
Insight Through
Computing

Intro to Math Problem Solving
October 12

A “bumps” function
A few more function rules
Graphics functions
A triangle function
The WRAP function
The GAP Game
Random quadratic equations
Homework #6

Insight Through
Computing

A “bumps” function

As a reminder of how functions work, let’s
set up a MATLAB function for the
mathematical function defined here:

 2 -2
z = -------------------- + -------------------
 (x-1/2)^2 +y^2 (x+1/2)^2+y^2
 e e

Insight Through
Computing

bumps.m

function z = bumps (x, y)

%% BUMPS evaluates a function z(x,y) that has a bump up and one down.
%
% X, Y, are the evaluation point. X and Y can be vectors or arrays.
%
% Z is the function value at (X,Y).
%
 z = 2.0 ./ exp ((x - 0.5).^2 + y.^2) ...
 - 2.0 ./ exp ((x + 0.5).^2 + y.^2);

 return
end

Insight Through
Computing

Check with a plot?

Being able to see your work is huge help in
catching errors. We can’t call plot()
because z is a function of two variables
instead of 1.

However, MATLAB has a surf() function
which can display functions z(x,y).

To use it, we need to create TABLES (or
arrays or matrices) of X, Y, and Z data.

Insight Through
Computing

bumps_surf.m

x = linspace (-2.0, + 2.0, 101); make x and y lists. This is familiar.←
y = linspace (-2.0, + 2.0, 101);

[X, Y] = meshgrid (x, y); this makes X and Y “tables”. This is new.←

Z = bumps (X, Y); “Z” will contain a “table” of Z values.←

surf (X, Y, Z, 'Edgecolor', 'None'); Make a plot.←

title ('The BUMPS function', 'Fontsize', 16);
xlabel ('<-- X -->');
ylabel ('<-- Y -->');
zlabel ('<-- Z -->');

print ('-djpeg', 'bumps.jpg');

Insight Through
Computing

bumps.jpg, a plot made from “tables”

Insight Through
Computing

A few notes about functions

Now that we’ve been introduced to
functions, it will be helpful to look at a
few details and extra features that may
come up from time to time.

Insight Through
Computing

Supply the right number of inputs!

function total = addem (a, b, c)
 total = a + b + c;
 return
end

total = addem (1, 2, 3)
total = addem (1, 2, 3, 4)
total = addem (1, 2)
total = addem ()
total = addem

Insight Through
Computing

The function must set all outputs!

function [big, small] = maxmin (a, b)

 if (a < b)
 big = b;
 small = a;
 else
 big = a;
 little = b; <- Oops! Meant to say "small = ..."
 end

 return
end

This function will FAIL, but only in cases where a >= b!

Insight Through
Computing

You can RETURN early

function [m, e] = scientific (x)
 m = x;
 e = 0;
 if (1 <= x && x < 10)
 return
 end

 while (m < 1)
 m = m * 10;
 e = e – 1;
 end

 while (10 <= m)
 m = m / 10;
 e = e + 1;
 end

 return
end

Insight Through
Computing

Use ERROR() for Warnings

function ratio = dividem (a, b)

 if (b == 0)
 error ('A/B undefined when B = 0!')
 end

 ratio = a / b;

 return
end

Insight Through
Computing

A "PlotShape" function

If a triangle is described by xlist and ylist, we know
that the command

 fill (xlist, ylist, 'r');
draws a triangle filled with red; but if we want the

outline, we have to repeat the first point:
 plot ([xlist, xlist(1)], [ylist, ylist(1)], 'r-');
Also, if we want to specify rgb color, we have to use a

more complicated plot command.
And we usually draw a thicker line than the default.
Why don't we just write a function that looks like

plot(), but takes care of these details for us?

Insight Through
Computing

plotshape.m
function plotshape (xlist, ylist, color)

% plotshape will draw the polygon defined by xlist, ylist.
%
% color can be 'r', 'g', 'b', 'c', 'm', 'y', 'w', 'k'
% or it can be an RGB triple like [1.0, 0.4, 0.0].
%
 plot ([xlist, xlist(1)], [ylist, ylist(1)], 'Color', ...
 color, 'LineWidth', 3);

 return
end

Insight Through
Computing

Some Triangle Functions

This week’s homework will be all about triangles. One question asks you to compute the
perimeter, which involves summing the lengths of the sides:

 perim = distance (vertex 1 to vertex 2)
 + distance (vertex 2 to vertex 3)
 + distance (vertex 3 to vertex 1)

Here “distance()” is NOT a MATLAB function, but just represents the fact that we need to
compute that distance.

