
Insight Through
Computing

Intro Math Problem Solving
September 26

The Collatz Sequence
Two-step Stepping Stones
The Fibonacci Sequence
Thursday’s Exam

Insight Through
Computing

In Class Exercise

if n is even
 divide it by 2
but if n is odd replace it by :
 A) 3n+1
 B) 3n-1
 C) 5n+1
and continue until you reach 1.

We will talk about option A.
What can happen with options B or C?

Insight Through
Computing

Recall “Stepping stone” Sequences

Instead of a formula for a(n), some
sequences start at a(0) or a(1), then
take one step at a time towards a(n).

 Computing even a single value a(n)
nonetheless requires a FOR loop.

Insight Through
Computing

Example: The Triangular Sequence
a(i) counts the dots necessary to draw a triangle of dots with i rows. a(6) = 21

 O
 O O
 O O O
 O O O O
 O O O O O
O O O O O O

Formula: a(i) = i*(i+1)/2
Stepping stone:
 a(0) = 0
 a(i) = a(i-1) + i .

a(0) = 0
a(1) = a(0) + 1 = 0 + 1 = 1
a(2) = a(1) + 2 = 1 + 2 = 3
a(3) = a(2) + 3 = 3 + 3 =6
a(4) = a(3) + 4 = 6 + 4 = 10
a(5) = a(4) + 5 = 10 + 5 = 15
a(6) = a(5) + 6 = 15 + 6 = 21

Insight Through
Computing

triangular_keep1.m

n = input ('Enter the highest index to compute: ');

for i = 0 : n

 if (i == 0)
 a = 0;
 else
 aold = a; We save a copy of a as “aold”;←
 a = aold + i; and then we “step” to the next value.←
 end

 fprintf ('a(%d) = %d\n', i, a);
end

Insight Through
Computing

Why Stepping Stones?

So far, the sequences we have seen could
be described equally well by a formula
or by a stepping stone rule.

Today, we will see two examples for which
a stepping stone rule is natural, but for
which a formula does not exist, or is not
at all obvious to you.

Case 1: The Collatz Sequence

Insight Through
Computing

A mysterious sequence

In weather, a hailstone forms from a particle
of ice that grows through repeated rising
and falling through cold rain clouds, until it
grows so heavy it must fall to the ground.

Here’s a mathematical calculation where we
compute a sequence of numbers that can
rise and fall until suddenly stopping at 1.

No one has a simple formula to predict how
many such steps will be involved.

Insight Through
Computing

The rules for “hailstone”

Pick an initial value for N.

If N is 1, we are done.
If N is even, replace N by N/2.
If N is odd, replace N by 3*N+1.
Repeat.

Insight Through
Computing

Hailstone Calculation for N = 12

0 12
1 12/2=6
2 6/2=3
3 3*3+1=10
4 10/2 = 5
5 3*5+1 = 16
6 16/2 = 8
7 8/2 = 4
8 4/2 = 2
9 2/1 = 1 stop after 9 steps

Insight Through
Computing

hail_next.m
Assuming I = 0, and N is defined, this will work, showing one value at a time.:

while (true)

 fprintf (' %d: N = %d\n', i, n);
 pause Wait for me to hit RETURN←

 if (n == 1) “If N = 1, stop”←
 fprintf (' Terminate.\n');
 i = 0;
 break;
 end

 i = i + 1;
 if (mod (n, 2) == 0) Even numbers get divided by 2;←
 n = n / 2;
 else
 n = 3 * n + 1; Odd numbers, triple plus 1.←
 end

end

Insight Through
Computing

Hailstone is a Stepping Stone Sequence

Symbolize the i-th entry as h(i).
We get to pick h(0), the initial value.
Then we apply the rule to get the next entry.
We can’t jump ahead; to find h(10), we have

to compute h(1), h(2), …,h(9) first.
The sequence rule is more complicated that

usual.
Also, it’s unusual that the sequence stops (is

finite, not infinite). [That’s a conjecture.]

Insight Through
Computing

Strategy for a program

Let the user pick an initial value for N
Let I count the steps, starting at 0.

AS LONG AS (N is not 1)
 Take another step (increase I)
 If (N is even) then
 Divide it by 2
 Otherwise (it’s odd) so
 Multiply it by 3 and add 1
 Print N (it has changed!)
End of repeated statements

Insight Through
Computing

hail_sequence.m

i = 0;

while (n ~= 1)

 if (i == 0)
 n = input (‘Enter starting value for Collatz sequence: ‘);
 else
 if (mod (n, 2) == 0)
 n = n / 2;
 else
 n = 3 * n + 1;
 end
 end
 fprintf (‘ %d’, n);
 i = i + 1;

end

fprintf (‘\n’);
fprintf (‘ We took %d steps\n’, i);

Insight Through
Computing

This is a famous problem

This hailstone problem has other names.
Sometimes it’s called the 3n+1 problem.
It was first described by mathematician

Lothar Collatz, so we hear of the
Collatz problem, or a Collatz sequence.

The problem interests mathematicians
because a simple set of rules reveal a
combination of chaos and patterns.

