
MATLAB Overview
MATH2601: Control of Partial Differential Equations

Location: http://people.sc.fsu.edu/∼jburkardt/classes/control 2019/matlab overview/matlab overview.pdf

The interactive MATLAB language lets us do computational experiments.

If you are completely new to MATLAB, then you should review the information at places like the MATH-
WORKS tutorial website: https://www.mathworks.com/support/learn-with-matlab-tutorials.html

1 The Very Basics

When you start MATLAB, you see a command window with a prompt sign

1 >>

This is where you type your commands.

You can give simple arithmetic commands like 98-53, but most MATLAB commands will involve computing
something and storing the result in a named variable. Once a variable has a value, it can be used in later
computations:

1 >> x = 0.99
2 >> y = x ∗ x % This cou ld a l s o be wr i t t en as xˆ2

Arithmetic operators include +, -, *, /, ^ . Mathematical functions include abs(), max(), min(),

mod(), sqrt(), and trig functions like sin(), cos().

When a statement computes a value, that value will be printed to the command window. If this is not
desired, simply terminate the statement with a semicolon.

2 M Files

While interactive access to MATLAB is useful, it is often necessary to enter long complicated instructions.
In such a case, it is better to store these instructions as an M file. An M file can be created by any text editor,
or you can use MATLAB’s editor by choosing the NEW menu item and selecting Script or Function. You
can type in your commands, and then save the file, giving it a name, such as pde.m. Once the file is saved,
you can run the commands in the file by typing its name, as in

1 >> pde

or, if this is a function file, you might supply input and collect the resulting output:

1 r e s u l t = lambert (x)

1

3 User Functions

A user function can be created as an M file. It usually has inputs, outputs, and a function name. As a
simple example, we might want a function that evaluates

y =
1

(x− 0.3)2 + 0.01
+

1

(x− 0.9)2 + 0.04
− 6.0

We can create a MATLAB function hump.m, so that we only have to type this formula correctly once. Note
that division is done with a period-slash, squaring is done with a “period-caret”, and we have to be careful
about the parentheses:

1 function y = hump (x)
2 y = 1 .0 . / ((x − 0 .3) . ˆ2 + 0.01) . . .
3 + 1 .0 . / ((x − 0 .9) . ˆ2 + 0.04) . . .
4 − 6 . 0 ;
5 return
6 end

Once we have created this function, we can evaluate it at 2.0 by writing y=hump(2.0), or get the value at a
variable x by writing y=hump(x) and so on.

We can also pass in a whole vector of x values, and get back the corresponding list of y results, which is
perfect for plotting, and other applications. The list of x values can be created using linspace(first,

last, how-many:

1 x = linspace (0 . 0 , 2 . 0 , 101) ;
2 y = hump (x) ;
3 plot (x , y)

4 Control

If some statements are to be executed several times, use the for loop:

1 f a c t = 1 ;
2 for i = 1 : 10
3 f a c t = f a c t ∗ i ;
4 end

If some statements are to be executed only if a condition is true, use an if() staatement:

1 i f (mod (n , p) == 0)
2 n = n / p ;
3 end

More elaborate cases can add the elseif() and else statements:

1 i f (x > 0)
2 absx = x ;
3 e l s e i f (x < 0)
4 absx = −x ;
5 else
6 absx = 0 . 0 ;
7 end

If some statements are to be repeated until a condition is true, use the while() statement:

1 while (1 . 0 < x)
2 x = x / 2 . 0 ;
3 end

2

Typical conditions include:

1 i f (a == 1) % Note the doub le equa l s s i gn here !
2 i f (b ˜= 2) % Note the ” tw idd l e ” f o r ”not”
3 i f (c < 3)
4 i f (d >= 4)

5 Vectors

A numerical vector ~v is stored as a MATLAB array. Examples of creating numerical vectors in MATLAB:

1 q = [] % Creates an empty vec to r
2 r = rand (6 , 1) % Column vec tor o f random va lue s
3 s = randn (1 , 5) % Row vec tor o f normal random va lue s
4 t = ones (4 , 1) % vec tor o f 1 ’ s
5 u = zeros (3 , 1) % vec tor o f 0 ’ s
6 v = randperm (8) % random permutation o f 12345678
7 w = 10 : 20 % in t e g e r s from 10 to 20
8 x = linspace (0 . 0 , 1 . 0 , 7)
9 y = [1 . 1 , 2 . 2 , 3 . 3] % row vec tor o f 3 va lue s

10 z = [4 . 4 ; 5 . 5 ; 6 . 6] % column vec tor o f 3 va lue s

Row and column vectors are different objects in MATLAB. A row vector has a shape (1,n), while a column
vector has a shape (m,1). You can find the shape of any array with the size() command:

1 s ize (x)

and you can save these values using a command like:

1 [m, n] = s ize (x)

The length() command returns the number of elements of a vector; for a row vector, it returns n, for a
column vector, m;
Each entry in a vector has an index; the first entry in the vector a is a(1). You can print, use, or alter any
element of a vector by indexing it.

