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A “bumps” function

As a reminder of how functions work, let’s 
set up a MATLAB function for the 
mathematical function defined here:

                2                         -2
z = --------------------  + -------------------
        (x-1/2)^2 +y^2        (x+1/2)^2+y^2
      e                              e
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bumps.m

function z = bumps ( x, y )

%% BUMPS evaluates a function z(x,y) that has a bump up and one down.
%
%  X, Y, are the evaluation point.  X and Y can be vectors or arrays.
%
%  Z is the function value at (X,Y).
%
  z = 2.0 ./ exp ( ( x - 0.5 ).^2 + y.^2 ) ...
    - 2.0 ./ exp ( ( x + 0.5 ).^2 + y.^2 );

  return
end
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Check with a plot?

Being able to see your work is huge help in 
catching errors.  We can’t call plot() 
because z is a function of two variables 
instead of 1.  

However, MATLAB has a surf() function 
which can display functions z(x,y).  

To use it, we need to create TABLES (or 
arrays or matrices) of X, Y, and Z data.
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bumps_surf.m

x = linspace ( -2.0, + 2.0, 101 );     make x and y lists.  This is familiar.←
y = linspace ( -2.0, + 2.0, 101 );

[ X, Y ] = meshgrid ( x, y );          this makes X and Y “tables”.  This is new.←

Z = bumps ( X, Y );                      “Z” will contain a “table” of Z values.←

surf ( X, Y, Z, 'Edgecolor', 'None' );     Make a plot.←

title ( 'The BUMPS function', 'Fontsize', 16 );
xlabel ( '<-- X -->' );
ylabel ( '<-- Y -->' );
zlabel ( '<-- Z -->' );

print ( '-djpeg', 'bumps.jpg' );
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bumps.jpg, a plot made from “tables”
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A few notes about functions

Now that we’ve been introduced to 
functions, it will be helpful to look at a 
few details and extra features that may 
come up from time to time.
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Supply the right number of inputs!

function total = addem ( a, b, c )
  total = a + b + c;
  return
end

total = addem ( 1, 2, 3 )
total = addem ( 1, 2, 3, 4 )
total = addem ( 1, 2 )
total = addem ( )
total = addem
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The function must set all outputs!

function [ big, small ] = maxmin ( a, b )

  if ( a < b )
    big = b;
    small = a;
  else
    big = a;
    little = b;     <- Oops!  Meant to say "small = ..."
  end

  return
end

This function will FAIL, but only in cases where a >= b!
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You can RETURN early

function [ m, e ] = scientific ( x )
  m = x;
  e = 0;
  if ( 1 <= x && x < 10 )
    return
  end

  while ( m < 1 )
    m = m * 10;
    e = e – 1;
  end

  while ( 10 <= m )
    m = m / 10;
    e = e + 1;
  end

  return
end
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Use ERROR() for Warnings

function ratio = dividem ( a, b )

  if ( b == 0 )
    error ( 'A/B undefined when B = 0!' )
  end

  ratio = a / b;

  return
end
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A "PlotShape" function

If a triangle is described by xlist and ylist, we know 
that the command 

    fill ( xlist, ylist, 'r' );
draws a triangle filled with red; but if we want the 

outline, we have to repeat the first point:
     plot ( [ xlist, xlist(1) ], [ ylist, ylist(1)], 'r-' );
Also, if we want to specify rgb color, we have to use a 

more complicated plot command.
And we usually draw a thicker line than the default.
Why don't we just write a function that looks like 

plot(), but takes care of these details for us?
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plotshape.m
function plotshape ( xlist, ylist, color )

%  plotshape will draw the polygon defined by xlist, ylist.
%
%  color can be 'r', 'g', 'b', 'c', 'm', 'y', 'w', 'k'
%  or it can be an RGB triple like [1.0, 0.4, 0.0].
%
  plot ( [ xlist, xlist(1)], [ ylist, ylist(1)], 'Color', ...
     color, 'LineWidth', 3 );

  return
end
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Some Triangle Functions

This week’s homework will be all about triangles.  One question asks you to compute the 
perimeter, which involves summing the lengths of the sides:

  perim = distance ( vertex 1 to vertex 2 )
            + distance ( vertex 2 to vertex 3 )
            + distance ( vertex 3 to vertex 1 )

Here “distance()” is NOT a MATLAB function, but just represents the fact that we need to 
compute that distance.