Insight Through
Computing

Chaos and Patterns

For a number N, let “length(N)” count the
steps until N is transformed to 1.

One pattern: length(2^k)=k.
 So, length(64) = 6: 64, 32, 16, 8, 4, 2, 1.

“Chaos”: length varies unpredictably:
 length(26) = 10, but length(27) = 111
and no formula for sequence entries.

Insight Through
Computing

hail_length.m

i = 0;

while (1 < n)

 if (i == 0)
 n = input (' Enter a starting value for Collatz sequence: ');
 n_save = n;
 else
 if (mod (n, 2) == 0)
 n = n / 2;
 else
 n = 3 * n + 1;
 end
 end

 i = i + 1;

end
fprintf (' Collatz sequence for %d has length %d\n', n_save, i);

Insight Through
Computing

The “length” for 1 <= N <= 10,000

Insight Through
Computing

The “Height” of a Collatz Sequence

Assuming every Collatz sequence
“hailstone” lands at 1 eventually, it’s also
interesting to ask how high it got during
its up and down cycles.

To do this, we have to compute the
maximum value of the sequence, which
we do by creating a new variable
“n_max”, and then comparing it to the
value of “n” every time.

Insight Through
Computing

collatz_height.m
i = 0;

while (0 < n;)

 if (i == 0)
 n = input (' Enter a starting value for Collatz sequence: ');
 n_save = n;
 height=n;
 else
 if (mod (n, 2) == 0)
 n = n / 2;
 else
 n = 3 * n + 1;
 end
 height = max (height, n);
 end

 i = i + 1;

end
fprintf (' Collatz sequence for %d has height %d\n', n_save, height);

Insight Through
Computing

Collatz Sequence for N=27

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274,

137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593,

1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,

638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822,

911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433,

1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10,

5, 16, 8, 4, 2, 1

Here is the Collatz sequence that starts at N=27.

The Collatz length is 111.

The Collatz height is 9,232.

Odd numbers (in bold) make the sequence rise.

Who could predict this complicated behavior?

Insight Through
Computing

Mathematical Questions
Does every starting value N eventually reach 1?

Does any starting value result in a loop?

Does any starting value produce an infinite,
nonrepeating sequence?

Is there any way to predict starting values N
that produce a sequence that takes a long time
to reach 1, or that hits a very high value?

Insight Through
Computing

A Few Mathematical Answers

Every starting point greater than 2^K
must take at least K steps to reach 1.

No number in the sequence can appear
more than once (or else there’s a loop).

The paths of the Collatz sequences form a
tree that connects every number N to
the root value 1.

Insight Through
Computing

A bit of the Collatz Tree

Insight Through
Computing

Exercise

What happens if we replace “3n+1” by “3n-1”
and look at that sequence? (Start at 5)

What happens if we replace “3n+1” by “5n-1”
and look at that sequence? (Start at 7)

Loops and infinite sequences NEVER (seem
to) happen with the Collatz 3n+1 rule!

Insight Through
Computing

The Value of Computation

Paul Erdos (every mathematician should learn about
him!) said “Mathematics may not be ready for such
problems,” but he offered $500 for a solution.

Computational methods let us see this complicated
structure, appreciate its patterns, and make
conjectures (mathematical guesses) about what is
going on.

Perhaps the riddles of the Collatz sequence will be
solved in the mathematical future.

Insight Through
Computing

Leading up to Fibonacci

Before we examine our second sequence
for which stepping stones are the right
description, we have to learn how to
handle slightly more complicated
stepping stone rules. Once we see how
to deal with a “two step” rule, we can
proceed to:

Case 2: The Fibonacci Sequence

Insight Through
Computing

Example: The Triangular Sequence

We could write a MATLAB program that only stores
one number, the current value of “a(i)”.

a(0): a <- 0 Initial condition←
a(1): a <- a + 1 = 0 + 1 = 1 Step i adds i to a←
a(2): a <- a + 2 = 1 + 2 = 3
a(3): a <- a + 3 = 3 + 3 =6
a(4): a <- a + 4 = 6 + 4 = 10
a(5): a <- a + 5 = 10 + 5 = 15
a(6): a <- a + 6 = 15 + 6 = 21

Insight Through
Computing

Maybe temporarily keep 1 previous value

Sometimes it’s convenient to keep old and new
values, “aold” and “a”:

i=0: a = 1
i=1: aold = a, a = aold + i
i=2: aold = a, a = aold + i
i=3: aold = a, a = aold + i

Useful to detect convergence, for instance.

Insight Through
Computing

triangular_keep1.m

n = input (‘Enter maximum index of element: ‘)

a = 0;
for i = 0 : n

 if (i == 0)
 a = 0;
 else
 aold = a;
 a = aold + i;
 end

 fprintf (‘ a(%d) = %d\n’, n, a);
end

Insight Through
Computing

The Derangement Sequence

A stepping stone rule that needs TWO old values:
d(0) = 1;
d(1) = 0;
d(i) = (i-1) * (d(i-1) + d(i-2))

D(N) counts the ways to arrange numbers 1 through N so that no
number is in the “right” position.