This almost looks like a perfect FOR loop:

 perim = 0.0;
 for i = 1 : 3
 perim = perim + distance (vertex i to vertex i+1)
 end

but this “breaks” on the last step!

Insight Through
Computing

A simple fix

 perim = 0.0;
 for i = 1 : 3

 if (i == 1)
 vertex_old = vertex(3);
 else
 vertex_old = vertex(i-1);
 end

 perim = perim + distance (vertex(i) – vertex_old);
 end

Insight Through
Computing

Fix with extra variable

perim = 0.0;
im1 = 3;

for i = 1 : 3

 perim = perim + distance (vertex(i) - vertex(im1));
 im1 = i;

end

So im1 is 3, 1, 2, in loops 1, 2, and 3.

Insight Through
Computing

A clever fix

perim = 0.0;

for i = 1 : 3
 perim = perim + distance (vertex(i) – ...
 vertex(mod (i+1, 3) + 1);
end

because mod(i+1,3)+1 = 3, 1, 2 for i = 1, 2, 3.

Insight Through
Computing

Advantages to a FOR loop

We could have compute the perimeter by
simply writing out the three terms of the
sum.

The advantage of figuring out a way to use
a FOR loop for that kind of computation
is that you can easily adapt the
computation to handle a square (4 sides),
and you can see how to generalize it to
handle a polygon with n sides.

Insight Through
Computing

A “wrap around” function

In the triangle perimeter case, we saw that while
the first vertex was counting 1, 2, 3, the second
vertex was going 2, 3, 1. That is, once we
reached the maximum value of 3, the next value
“wrapped around” to 1.

We tried three different ways to deal with this
issue, with an IF statement, or an extra
variable, or a MOD function.

What if we wrote a “wrap around” function that
said, “I am counting between 1 and n, but if I
say n+1, I must really mean 1.”

Insight Through
Computing

wrap.m

function i = wrap (i, ilo, ihi)
%
% WRAP uses “wrap-around” counting.
%
 n = ihi + 1 – ilo; How many values?←
 i = ilo + mod (i – ilo, n); Where does I ←

belong?

 return
end

Insight Through
Computing

Wrap Demo

wrap(-2,1,3) = 1 wrap(-2,3,6) = 6
wrap(-1,1,3) = 2 wrap(-1,3,6) = 3
wrap(0,1,3) = 3 wrap(0,3,6) = 4
wrap(1,1,3) = 1 wrap(1,3,6) = 5
wrap(2,1,3) = 2 wrap(2,3,6) = 6
wrap(3,1,3) = 3 wrap(3,3,6) = 3
wrap(4,1,3) = 1 wrap(4,3,6) = 4
wrap(5,1,3) = 2 wrap(5,3,6) = 5
wrap(6,1,3) = 3 wrap(6,3,6) = 6
wrap(7,2,3) = 1 wrap(7,3,6) = 3

Insight Through
Computing

Version 4

perim = 0.0;

for i = 1 : 3

 perim = perim + distance (x(i),y(i) to x(wrap(i+1)),y(wrap(i+1)));

end

wrap(i+1) = 2, 3, 1 as i = 1, 2, 3.

We will find wrap.m useful for some other problems we will work
on.

Insight Through
Computing

Generalize to Polygon

function perim = polygon_perimeter (xlist, ylist)

 n = length (xlist);
 perim = 0.0;
 im1 = n;

 for i = 1 : n

 perim = perim + distance ((xlist(i), ylist(i)) to (xlist(im1),ylist(im1)))
 im1 = i;

 end

 return
end

Insight Through
Computing

The “Gap N” Game

Keep tossing a fair coin until

 | Heads – Tails | == N

Score = total number of tosses

Write a function Gap(N) that returns the
score. Estimate the average score given N.

Insight Through
Computing

The Packaging…

 Heads = 0; Tails = 0; nTosses = 0;
 while (abs(Heads-Tails) < N)
 nTosses = nTosses + 1;
 if (rand() < 0.5)
 Heads = Heads + 1;
 else
 Tails = Tails + 1;
 end
 end

function nTosses = Gap(N)

Insight Through
Computing

The Header…

function nTosses = Gap(N)

output
parameter
list

input
parameter
list

Insight Through
Computing

The Body

 Heads = 0; Tails = 0; nTosses = 0;
 while (abs(Heads-Tails) < N)
 nTosses = nTosses + 1;
 if (rand () < 0.5)
 Heads = Heads + 1;
 else
 Tails = Tails + 1;
 end
 end

The necessary output value is computed.

