t so that 2080-16t^2=-20900000”.

When does the cosine curve cross the line y=x?
  “find A so that cos(A) = A”.



 

Let’s Look at the X=COS(X) Question



 

Try #1 to solve X = COS(X)

Make a plot showing both curves:
   y = x
  y = cos(x)

Zoom in repeatedly and focus on the crossing point. 

Disadvantages: 
  * requires estimating numbers visually;
  * not automatic; user must do it;
  * plot is made up of straight line segments so results 

are of limited accuracy.



 

Try #2 to solve X =COS(X)

Just “turn the dial”, trying different values of X.

X       COS(X)
-----   ---------------------------
1         0.5403  (try smaller X)
0.9      0.6216  (getting closer)
0.75    0.7317  (got first digit!)
0.74    0.7385 
0.73    0.7452 (now COS(X) is bigger!)
0.735  0.7418
0.737  0.7405
0.738  0.7398 (got two digits to match!)
…         …
Disadvantages? 
  Again, not automatic.
  Not really clear how to pick the next trial point.



 

Try #3 to solve X=COS(X)
OK, probably can’t get exact value.  But let’s pick a bunch of X values in [0,1], and measure the magnitude of the 

error, |x-cos(x)|, and find the value of X which minimizes this error.

x = linspace ( 0.0, 1.0, 101 );
e = abs ( x – cos(x) );
[min_value, min_index ] = min ( e );
x_min = x(e_index)
cos(x_min)

  x_min = 0.7400
  cos(x_min) =  0.7385
and we know best value is probably between 0.73 and 0.75!

Repeat with x = linspace ( 0.73, 0.75, 101 );

  x_min = 0.7390
  cos(x_min) = 0.7391   Already three digits right!←
and we know best value is probably between 0.7388 and 0.7392.

Advantages: Semiautomatic.
Disadvantages: we compute a LOT of function values.  
Could be fooled by a “near” zero, such as y=(x+0.0000001)^2



 

Time to Lay Out a Plan

All our problems can be thought of as problem A:

A) find a value x so that f(x)=0.
(When does polynomial f(x)=x^3-2*x-5=0?)

B) “When does g(x) = h(x)?”
  (Mountain climbing example)
  Define f(x) = g(x) – h(x), solve f(x)=0.

C) “When does g(x) = value?”
  (Theron baby-weight example)
  Define f(x) = g(x) – value, solve f(x)=0.

Problem A is called “the zero-finding problem”.  But now we know all these 
problems can be called "the zero finding problem" if we think about them that 
way.



 

Computer Arithmetic

Mathematically, seek x so that f(x) = 0.
In computer arithmetic, the exact 

solution x might not exist.  And even if 
x exists (is a number representable on 
the computer), f(x) might not come out 
to 0, because of rounding errors.

So instead of f(x)=0, we might seek x so
   |f(x)| < TOL



 

Change of Sign

Seeking |f(x)|<TOL can be deceptive.  For 
example, e^x is NEVER zero, but the exponential 
function gets very small for strongly negative x.  

A better test begins by stating we can only be 
confident about finding a zero at x if the 
function actually changes sign there, that it goes 
from positive to negative (or the other way 
around).

This means we are not going to bother trying to 
catch zeros where the function just "grazes" the 
x axis, such as f(x) = (x-2)^2.



 

This function only "grazes" the x axis



 

This function crosses the x axis



 

Continuity Guarantees Solution

Mathematics has an intermediate value theorem:

If f(x) is a continuous function on the interval 
[a,b], then for every value v between f(a) and 
f(b), there is an x between a and b so that 
f(x)=v.

In particular, if f(a) is negative and f(b) is 
positive, then somewhere between a and b, 
there must be an x so that f(x)=0!



 

Change of Sign Interval

If a function actually crosses the x axis, then 
we know there is a solution f(x)=0, but also, 
we know that nearby the function is positive 
on one side and negative on the other.

Over a small interval [A,B], the function 
changes sign, and a solution to f(x)=0 is 
somewhere inside.  

Even if we can't find x exactly, we can 
decrease the size of [A,B] so that we fence 
in the value of x to very good approximation. 



 

Two Crazy Extremes

We will hope to find small intervals [A,B] 
containing a solution, and we will hope to 
find approximate zeros x so that |f(x)| is 
very small.

One bad case occurs if the function f(x) is 
very small over a very wide range, such as 
e^x for negative x.

Another bad case occurs if the function 
has very large magnitudes near the zero.  