D(0) = 1 (mathematical convention)
D(1) = 0
D(2) = 1 (“21”)
D(3) = 2 (“231”, “312”)
D(4) = 9 (“2143”, “2341”, “2413”, …)

Insight Through
Computing

Program a double stepping stone?

Assuming we start at index 0, we have to
remember that there are now two special
initializing steps, i=0 and i=1;

We need to store two previous values, maybe
dold and doldest.

Sequence values d(0) through d(13) are:
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496,

1334961, 14684570, 176214841,
2290792932

Insight Through
Computing

derangement_keep2.m

n = input (‘Enter the element index: ‘);

for i = 0 : n

 if (i == 0) set D←
 d = 1;
 elseif (i == 1) remember DOLD, and set D←
 dold = d;
 d = 0;
 else remember DOLDEST, DOLD, and set D←
 doldest = dold;
 dold = d;
 d = (i – 1) * (dold + doldest);
 end

 fprintf (‘D(%d) = %d\n’, i, d);

end

Insight Through
Computing

The habit of rabbits

A puzzle from the middle ages:
A child is given a pair of newborn rabbits.
These rabbits are “mathematical”

because, one month after they are born,
the rabbits can mate, and one month
after that, another breeding pair is
born.

And so on, and so on. Which means what,
exactly?

Insight Through
Computing

First Five Months

Insight Through
Computing

Formula vs Stepping Stone

The sequence counting the pairs of rabbits
begins 1,1,2,3,5,8,13,21,34,55,89,144…

It’s not easy to see a formula for these
numbers (it turns out there is one), but if
you just look at the numbers, you can see
a stepping stone rule:

to get a(i), just add a(i-1) and a(i-2).

Insight Through
Computing

fibonacci_keep2.m

n = input (‘Enter the element index: ‘);

for i = 0 : n

 if (i == 0) set F←
 f = 1;
 elseif (i == 1) remember FOLD, and set F←
 fold = f;
 f = 1;
 else remember FOLDEST, FOLD, and set F←
 foldest = fold;
 fold = f;
 f = fold + foldest;
 end

 fprintf (‘F(%d) = %d\n’, i, f);

end

Insight Through
Computing

A Fibonacci Formula

Although there’s no formula for entries in
the Collatz sequence, there is one for
the Fibonacci sequence...but it’s
surprisingly complicated.

You could find out where this formula
comes from if you take a class in
difference equations (NOT differential
equations!).

Insight Through
Computing

The Fibonacci Formula

Insight Through
Computing

fibonacci_formula.m

% fibonacci_formula.m
% Exact formula for the N-th Fibonacci number.
%
n = input ('Enter the index N: ');

f = (...
 ((1 + sqrt (5)) / 2) ^ n ...
 - ((1 - sqrt (5)) / 2) ^ n ...
) ...
 / sqrt (5);
%
% MATLAB regards F as a real number, so we have to ROUND() it
% so that the %d format will print it nicely.
%
fprintf (' F(%d) = %d\n', n, round (f));

Insight Through
Computing

Golden Rectangle, Ratio, Proportion

A “golden” rectangle has the property
that adding a square to the long side
makes a larger rectangle, but in the
same “golden ratio” of about 1.6 to 1.

Insight Through
Computing

Fibonacci Ratio Golden Ratio→

The ratios of Fibonacci numbers converge to the
golden ratio, whose value is exactly
(1+sqrt(5))/2 or 1.61803…

1/1 = 1
2/1 = 2
3/2 = 1.5
5/3 = 1.66…
8/5 = 1.6
13/8 =1.6250

Insight Through
Computing

fibonacci_ratio

n = input ('Enter the maximum element index: ');

for i = 0 : n

 if (i == 0)
 f = 1;
 elseif (i == 1)
 fold = f;
 f = 1;
 else
 foldest = fold;
 fold = f;
 f = fold + foldest;
 end

 if (0 < i)
 fprintf ('R(%d) = %20.16g\n', i, f / fold);
 end

end

Insight Through
Computing

Two References:

Brian Hayes, “On the ups and downs of
the hailstone numbers”,
[hayes_hailstone.pdf]

Martin Gardner, “The multiple
fascinations of the Fibonacci sequence”,

[gardner_1969_03.pdf]

Insight Through
Computing

In Class Exercise

For the Collatz sequence, we replace each odd number n by 3n+1. As
far as we know, this sequence has no loops (unless you count 4->2-
>1->4->2->1), and every starting point eventually decreases to 1.

Consider the rule where we replace odd n by 3n-1. Then for the

starting point n=5 we have 5 -> 14 -> 7 -> 20 -> 10 -> 5, which means
we have entered an infinite loop.

If we replace odd n by 5n+1, then for the starting point 7 we seem
to get an sequence that blows up.

Collatz was very smart or very lucky to study the 3n+1 version of
this process!

Insight Through
Computing

Exam on Thursday

There is a practice exam available on Canvas,
in the “files” directory for “09_28”.

The actual exam will be very similar.
There will NOT be questions on plotting, or

on fprintf, rand or randi or MATLAB lists.
You should review mod(), gcd(), &&, ||, for,

if/elseif/if, while(true), while(condition).
You should take your time on the questions,

and think step by step.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