This almost looks like a perfect FOR loop:

  perim = 0.0;
    for i = 1 : 3
      perim = perim + distance ( vertex i to vertex i+1 )
    end

but this “breaks” on the last step!
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A simple fix

  perim = 0.0;
  for i = 1 : 3

    if ( i == 1 )
      vertex_old = vertex(3);
    else
      vertex_old = vertex(i-1);
    end

    perim = perim + distance ( vertex(i) – vertex_old );
  end
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Fix with extra variable

perim = 0.0;
im1 = 3;

for i = 1 : 3

  perim = perim + distance ( vertex(i) - vertex(im1) );
  im1 = i;

end

So im1 is 3, 1, 2, in loops 1, 2, and 3.
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A clever fix

perim = 0.0;

for i = 1 : 3
  perim = perim + distance ( vertex(i) –  ... 
    vertex( mod ( i+1, 3 ) + 1 );
end

because mod(i+1,3)+1 = 3, 1, 2 for i = 1, 2, 3.
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Advantages to a FOR loop

We could have compute the perimeter by 
simply writing out the three terms of the 
sum.

The advantage of figuring out a way to use 
a FOR loop for that kind of computation 
is that you can easily adapt the 
computation to handle a square (4 sides), 
and you can see how to generalize it to 
handle a polygon with n sides.
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A “wrap around” function

In the triangle perimeter case, we saw that while 
the first vertex was counting 1, 2, 3, the second 
vertex was going 2, 3, 1.  That is, once we 
reached the maximum value of 3, the next value 
“wrapped around” to 1.

We tried three different ways to deal with this 
issue, with an IF statement, or an extra 
variable, or a MOD function.

What if we wrote a “wrap around” function that 
said, “I am counting between 1 and n, but if I 
say n+1, I must really mean 1.”
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wrap.m

function i = wrap ( i, ilo, ihi )
%
% WRAP uses “wrap-around” counting.
%
  n = ihi + 1 – ilo;                How many values?←
  i = ilo + mod ( i – ilo, n );    Where does I ←

belong?

  return
end
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Wrap Demo

wrap(-2,1,3) = 1          wrap(-2,3,6) = 6
wrap(-1,1,3) = 2          wrap(-1,3,6) = 3
wrap(0,1,3) = 3           wrap(0,3,6) = 4
wrap(1,1,3) = 1            wrap(1,3,6) = 5
wrap(2,1,3) = 2           wrap(2,3,6) = 6
wrap(3,1,3) = 3           wrap(3,3,6) = 3
wrap(4,1,3) = 1            wrap(4,3,6) = 4
wrap(5,1,3) = 2           wrap(5,3,6) = 5
wrap(6,1,3) = 3           wrap(6,3,6) = 6
wrap(7,2,3) = 1           wrap(7,3,6) = 3
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Version 4

perim = 0.0;

for i = 1 : 3

    perim = perim + distance ( x(i),y(i) to  x(wrap(i+1)),y(wrap(i+1)) );

end

wrap(i+1) = 2, 3, 1 as i = 1, 2, 3.

We will find wrap.m useful for some other problems we will work 
on.
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Generalize to Polygon

function perim = polygon_perimeter ( xlist, ylist )

  n = length ( xlist );
  perim = 0.0;
  im1 = n;

  for i = 1 : n

    perim = perim + distance ( ( xlist(i), ylist(i)) to (xlist(im1),ylist(im1) ) )
    im1 = i;

  end

  return
end
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The  “Gap N” Game

Keep tossing a fair coin until

              | Heads – Tails | == N

Score = total  number of tosses

Write a function Gap(N) that returns the
score.  Estimate the average score given N.
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The Packaging…

 Heads = 0; Tails = 0; nTosses = 0;
 while ( abs(Heads-Tails) < N )
    nTosses = nTosses + 1;
    if ( rand() < 0.5 )
        Heads = Heads + 1;
    else
        Tails = Tails + 1;
    end
 end

function nTosses = Gap( N )
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The Header…

function nTosses = Gap(N)

output
parameter
list

input
parameter
list
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The Body

 Heads = 0; Tails = 0; nTosses = 0;
 while ( abs(Heads-Tails) < N )
    nTosses = nTosses + 1;
    if ( rand ( ) < 0.5 )
        Heads = Heads + 1;
    else
        Tails = Tails + 1;
    end
 end

The necessary output value is computed.
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Local Variables

