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In Class Exercise

if n is even
  divide it by 2
but if n is odd replace it by : 
    A) 3n+1
    B) 3n-1
    C) 5n+1
and continue until you reach 1.  

We will talk about option A.  
What can happen with options B or C?
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Recall “Stepping stone” Sequences

Instead of a formula for a(n), some 
sequences start at a(0) or a(1), then 
take one step at a time towards a(n).

 Computing even a single value a(n) 
nonetheless requires a FOR loop.
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Example: The Triangular Sequence
a(i) counts the dots necessary to draw a triangle of dots with i rows.  a(6) = 21

      O
     O O
   O O O
  O O O O
 O O O O O
O O O O O O

Formula: a(i) = i*(i+1)/2
Stepping stone:
  a(0) = 0
  a(i) = a(i-1) + i  .

a(0) = 0
a(1) = a(0) + 1 = 0 + 1 = 1
a(2) = a(1) + 2 = 1 + 2 = 3
a(3) = a(2) + 3 = 3 + 3 =6
a(4) = a(3) + 4 = 6 + 4 = 10
a(5) = a(4) + 5 = 10 + 5 = 15
a(6) = a(5) + 6 = 15 + 6 = 21
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triangular_keep1.m

n = input ( 'Enter the highest index to compute: ' );

for i = 0 : n

  if ( i == 0 )
    a = 0;
  else
    aold = a;           We save a copy of a as “aold”;←
    a = aold + i;      and then we “step” to the next value.←
  end

  fprintf ( 'a(%d) = %d\n', i, a );
end
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Why Stepping Stones?

So far, the sequences we have seen could 
be described equally well by a formula 
or by a stepping stone rule.

Today, we will see two examples for which 
a stepping stone rule is natural, but for 
which a formula does not exist, or is not 
at all obvious to you.

Case 1: The Collatz Sequence
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A mysterious sequence

In weather, a hailstone forms from a particle 
of ice that grows through repeated rising 
and falling through cold rain clouds, until it 
grows so heavy it must fall to the ground.

Here’s a mathematical calculation where we 
compute a sequence of numbers that can 
rise and fall until suddenly stopping at 1.

No one has a simple formula to predict how 
many such steps will be involved.
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The rules for “hailstone”

Pick an initial value for N.

If N is 1, we are done.
If N is even, replace N by N/2.
If N is odd, replace N by 3*N+1.
Repeat.
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Hailstone Calculation for N = 12

0  12
1  12/2=6
2  6/2=3
3  3*3+1=10
4  10/2 = 5
5  3*5+1 = 16
6  16/2 = 8
7  8/2 = 4
8  4/2 = 2
9  2/1 = 1 stop after 9 steps
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hail_next.m
Assuming I = 0, and N is defined, this will work, showing one value at a time.:

while ( true )

  fprintf ( ' %d: N = %d\n', i, n );
  pause                                                      Wait for me to hit RETURN←

  if ( n == 1 )                                              “If N = 1, stop”←
    fprintf ( '  Terminate.\n' );
    i = 0;
    break;
  end

  i = i + 1;
  if ( mod ( n, 2 ) == 0 )                            Even numbers get divided by 2;←
    n = n / 2;
  else
    n = 3 * n + 1;                                       Odd numbers, triple plus 1.←
  end

end
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Hailstone is a Stepping Stone Sequence

Symbolize the i-th entry as h(i).
We get to pick h(0), the initial value.
Then we apply the rule to get the next entry.
We can’t jump ahead; to find h(10), we have 

to compute h(1), h(2), …,h(9) first.
The sequence rule is more complicated that 

usual.
Also, it’s unusual that the sequence stops (is 

finite, not infinite). [That’s a conjecture.]
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Strategy for a program

Let the user pick an initial value for N
Let I count the steps, starting at 0.

AS LONG AS ( N is not 1 )
  Take another step (increase I)
  If ( N is even ) then
    Divide it by 2
  Otherwise ( it’s odd ) so 
    Multiply it by 3 and add 1
  Print N (it has changed!)
End of repeated statements
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hail_sequence.m

i = 0;

while ( n ~= 1 )

  if ( i == 0 )
    n = input ( ‘Enter starting value for Collatz sequence: ‘ );
  else
    if ( mod ( n, 2 ) == 0 )
      n = n / 2;
    else
      n = 3 * n + 1;
    end
  end
  fprintf ( ‘ %d’, n );
  i = i + 1;

end

fprintf ( ‘\n’ );
fprintf ( ‘  We took %d steps\n’, i );
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This is a famous problem

This hailstone problem has other names.
Sometimes it’s called the 3n+1 problem.
It was first described by mathematician 

Lothar Collatz, so we hear of the 
Collatz problem, or a Collatz sequence.

The problem interests mathematicians 
because a simple set of rules reveal a 
combination of chaos and patterns.
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Chaos and Patterns

For a number N, let “length(N)” count the 
steps until N is transformed to 1.

One pattern: length(2^k)=k.
  So, length(64) = 6: 64, 32, 16, 8, 4, 2, 1.