 

|f(x)| < TOL interval very wide



 

|f(x)| < TOL interval very narrow



 

A Computable Answer

The mathematical problem seeks a 
number x so that f(x)=0 exactly.

The computational problem starts with a 
change of sign interval [A,B], and seeks 
to reduce the width of [A,B] to a small 
value, and to produce an estimated zero 
x so that |f(x)| is small.

Computationally, we may not be able to do 
both.



 

F(X) = COS(X) - X with Change of Sign

X         F(X)          Positive F(X)             Negative F(X)       Width
-----    --------      ------------------      -------------------   ----------
0         1               F(0)       = 1                                               ?
1        -0.4597                                      F(1.0) = -0.4597       1.0
0.9    -0.2784                                      F(0.9) = -0.2784      0.9
0.75  -0.0183                                      F(0.75) = -0.0183    0.75
0.73    0.0152      F(0.73)   = 0.152                                     0.02     
0.735  0.0068      F(0.735) = 0.0068                                 0.015
0.737  0.0035     F(0.737)  = 0.0035                                 0.013
0.738  0.0016     F(0.738)  = 0.0016                                  0.012
0.74   -0.0015                                     F(0.74) = -0.0015   0.002
0.739  0.0001     F(0.739)  = 0.0001                                  0.001



 

Change of Sign Information

We still haven’t found an exact solution for f(x)=cos(x)-
x=0, but as soon as we found a change-of-sign 
interval, we knew that a solution must be between x=0 
and x=1.

By updating our change of sign interval, we now know 
that a solution must be between x=0.739 and x=0.740.

Also, we can guess (this is only a guess) that, for all the 
x’s in this interval, the function values are

    -0.0015 <= f(x) <= 0.0001
However, this method is still not automatic, because I 

just picked the next x to investigate by guessing.



 

A Zero-FindingAlgorithm

To find a zero of a function f(x) within an 
interval tolerance XTOL or function 
tolerance FTOL:

Find a change of sign interval [A,B];
As long as XTOL < |B-A|
    Choose a point C inside [A,B].
    Replace A or B by C (using sign of F(C))
Interval small enough, X = (A+B)/2, stop!



 

Bisection Method

The simplest way to “choose a point C in 
[A,B]” is to choose the midpoint:

     C = (A+B)/2.
C splits the interval into two halves.  If the 

sign of F(C) matches the sign of F(A), we 
keep the interval [C,B]; otherwise, [A,C].

Thus each step cuts our interval size in 
half, and we automatically zoom in 
towards our answer.



 

Checking the sign

We need to check whether the sign of F(C) matches that of F(A) or F(B).
One way:
  if ( ( f(c) < 0.0 && f(a) < 0.0 ) ||
        ( f(c) > 0.0 && f(a) > 0.0 ) )
    a = c;
  else
    b = c;
  end

Better:
  if ( sign ( f(c) ) == sign ( f(a) ) )
    a = c;
  else
    b = c;
  end



 

The MATLAB sign() function

              +1 if x >  0.0
sign(x) = 0 if x == 0.0
              -1 if x <  0.0

sign(7) = 1;
sign(-3) = -1;
sign(0) = 0;
sign(0.0000014) = 1;



 

Sketch of Bisection Code

while ( xtol < b – a )   % assuming A < B!

  c = ( b + a ) / 2;

  if ( sign ( f(c) ) == sign ( f(a) ) )
    a = c;
  else
    b = c;
  end 

end

x = ( b + a ) / 2;



 

bisection1.m (more details)

xtol = input ( 'Enter tolerance for interval size: ' );
a = input ( 'Enter left  endpoint of change of sign interval: ' );
b = input ( 'Enter right endpoint of change of sign interval: ' );

if ( sign ( f(a) ) * sign ( f(b) ) ~= -1 )
  error ( 'F(A) and F(B) are not of opposite signs!' );
end

while ( xtol < b - a )
  c = ( a + b ) / 2.0;
  if ( sign ( f(c) ) == sign ( f(a) ) )
    a = c;
  else
    b = c;
  end
end

x = ( a + b ) / 2.0;
fprintf ( 'Estimated zero F(%20.16g) = %g\n', x, f(x) );



 

Sample results for f(x)=cos(x)-x

>> bisection1
Tolerance for interval size: 1.0e-05
Left  endpoint of change of sign interval: 0
Right endpoint of change of sign interval: 1

Estimated zero F(  0.7390861511230469) = -1.70358e-06
Interval: [  0.7390823364257812,  0.7390899658203125]
Interval width: 7.6294e-06 
.
.
.
.