 Heads = 0; Tails = 0; nTosses = 0;
 while ( abs(Heads-Tails) < N )
    nTosses = nTosses + 1;
    if ( rand ( ) < 0.5 )
        Heads = Heads + 1;
    else
        Tails = Tails + 1;
    end
 end
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A Helpful Style
 Heads = 0; Tails = 0; n = 0;
 while ( abs(Heads-Tails) < N )
    n = n + 1;
    if ( rand ( ) < 0.5 )
        Heads = Heads + 1;
    else
        Tails = Tails + 1;
    end
 end
 nTosses = n;

Explicitly assign output value at the end.
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The Specification…

% Simulates a game where you
% keep tossing a fair coin
% until |Heads - Tails| == N.
% N is a positive integer and
% nTosses is the number of 
% tosses needed.

function nTosses = Gap(N)
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Compute an Expected Value
The gap() function puts the computation into a neat package.  Now 

we can easily refer to that computation by name.  Let’s use it to 
estimate the average value of the score (number of tosses) for a 
given value of N (the gap size).

Strategy:

    Play “Gap N” a large number of times, say “M”.

    Add each score to “total”.

    After M games, compute total/M to get a typical score for this 
value of N.



Insight Through 
Computing

 

Solution…

 
N = input('Enter N:');
M = 10000;
s = 0;
for k=1:M
   s = s + Gap(N);
end
ave = s/M;

A very 
common 
methodology 
for the 
estimation of 
expected 
value.
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Sample Outputs

N = 10  Expected Value =  98.67

N = 20  Expected Value = 395.64

N = 30  Expected Value = 889.11
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Solution…

 
N = input('Enter N:');
M = 10000;
s = 0;
for k=1:M
   s = s + Gap(N);
end
ave = s/M;

Program development is made easier by having 
a function that handles a single game.
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What if the Game Was
Not “ Packaged”? 

 
s = 0;

for k=1:M

   score = Gap(N)

   s = s + score;

end

ave = s/M;
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s = 0;

for k=1:M

   score = Gap(N)

   s = s + score;

end

ave = s/M;

 Heads = 0; Tails = 0; nTosses = 0;
 while ( abs(Heads-Tails) < N )
    nTosses = nTosses + 1;
    if ( rand() < 0.5 )
        Heads = Heads + 1;
    else
        Tails = Tails + 1;
    end
 end
 score = nTosses;

A more 
cumbersome 
implementation



Insight Through 
Computing

 

Is there a Pattern?

N = 10  Expected Value =  98.67

N = 20  Expected Value = 395.64

N = 30  Expected Value = 889.11
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Compute MANY Expected Values

We computed the expected value of Gap(N) for one value of 
N.

We would expect that the score (number of tosses), would 
increase as we increased N (the gap between Heads and 
Tails).  

The interesting question is how this expected value 
increases with N.

We can estimate the expected value of Gap(N) for a range 
of N-values, say, N = 1:30
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Pseudocode

for N=1:30

     Estimate expected value of Gap(N)

     Display the estimate.

end
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Pseudocode

Refine this!

for N=1:30

     Estimate expected value of Gap(N)

     Display the estimate.

end
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Done that..

 
M = 10000;
s = 0;
for k=1:M
   s = s + Gap(N);
end
ave = s/M;
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Sol’n Involves a Nested Loop

for N = 1:30

% Estimate the expected value of Gap(N)

   s = 0;

   for k=1:M

      s = s + Gap(N);

   end

   ave = s/M;

   fprintf('%3d   %16.3f',N,ave)

end
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Sol’n Involves a Nested Loop

for N = 1:30

% Estimate the expected value of Gap(N)

   s = 0;

   for k=1:M

      s = s + Gap(N);

   end

   ave = s/M;

   disp(sprintf('%3d   %16.3f',N,ave))

end

But during derivation, we never had to
reason about more than one loop.



Insight Through 
Computing

 

Output

  N      Expected Value of Gap(N)
--------------------------------
  1              1.000
  2              4.009
  3              8.985
  4             16.094

 28            775.710
 29            838.537
 30            885.672

Looks like N2.