Insight Through
Computing

Local Variables

 Heads = 0; Tails = 0; nTosses = 0;
 while (abs(Heads-Tails) < N)
 nTosses = nTosses + 1;
 if (rand () < 0.5)
 Heads = Heads + 1;
 else
 Tails = Tails + 1;
 end
 end

Insight Through
Computing

A Helpful Style
 Heads = 0; Tails = 0; n = 0;
 while (abs(Heads-Tails) < N)
 n = n + 1;
 if (rand () < 0.5)
 Heads = Heads + 1;
 else
 Tails = Tails + 1;
 end
 end
 nTosses = n;

Explicitly assign output value at the end.

Insight Through
Computing

The Specification…

% Simulates a game where you
% keep tossing a fair coin
% until |Heads - Tails| == N.
% N is a positive integer and
% nTosses is the number of
% tosses needed.

function nTosses = Gap(N)

Insight Through
Computing

Compute an Expected Value
The gap() function puts the computation into a neat package. Now

we can easily refer to that computation by name. Let’s use it to
estimate the average value of the score (number of tosses) for a
given value of N (the gap size).

Strategy:

 Play “Gap N” a large number of times, say “M”.

 Add each score to “total”.

 After M games, compute total/M to get a typical score for this
value of N.

Insight Through
Computing

Solution…

N = input('Enter N:');
M = 10000;
s = 0;
for k=1:M
 s = s + Gap(N);
end
ave = s/M;

A very
common
methodology
for the
estimation of
expected
value.

Insight Through
Computing

Sample Outputs

N = 10 Expected Value = 98.67

N = 20 Expected Value = 395.64

N = 30 Expected Value = 889.11

Insight Through
Computing

Solution…

N = input('Enter N:');
M = 10000;
s = 0;
for k=1:M
 s = s + Gap(N);
end
ave = s/M;

Program development is made easier by having
a function that handles a single game.

Insight Through
Computing

What if the Game Was
Not “ Packaged”?

s = 0;

for k=1:M

 score = Gap(N)

 s = s + score;

end

ave = s/M;

Insight Through
Computing

s = 0;

for k=1:M

 score = Gap(N)

 s = s + score;

end

ave = s/M;

 Heads = 0; Tails = 0; nTosses = 0;
 while (abs(Heads-Tails) < N)
 nTosses = nTosses + 1;
 if (rand() < 0.5)
 Heads = Heads + 1;
 else
 Tails = Tails + 1;
 end
 end
 score = nTosses;

A more
cumbersome
implementation

Insight Through
Computing

Is there a Pattern?

N = 10 Expected Value = 98.67

N = 20 Expected Value = 395.64

N = 30 Expected Value = 889.11

Insight Through
Computing

Compute MANY Expected Values

We computed the expected value of Gap(N) for one value of
N.

We would expect that the score (number of tosses), would
increase as we increased N (the gap between Heads and
Tails).

The interesting question is how this expected value
increases with N.

We can estimate the expected value of Gap(N) for a range
of N-values, say, N = 1:30

Insight Through
Computing

Pseudocode

for N=1:30

 Estimate expected value of Gap(N)

 Display the estimate.

end

Insight Through
Computing

Pseudocode

Refine this!

for N=1:30

 Estimate expected value of Gap(N)

 Display the estimate.

end

Insight Through
Computing

Done that..

M = 10000;
s = 0;
for k=1:M
 s = s + Gap(N);
end
ave = s/M;

Insight Through
Computing

Sol’n Involves a Nested Loop

for N = 1:30

% Estimate the expected value of Gap(N)

 s = 0;

 for k=1:M

 s = s + Gap(N);

 end

 ave = s/M;

 fprintf('%3d %16.3f',N,ave)

end

Insight Through
Computing

Sol’n Involves a Nested Loop

for N = 1:30

% Estimate the expected value of Gap(N)

 s = 0;

 for k=1:M

 s = s + Gap(N);

 end

 ave = s/M;

 disp(sprintf('%3d %16.3f',N,ave))

end

But during derivation, we never had to
reason about more than one loop.

Insight Through
Computing

Output

 N Expected Value of Gap(N)

 1 1.000
 2 4.009
 3 8.985
 4 16.094

 28 775.710
 29 838.537
 30 885.672

Looks like N2.

Maybe
increase M to
solidify
conjecture.

Insight Through
Computing

Random Quadratics

Generate a random quadratic
 q(x) = ax2 + bx + c

If it has two real roots, then plot
q(x) and highlight the roots.

Insight Through
Computing

Sample Output

Insight Through
Computing

Uniform Random Numbers

rand() gives us a random value in [0,1], and
picks values “uniformly”. Here is a
histogram of a selection of 1000 such
values.