“Chaos”: length varies unpredictably:
  length(26) = 10, but length(27) = 111
and no formula for sequence entries.
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hail_length.m

i = 0;

while ( 1 < n )

  if ( i == 0 )
    n = input ( '  Enter a starting value for Collatz sequence: ' );
    n_save = n;
  else
    if ( mod ( n, 2 ) == 0 )
      n = n / 2;
    else
      n = 3 * n + 1;
    end
  end

  i = i + 1;

end
fprintf ( '  Collatz sequence for %d has length %d\n', n_save, i );
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The “length” for 1 <= N <= 10,000
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The “Height” of a Collatz Sequence

Assuming every Collatz sequence 
“hailstone” lands at 1 eventually, it’s also 
interesting to ask how high it got during 
its up and down cycles. 

To do this, we have to compute the 
maximum value of the sequence, which 
we do by creating a new variable 
“n_max”, and then comparing it to the 
value of “n” every time.
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collatz_height.m
i = 0;

while ( 0 < n; )

  if ( i == 0 )
    n = input ( '  Enter a starting value for Collatz sequence: ' );
    n_save = n;
    height=n;
  else
    if ( mod ( n, 2 ) == 0 )
      n = n / 2;
    else
      n = 3 * n + 1;
    end
    height = max ( height, n );
  end

  i = i + 1;

end
fprintf ( '  Collatz sequence for %d has height %d\n', n_save, height );
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Collatz Sequence for N=27

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 

137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 

1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 

638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 

911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 

1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 

5, 16, 8, 4, 2, 1

Here is the Collatz sequence that starts at N=27.

The Collatz length is 111.

The Collatz height is 9,232. 

Odd numbers (in bold ) make the sequence rise. 

Who could predict this complicated behavior?
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Mathematical Questions
Does every starting value N eventually reach 1?

Does any starting value result in a loop?

Does any starting value produce an infinite, 
nonrepeating sequence?

Is there any way to predict starting values N 
that produce a sequence that takes a long time 
to reach 1, or that hits a very high value?
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A Few Mathematical Answers

Every starting point greater than 2^K 
must take at least K steps to reach 1.

No number in the sequence can appear 
more than once (or else there’s a loop).

The paths of the Collatz sequences form a 
tree that connects every number N to 
the root value 1.
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A bit of the Collatz Tree
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Exercise

What happens if we replace “3n+1” by “3n-1” 
and look at that sequence? (Start at 5)

What happens if we replace “3n+1” by “5n-1” 
and look at that sequence? (Start at 7)

Loops and infinite sequences NEVER (seem 
to) happen with the Collatz 3n+1 rule!
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The Value of Computation

Paul Erdos (every mathematician should learn about 
him!) said  “Mathematics may not be ready for such 
problems,” but he offered $500 for a solution.

Computational methods let us see this complicated 
structure, appreciate its patterns, and make 
conjectures (mathematical guesses) about what is 
going on.

Perhaps the riddles of the Collatz sequence will be 
solved in the mathematical future.
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Leading up to Fibonacci

Before we examine our second sequence 
for which stepping stones are the right 
description, we have to learn how to 
handle slightly more complicated 
stepping stone rules.  Once we see how 
to deal with a “two step” rule, we can 
proceed to:

Case 2: The Fibonacci Sequence
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Example: The Triangular Sequence

We could write a MATLAB program that only stores 
one number, the current value of “a(i)”.

a(0): a <- 0                               Initial condition←
a(1): a <- a + 1 = 0 + 1 = 1           Step i adds i to a←
a(2): a <- a + 2 = 1 + 2 = 3
a(3): a <- a + 3 = 3 + 3 =6
a(4): a <- a + 4 = 6 + 4 = 10
a(5): a <- a + 5 = 10 + 5 = 15
a(6): a <- a + 6 = 15 + 6 = 21
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Maybe temporarily keep 1 previous value

Sometimes it’s convenient to keep old and new 
values, “aold” and “a”:

i=0:              a = 1
i=1: aold = a, a = aold + i
i=2: aold = a, a = aold + i
i=3: aold = a, a = aold + i

Useful to detect convergence, for instance.
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triangular_keep1.m

n = input ( ‘Enter maximum index of element: ‘ )

a = 0;
for i = 0 : n

  if ( i == 0 )
    a = 0;
  else
   aold = a;
    a = aold + i;
  end

  fprintf ( ‘  a(%d) = %d\n’, n, a );
end
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The Derangement Sequence

A stepping stone rule that needs TWO old values:
d(0) = 1; 
d(1) = 0;
d(i) = (i-1) * ( d(i-1) + d(i-2) )

D(N) counts the ways to arrange numbers 1 through N so that no 
number is in the “right” position.

D(0) = 1  (mathematical convention)
D(1) = 0  
D(2) = 1  ( “21”)
D(3) = 2  (“231”, “312”)
D(4) = 9 (“2143”, “2341”, “2413”, … )
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Program a double stepping stone?