 

A functional version?

bisection1.m is a script.  
  * The user enters values interactively.
  * Variables in the script could affect   the user’s code;
  * The user function must be named “f”.

Could we create a function like this:
  x = bisection2 ( xtol, ftol, a, b )?       No!←
Wait, we need to specify the function too!:
  x = bisection2 ( xtol, ftol, a, b, f )?   Not quite!←
This ALMOST works.  But because “f” is the name of a function, MATLAB 

requires us to mark it with a special “AT” sign:
  x = bisection2 ( xtol, ftol, a, b, @f )    This will work!←

Let's understand how a function can be used as input to another function.
  



 

One function as input to another function

We wrote "function plotshape(x,y,color)" that can make 
a line plot, with given color, of a polygon whose 
vertices are listed in x and y.

Could "function plotf(a,b,f,color)" make a line plot of the 
function f(x), for a <= x <= b?

Yes, except that MATLAB regards a function "f" as a 
special kind of input.  "f" is not a variable or a value, 
it's the name of a function.  To indicate that it's a 
different kind of input, we have to precede its name 
with an AT sign, "@".



 

Function to Plot a Function

function plotf ( a, b, f, color )

  x = linspace ( a, b, 501 );
  y = f(x);         <- We assume the function's name is "f".
  plot ( x, y, 'Linewidth', 3, 'Color', color );
  grid on
  xlabel ( '<-- X -->' );
  ylabel ( '<-- Y -->' );
  title ('I don't know what function this is!' );

  return
end



 

Using plotf.m

When calling plotf(), the actual input 
corresponding to "f" can be any function which 
has 1 input and 1 output:

a = 0.0;
b = 2 * pi;
color = [1.0, 0.4, 0.0 ];
plotf ( a, b, @sin, color );  <- MATLAB sin

plotf ( 0, 1, @cosxx, 'r' ); <- user function



 

Functions as Input

It's a little hard, at first, to get used to the idea that the name of a 
function can be used as input, just as we can pass numbers and variables.  

But for plotting, or zero finding, or other computations, it's common to 
write a code that carries out a procedure for any function the user 
cares to name.

By using the "@" sign on your input, you can specify the particular function 
you have in mind.  Meanwhile, the function that does the work can behave 
as though it's working with a function named "f", or whatever temporary 
name is used for the input.

              plotf ( 0.0, 1.0, @cosxx, 'r' );
                         |     |        |           |
function plotf ( a,    b,      f,           color ); 



 

Avoid Confusion!

The ONLY time you need an @ sign is when you are marking the name of 
a function that is to be input to another function:

plotf ( 0.0, 1.0, @cosxx, 'r' );  <- Calling plotf, cosxx is a function!

You DON'T use an @ to evaluate the function!
  y = cosxx(7)     <- YES
  y = @cosxx(7)  <- You are SO wrong!

You DON'T use an @ in function headers:
  function plotf ( a, b, f, color )      <- YES
  function plotf ( a, b, @f, color )   <- This is NOT right! 

RULE: an @ sign turns a function name into an input to another function.



 

bisection2.m

function [ x, a, b ] = bisection2 ( xtol, a, b, f )

  while ( xtol < b - a )
    c = ( a + b ) / 2.0;
    if ( sign ( f(c) ) == sign ( f(a) ) )
      a = c;
    else
      b = c;
    end
  end

  x = ( a + b ) / 2.0;

  return
end



 

How to use bisection2.m

xtol = 1.0e-5;
a = 0.0;
b = 1.0;

[ x, a, b ] = bisection2 ( xtol, a, b, @cosxx );

fprintf ( 'Estimated zero F(%20.16g) = %g\n', x, cosxx(x) );
fprintf ( 'Interval [%20.16g,%20.16g]\n', a, b );
fprintf ( 'Interval width = %g\n', b – a );

Estimated zero F(  0.7390861511230469)=-1.70358e-06
Interval [  0.7390823364257812,  0.7390899658203125]
Interval width = 7.6294e-06



 

Try f(x) = polynomial

Let's try bisection on a new function:

tau(x) = 512 x^10 – 1280 x^8 + 1120 x^6 – 400 x^4 + 50 
x^2 – 1

This polynomial of 10th degree can have as many as 10 
values x for which tau(x) = 0.

Given this choice, we will look for the smallest positive x.