Insight Through
Computing

Normal Random Numbers
randn() gives random values in
(-oo,+oo), with average value 0,
and a strong tendency to be
close to 0. Negative values are
as likely as positive ones.

Insight Through
Computing

Set random coefficients

function [a,b,c] = quadratic_random()

% To make our random coefficients more

% interesting, we generate them with randn().

 a = randn();

 b = randn();

 c = randn();

 return

end

Insight Through
Computing

Input & Output Parameters

 function [a,b,c] = quadratic_random()

A function
can have
no input
parameters.

Syntax: Nothing

A function
can have more than
one output
parameter.

Syntax: [v1,v2,…]

Insight Through
Computing

Computing the Roots

function r = quadratic_roots_real (a, b, c)

 d = b^2 – 4.0 * a * c;

 if (d < 0.0)
 r = [];
 elseif (d == 0.0)
 r = - b / (2.0 * a);
 else
 r = [(- b + sqrt (d)) / (2.0 * a), ...
 (- b – sqrt (d)) / (2.0 * a)];
 end

 return
end

Insight Through
Computing

Script Pseudocode

for k = 1:10

 Generate a random quadratic;
 Compute its real roots;
 If there are two real roots:
 plot the quadratic and roots.
end

Insight Through
Computing

Script Pseudocode

for k = 1:10

 Generate a random quadratic;
 Compute its real roots;
 If there are two real roots:
 plot the quadratic and roots.
end

[a,b,c] = quadratic_random();

Insight Through
Computing

Script Pseudocode

for k = 1:10

 [a,b,c] = quadratic_random();
 Compute its real roots;
 If there are two real roots:
 plot the quadratic and roots.
end

r = quadratic_roots_real(a,b,c);

Insight Through
Computing

Script Pseudocode

for k = 1:10

 [a,b,c] = quadratic_random();

 r = quadratic_roots_real(a,b,c);

 If two real roots:
 plot the quadratic and roots.
end

n = length (r); if (n == 2)

Insight Through
Computing

Script Pseudocode

for k = 1:10
 [a,b,c] = quadratic_random();
 r = quadratic_roots_real(a,b,c);
 n = length (r);
 if (n == 2)
 plot the quadratic and roots.
 end
end

Insight Through
Computing

Plot the Quadratic and Roots

r_min = min(r);

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate (a, b, c, x);

plot(x,y, ...

 x,0*y,':k', ...

 r_min,0,'or', ...

 r_max,0,'or')

Insight Through
Computing

Plot the Quadratic and Roots

r_min = min(r);

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate (a, b, c, x);

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

This determines a nice range of x-values.

Insight Through
Computing

Plot the Quadratic and Roots

r_min = min(r);

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate (a, b, c, x);

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

Get the y-values.

Insight Through
Computing

Evaluate a quadratic polynomial

function y = quadratic_evaluate (a, b, c, x)

%% QUADRATIC_EVALUATE evaluates a quadratic polynomial.
%
% A, B, C are the coefficients of the polynomial.
%
% X is the number, list, or table of evaluation points.
%
% Y is the number, list or table of values.
%
 y = a * x.^2 + b * x + c;

 return
end

Insight Through
Computing

Plot the Quadratic and Roots

r_min = min(r);

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate (a, b, c, x);

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

Graphs the quadratic.

Insight Through
Computing

Plot the Quadratic and Roots

r_min = min(r);

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate (a, b, c, x);

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

A black, dashed line x-axis.

Insight Through
Computing

Plot the Quadratic and Roots

r_min = min(r);

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate (a, b, c, x);

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

Highlight root r_min with red circle.

Insight Through
Computing

Plot the Quadratic and Roots

r_min = min(r);

r_max = max(r);

x = linspace(r_min-1,r_max+1,100);

y = quadratic_evaluate (a, b, c, x);

plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or
')

Highlight root r_max with red circle.

Insight Through
Computing

Complete Solution with 3 User Functions

for k=1:10
 [a,b,c] = quadratic_random();
 r = quadratic_roots_real (a, b, c);
 n = length (r);
 if (n == 2)
 r_min = min(r); r_max = max(r);
 x = linspace(r_min-1,r_max+1,100);
 y = quadratic_evaluate (a, b, c, x);
 plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or')
 shg <- Bring graphics window to front!
 pause(2) <-Wait a few seconds.
 end
end

Insight Through
Computing

Homework #6
Due October 20th

hw038: write a function which computes the
perimeter of a triangle. (The ‘wrap.m’ function file
might help you.)

hw039: write a function which shrinks a triangle.

hw040: write a function which computes the area of
a quadrilateral, using a function for the area of a
triangle.

(Homework #5 is due tomorrow midnight!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