Assuming we start at index 0, we have to 
remember that there are now two special 
initializing steps, i=0 and i=1;

We need to store two previous values, maybe 
dold and doldest.

Sequence values d(0) through d(13) are: 
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 

1334961, 14684570, 176214841, 
2290792932
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derangement_keep2.m

n = input ( ‘Enter the element index: ‘ );

for i = 0 : n

  if ( i == 0 )         set D←
    d = 1;
  elseif ( i == 1 )   remember DOLD, and set D←
    dold = d;
    d = 0;
  else                   remember DOLDEST, DOLD, and set D←
    doldest = dold;
    dold = d;
    d = ( i – 1 ) * ( dold + doldest );
  end

  fprintf ( ‘D(%d) = %d\n’, i, d );

end
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The habit of rabbits

A puzzle from the middle ages:
A child is given a pair of newborn rabbits.
These rabbits are “mathematical” 

because, one month after they are born, 
the rabbits can mate, and one month 
after that, another breeding pair is 
born.

And so on, and so on.  Which means what, 
exactly?
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First Five Months
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Formula vs Stepping Stone

The sequence counting the pairs of rabbits 
begins 1,1,2,3,5,8,13,21,34,55,89,144…

It’s not easy to see a formula for these 
numbers (it turns out there is one), but if 
you just look at the numbers, you can see 
a stepping stone rule: 

to get a(i), just add a(i-1) and a(i-2).  
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fibonacci_keep2.m

n = input ( ‘Enter the element index: ‘ );

for i = 0 : n

  if ( i == 0 )         set F←
    f = 1;
  elseif ( i == 1 )   remember FOLD, and set F←
    fold = f;
    f = 1;
  else                   remember FOLDEST, FOLD, and set F←
    foldest = fold;
    fold = f;
    f = fold + foldest;
  end

  fprintf ( ‘F(%d) = %d\n’, i, f );

end
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A Fibonacci Formula

Although there’s no formula for entries in 
the Collatz sequence, there is one for 
the Fibonacci sequence...but it’s 
surprisingly complicated.

You could find out where this formula 
comes from if you take a class in 
difference equations (NOT differential 
equations!).
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The Fibonacci Formula
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fibonacci_formula.m

% fibonacci_formula.m
%  Exact formula for the N-th Fibonacci number.
%
n = input ( 'Enter the index N: ' );

f = ( ...
      ( ( 1 + sqrt ( 5 ) ) / 2 ) ^ n ...
    - ( ( 1 - sqrt ( 5 ) ) / 2 ) ^ n ...
    ) ...
    / sqrt ( 5 );
%
%  MATLAB regards F as a real number, so we have to ROUND() it
%  so that the %d format will print it nicely.
%
fprintf ( '  F(%d) = %d\n', n, round ( f ) );
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Golden Rectangle, Ratio, Proportion

A “golden” rectangle has the property 
that adding a square to the long side 
makes a larger rectangle, but in the 
same “golden ratio” of about 1.6 to 1.
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Fibonacci Ratio  Golden Ratio→

The ratios of Fibonacci numbers converge to the 
golden ratio, whose value is exactly 
(1+sqrt(5))/2 or 1.61803…

1/1 = 1
2/1 = 2
3/2 = 1.5
5/3 = 1.66…
8/5 = 1.6
13/8 =1.6250
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fibonacci_ratio

n = input ( 'Enter the maximum element index: ' );

for i = 0 : n

  if ( i == 0 )
    f = 1;
  elseif ( i == 1 )
    fold = f;
    f = 1;
  else
    foldest = fold;
    fold = f;
    f = fold + foldest;
  end

  if ( 0 < i )
    fprintf ( 'R(%d) = %20.16g\n', i, f / fold );
  end

end



Insight Through 
Computing

 

Two References:

Brian Hayes, “On the ups and downs of 
the hailstone numbers”, 
[hayes_hailstone.pdf]

Martin Gardner, “The multiple 
fascinations of the Fibonacci sequence”,

[gardner_1969_03.pdf]
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In Class Exercise

For the Collatz sequence, we replace each odd number n by 3n+1.  As 
far as we know, this sequence has no loops (unless you count 4->2-
>1->4->2->1), and every starting point eventually decreases to 1.

  
Consider the rule where we replace odd n by 3n-1.  Then for the 

starting point n=5 we have 5 -> 14 -> 7 -> 20 -> 10 -> 5, which means 
we have entered an infinite loop.

If we replace odd n by 5n+1, then for the starting point 7 we seem 
to get an sequence that blows up.

Collatz was very smart or very lucky to study the 3n+1 version of 
this process!
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Exam on Thursday

There is a practice exam available on Canvas, 
in the “files” directory for “09_28”.

The actual exam will be very similar.
There will NOT be questions on plotting, or 

on fprintf, rand or randi or MATLAB lists.
You should review mod(), gcd(), &&, ||, for, 

if/elseif/if, while(true), while(condition).
You should take your time on the questions, 

and think step by step.
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