A plot can help us see what is going on.



 

We seek the solution near x=0.15



 

Bisection2 on tau(x)

xtol = 1.0e-5
a = 0.0;
b = 0.3;
[ x, a, b ] = bisection2 ( xtol,  a, b, @tau );

Estimated zero F(  0.1564315795898437 ) = -2.92142e-
05

Interval [   0.156427001953125,  0.1564361572265625]
Interval width: 9.1553e-06

.



 

Computations have LIMITED accuracy

Our bisection algorithm accepts any 
tolerance.  We know that MATLAB's 
arithmetic is really only accurate to about 
16 digits.  What happens if we ask for 
more accuracy than MATLAB can deliver?

It's not pretty, and it's another error 
without an error message!  We will have 
to fix this!



 

Decrease XTOL Too Far!

xtol          x                              width
--------   -----------------------  -------
1.0e-05  0.156431579589844  9.1e-06
1.0e-10  0.156434465025086  6.9e-11
1.0e-15  0.156434465040231   5.2e-16
1.0e-16  0.156434465040231   8.3e-17
1.0e-17  ---program runs forever!---



 

Different Number Systems

We are used to a mathematical model of the real 
numbers.  In particular, between any distinct real 
numbers A and B, there infinitely many (uncountable, 
in fact) more values.  In particular, (A+B)/2 is 
between A and B, and different from both of them.

In the computational model of the real numbers, if 
the distinct values A and B are sufficiently close: 

  * there are no more numbers between them!
  * the value of (A+B)/2 will be either A or B 

"exactly"!



 

bisection3.m
function [ x, a, b ] = bisection3 ( xtol, a, b, f )

  step_max = 52;
  step_num = 0;

  while ( xtol < b - a )
     c = ( a + b ) / 2.0;

     step_num = step_num + 1;
   if ( step_max < step_num )
      fprintf ( 'Maximum number of steps exceeded!\n' );
      fprintf ( 'Bisection terminated without satisfying tolerance.\n' );
      x = ( a + b ) / 2.0;
      return
   end

     if ( sign ( f(c) ) == sign ( f(a) ) )
       a = c;
     else
       b = c;
     end

  end

  x = ( a + b ) / 2.0;

  return
end



 

Run the tiny tolerance problem again

>> [x,a,b] = bisection3(1.0e-17,0.0,0.3,@tau)

Maximum number of steps exceeded!
Bisection terminated without satisfying tolerance

Estimated zero F(0.156434465040231) = -2.2e-16
Interval [   0.156434465040231,  0.156434465040231]
Interval width: 8.3e-17
.
[A,B] appear to be the same value, but are not.
They just print as the same value...



 

bisection3.m warns us!

xtol          x                              width
--------   -----------------------  -------
1.0e-05  0.156431579589844  9.1e-06
1.0e-10  0.156434465025086  6.9e-11
1.0e-15  0.156434465040231   5.2e-16
1.0e-16  0.156434465040231   8.3e-17
1.0e-17  0.156434465040231   8.3e-17
1.0e-18  0.156434465040231   8.3e-17
0.0        0.156434465040231   8.3e-17

Tolerance not achieved, but results useful.



 

Some familiar tests

Solve the mountain climbing problem, given 
the functions ascent.m and descent.m

Solve x = sqrt(2017).

At what age n does theron(n)=1000?

At what time t does y(t) = 2080-16t^2 = 
-20,900,000?



 

A complicated problem

In a circular field of radius 10 meters, a 
goat is to be tethered by a rope tied to 
the fence.  How long should the rope be 
so that the goat can graze on exactly 
half of the area of the field?



 

The formula

f(x) = Area of circle reachable - 1/2 area of circle

We have to use a formula for the area of the 
intersection of two circles to get:

f(x) = - x/2 * sqrt(400-x^2) + (x^2-200) * 
arccos(x/20)  + 100 pi / 2

For x = 0 the function is negative, and for x = 20 the 
function is positive, so we have a change of sign 
interval.



 

Looking for f(x) = 0



 

More, Better Zero Finders?

Recall that our zero finder algorithm outline had the 
statement “pick a value within the interval [A,B]”.

We got the bisection method by making the choice 
“pick the midpoint”, but other choices are possible.

For example, if f(a) is 0.001 and f(b) is -0.16, then it 
makes sense to guess that the zero is much closer 
to a than to b.

We will look at this idea next time, and then see how 
MATLAB has some powerful tools for the zero 
finding problem.
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