Maybe 
increase M to 
solidify 
conjecture.
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Random Quadratics

Generate a random quadratic 
     q(x) = ax2 + bx + c

If it has two real roots, then plot 
q(x) and highlight the roots.
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Sample Output
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Uniform Random Numbers

rand() gives us a random value in [0,1], and 
picks values “uniformly”.  Here is a 
histogram of a selection of 1000 such 
values.
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Normal Random Numbers
randn() gives random values in  
(-oo,+oo), with average value 0, 
and a strong tendency to be 
close to 0.  Negative values are 
as likely as positive ones. 
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Set random coefficients

function [a,b,c] = quadratic_random()

% To make our random coefficients more 

% interesting, we generate them with randn().

  a = randn(); 

  b = randn(); 

  c = randn();

  return

end
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Input & Output Parameters

 function [a,b,c] = quadratic_random()

A function 
can have 
no input 
parameters.

Syntax: Nothing

A function
can have more than 
one output
parameter.

Syntax: [v1,v2,… ]
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Computing the Roots

function r = quadratic_roots_real ( a, b, c )

  d = b^2 – 4.0 * a * c;

  if ( d < 0.0 )
    r = [];
  elseif ( d == 0.0 )
    r = - b / ( 2.0 * a );
  else
    r = [ ( - b + sqrt ( d ) ) / ( 2.0 * a ), ...
          ( - b – sqrt ( d ) ) / ( 2.0 * a ) ];
  end

  return
end
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Script Pseudocode

for k = 1:10

    Generate a random quadratic;
    Compute its real roots;
    If there are two real roots:
         plot the quadratic and roots.
end
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Script Pseudocode

for k = 1:10

    Generate a random quadratic;
    Compute its real roots;
    If there are two real roots:
         plot the quadratic and roots.
end

[a,b,c] = quadratic_random();
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Script Pseudocode

for k = 1:10

    [a,b,c] = quadratic_random();
    Compute its real roots;
    If there are two real roots:
         plot the quadratic and roots.
end

r = quadratic_roots_real(a,b,c);
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Script Pseudocode

for k = 1:10

 [a,b,c] = quadratic_random();

 r = quadratic_roots_real(a,b,c);

  If two real roots:
         plot the quadratic and roots.
end

n = length ( r );  if ( n == 2 )
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Script Pseudocode

for k = 1:10
 [a,b,c] = quadratic_random();
 r = quadratic_roots_real(a,b,c);
 n = length ( r );
 if ( n == 2 )
         plot the quadratic and roots.
  end
end
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Plot the Quadratic and Roots

r_min = min(r); 

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate ( a, b, c, x );

plot(x,y, ...

     x,0*y,':k', ...

     r_min,0,'or', ...

     r_max,0,'or')
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Plot the Quadratic and Roots

r_min = min(r); 

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate ( a, b, c, x );

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

This determines a nice range of x-values.
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Plot the Quadratic and Roots

r_min = min(r); 

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate ( a, b, c, x );

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

Get the y-values.
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Evaluate a quadratic polynomial

function y = quadratic_evaluate ( a, b, c, x )

%% QUADRATIC_EVALUATE evaluates a quadratic polynomial.
%
%  A, B, C are the coefficients of the polynomial.
%
%  X is the number, list, or table of evaluation points.
%
%  Y is the number, list or table of values.
%
  y = a * x.^2 + b * x + c;

  return
end
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Plot the Quadratic and Roots

r_min = min(r); 

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate ( a, b, c, x );

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

Graphs the quadratic.
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Plot the Quadratic and Roots

r_min = min(r); 

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate ( a, b, c, x );

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

A black, dashed line x-axis.
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Plot the Quadratic and Roots

r_min = min(r); 

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate ( a, b, c, x );

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

Highlight root r_min with red circle.
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Plot the Quadratic and Roots

r_min = min(r); 

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate ( a, b, c, x );

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

Highlight root r_max with red circle.
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Complete Solution with 3 User Functions

for k=1:10
   [a,b,c] = quadratic_random();     
   r = quadratic_roots_real ( a, b, c );
   n = length ( r );
   if ( n == 2 )
     r_min = min(r); r_max = max(r);
     x = linspace(r_min-1,r_max+1,100);
     y = quadratic_evaluate ( a, b, c, x );
     plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or')
     shg       <- Bring graphics window to front!
     pause(2)  <-Wait a few seconds.
   end
end
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Homework #6
Due October 20th

hw038: write a function which computes the 
perimeter of a triangle.  (The ‘wrap.m’ function file 
might help you.)

hw039: write a function which shrinks a triangle.

hw040: write a function which computes the area of 
a quadrilateral, using a function for the area of a 
triangle.

(Homework #5 is due tomorrow midnight!)
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