1 u (2) = 20

A colon can be used to refer to a range of vector indices:

1 w(3 : 8)

We can specify a stepsize between successive indexes:

1 w(3 : 2 : 8)

Most arithmetic functions can be applied to a vector, giving a vector of results, such as abs(x), cos(x),

exp(x), log(x) sin(x), sqrt(x). The ’ operator will transpose a vector from one form to the other.

1 r t = r ’

Some functions return a single result based on all the vector values, such as max(x), mean(x), min(x),

norm(x), std(x), var(x).

For pairs of vectors, the operator ’*’ requests a form of the vector dot product. To get the desired scalar
result, the vectors must be written so that their dimensions have the form (1xn) * (nx1), that is, row vector
times column vector. If x and y are column vectors, as is common in mathematics convention, then the dot
product is x′ * y. If both are row vectors, then the express x*y’ is necessary.

When applied to vectors, the operations *, / and ˆ can be preceded by a period, indicating that the operation
is to be applied element by element, returning a vector of results.

3

1 x .∗ y <−− r e tu rn s a vec to r o f e lementwise products .
2 x . / y <−− r e tu rn s a vec to r o f e lementwise f r a c t i o n s .
3 x . ˆ 2 <−− r e tu rn s a vec to r o f e lementwise squares ;
4 x . ˆ y <−− r e tu rn s a vec to r o f e lementwise powers

6 Matrices

An mxn numerical matrix can be stored in a MATLAB array. There are many commands to create such
arrays:

1 O = pascal (5)
2 Q = []
3 R = rand (3 , 4)
4 S = randi (5 , 3)
5 T = randn (2 , 2)
6 U = ones (5 , 3)
7 V = zeros (4 , 3)
8 W = eye (3 , 3)
9 X = [1 , 2 , 3 ; 4 , 5 , 6]

10 Y = [1 , 2 ;
11 3 , 4]
12 Z = magic (4)

Note that MATLAB programmers typically use a capital letter to represent a matrix,
The size() command returns the array dimensions:

1 [m, n] = s ize (x)

Matrix values are accessed by specifying the row and column index, typically written as (i,j). You can print,
use, or alter any element of a vector by indexing it.

1 U(2 , 1) = 20

The colon can be used to select a portion of the array:

1 R(2 , 2) % a s i n g l e entry
2 R(2 , 1 : 4) % the second row
3 R(1 : 2 , 3) % part o f the t h i r d column
4 R(2 : 3 , 2 : 3) % a 2x2 submatrix

Most arithmetic functions can be applied to an array, giving an array of results: abs(X), cos(X), exp(X),
log(X), norm(X), sin(X), sqrt(X) The ’ operator will transpose an array from one form to the other.

1 Xt = X’

Some functions return a row vector of results, by applying the operation separately to each column, including
max(X), mean(X), min(X), std(X), var(X);

To multiply a matrix A times a vector x, we write

1 y=A∗x

If A is m× n, then x should be n× 1 and the result y will be m× 1.

To multiply a matrix A times a matrix B, we write

1 C = A ∗ B

If A is m× n, B must be n× o, and C will have size m× o.

In some cases, it may be necessary to use the transpose operator, writing expressions like

4

1 u=A’∗ x
2 v=B∗y ’
3 w=C’∗ z ’

When applied to matrices, the operations *, / and ˆ can be prefaced by a dot to indicate that the operation
is to be applied element by element, returning a matrix of results.

1 x .∗ y <−− r e tu rn s a matrix o f e lementwise products .
2 x . / y <−− r e tu rn s a matrix o f e lementwise f r a c t i o n s .
3 x . ˆ 2 <−− r e tu rn s a matrix o f e lementwise squares ;
4 x . ˆ y <−− r e tu rn s a matrix o f e lementwise powers

7 Linear Algebra

Scalar functions of a matrix include the condition number, determinant, and rank: cond(A), det(A),

rank(A), but only condition number is really useful and reliable;

Vector functions include returning the diagonal elements of a matrix: diag(A).

Matrix functions include the inverse, the LU factorization, the pseudoinverse, and the QR factorization:
inv(A), lu(A), pinv(A), qr(A) Note that computing the inverse matrix inv(A) to solve a linear system
is numerically unreliable and unnecessary.

The set of linear equations A*x=b is often posed, with the vector x unknown. If A is nxn and nonsingular,
while b is nx1, then a unique solution may be expected. MATLAB can provide that solution by the command

1 x = A \ b

8 Reading and Writing Data Files

Commands are availabe to save all of your data, or to restore it. To save a single item x item in a text file
my x.txt:

1 save (’my x . txt ’ , ’−a s c i i ’ , ’ x ’)

and then restore it by

1 x = load (’my x . txt ’)

Similarly, a text file my data.txt, containing m rows and n columns of data, can be loaded into a MATLAB
variable by

1 A = load (’my data . txt ’)

5

