Shared Memory Programming With OpenMP

ISC 5316: Applied Computational Science Il

John Burkardt
Department of Scientific Computing
Florida State University
http://people.sc.fsu.edu/~jburkardt/presentations/. . .
... fsu_openmp_2011.pdf

18 & 20 October 2011
Lab on 25 October 2011, due 01 November 2011

Shared Memory Programming with OpenMP

INTRODUCTION

Directives

Sections

Loops

Critical Regions and Reductions
Data Conflicts and Data Dependence
Environment Variables and Functions
Compiling, Linking, Running

Parallel Control Structures

Data Classification

Examples

®POeB600000000O0

Conclusion

INTRO: OLD LANGUAGES=>0OpenMP=>New Hardware

OpenMP is a bridge between yesterday’s programming languages
and tomorrow's multicore chips (4 cores when | first gave this talk,
48 cores now here at FSU!)

Inside the SCC

Dual-core SCDC Tile
24 Tiles
- 24 Routers -
48 IA cores -
| Bac 30 B |

+ 2D mesh network with 256
GB/s bisection bandwidth

* 4 Integrated DDR3 memory
controllers (64GB addressable)

MEMORY CONTROLLER

1
1
1
1
-
1
1
1
1
]
1
1
1
1
1

INTRO: Hardware Options

OpenMP runs a user program on shared memory systems:

@ a single core chip (older PC's, sequential execution)

@ a multicore chip (such as your laptop?)

@ multiple single core chips in a NUMA system

e multiple multicore chips in a NUMA system (SGI system)
°

multiple multicore chips using other schemes (Intel's Cluster
OpenMP)

OpenMP, which you can think of as running on one tightly-coupled
chip, can be combined with MPI, which runs on multiple,
loosely-networked chips.

INTRO: OpenMP Limitations

OpenMP is limited by the shared memory hardware.

An OpenMP program can only handle problems that fit on the
chip or the coupled chips, over which memory can be shared.

If an MPI program running on 5 chips needs more memory, it can
easily be run on 100 chips, getting 20 times more memory.

An OpenMP program usually runs on a single chip, with a fixed
amount of memory. If multiple chip OpenMP is available, the
number of chips that can participate is limited, and there is a
noticeable performance cost.

So MPI is better when big memory is needed.

INTRO: The OpenMP Idea

OpenMP assumes that a user program (already written) includes
some for or do loops with the property that the iterations do not
need to be carried out in sequence.

Assuming the iterations can actually be carried out simultaneously,
OpenMP will automatically divide up the iterations among the
available processors to get the work done faster.

We can imagine that each core in a processor is assigned some
work. In fact, it is often the case that a single core can execute
more than one independent set of calculations.

INTRO: Threads

To avoid thinking too much about hardware, OpenMP thinks of
the user job as being divided into threads of execution.

Each thread is an independent but “obedient” entity. It has access
to the shared memory. It has “private” space for its own working
data.

We usually ask for one thread per available core:
ask for fewer, some cores are idle;
ask for more, some cores will run several threads, (probably slower).

An OpenMP program begins with one master thread executing.

The other threads begin in idle mode, waiting for work.

INTRO: Fork and Join

The program proceeds in sequential execution until it encounters a
region that the user has marked as a parallel section

The master thread activates the idle threads. (Technically, the
master thread forks into multiple threads.)

The work is divided up into chunks (that's really the term!); each
chunk is assigned to a thread until all the work is done.

The end of the parallel section is an implicit barrier. Program
execution will not proceed until all threads have exited the parallel
section and joined the master thread. (This is called
“synchronization”.)

The helper threads go idle until the next parallel section.

INTRO: How OpenMP is Used

The user is responsible for indicating the loops to parallelize, and
for indicating what variables in a loop must be handled in a special
way so that the processors don't interfere with each other.

To indicate parallel loops, the user inserts OpenMP “directives” in
a program.

The user compiles the program with OpenMP directives enabled.

The number of “threads” is chosen by an environment variable or
a function call.

(Usually set the number of threads to the number of processors)

The user runs the program. It runs faster (we hope!).

INTRO: Compiler Support

Compiler writers support OpenMP:

Gnu gcc/g++ 4.2 or later, gfortran 2.0;

IBM xlc, xIf

Intel icc, icpc, ifort

Microsoft Visual C++ (2005 Professional edition or later)
Portland C/C++/Fortran, pgcc, pgf95

Sun Studio C/C++/Fortran

Mac users need Apple Developer Tools (CodeWarrior).

Shared Memory Programming with OpenMP

Introduction

Directives

Sections

Loops

Critical Regions and Reductions
Data Conflicts and Data Dependence
Environment Variables and Functions
Compiling, Linking, Running

Parallel Control Structures

Data Classification

Examples

®POeB600000000O0

Conclusion

DIRECT: What Do Directives Look Like?

In C or C++, OpenMP directives begin with the # comment
character and the string pragma omp followed by the name of the
directive:

pragma omp parallel
pragma omp sections
pragma omp for

pragma omp critical

Directives appear just before a block of code, which is delimited by
{ curly brackets } or the body of a for statement.

DIRECT: The Parallel Region is Defined by a Directive

The parallel directive begins a parallel region.

pragma omp parallel

{
do things in parallel here, if directed!
}

Inside the parallel region are for loops. The ones to be done in
parallel are immediately preceded by an OpenMP for directive.

DIRECT: In C/C++, Brackets Delimit the Parallel Region

pragma omp parallel
{ <-- use curly bracket to delimit the parallel region
pragma omp for
for (i =0; i < nj; i++)
{
do things in parallel here.
¥

for (j =1; j < 5; j++)
{
This one is NOT parallel!

pragma omp for
for (k = 99; k <= 1000; k++)
{
This one parallel too.
s
} <-- End of parallel region

DIRECT: One-Block Parallel Region

If no brackets are used, the parallel region is the smallest block of
code following the parallel directive.

For example, a single for or do loop constitutes a block of code,
and need not be delimited:

pragma omp parallel
pragma omp for
for (i=0; i< n; i++)
{
do things in parallel here

3

DIRECT: The WAIT / NOWAIT Clauses

If a thread completes its portion of a loop, it ordinarily waits at
the end of that loop for the other threads to complete. The
nowait clause indicates that any thread finished with the current
loop may safely start its part of the next loop immediately.

pragma omp parallel
{
pragma omp for nowait
for (j = 0; j < edges; j++)
{
parallel loop 1
b
pragma omp for
for (k = 0; k < faces; k++)
{
parallel loop 2
X
}

DIRECT: Clauses

CLAUSES are additional information included on a directive.

The most common clause indicates which variables inside a parallel
region must be treated as private or shared variables.

pragma omp parallel shared (n,s,x,y) private (i,t)
{
pragma omp for
for (i =0; i < n; i++)
{
t = tan (y[i] / x[i]);
x[i] = s * x[1] + t * y[i];
}
}

DIRECT: Long Directive Lines

You may often find that the text of a directive becomes rather long.

In C and C++, you can break the directive at a convenient point,
interrupting the text with a backslash character, \, and then
continuing the text on a new line.

pragma omp parallel \
shared (n, s, x, 7) \
private (i, t)

{
pragma omp for
for (i =0; i < n; i++)
{
t = tan (y[i] / x[i]);
x[i] = s * x[1] + t * y[il;
+

}

DIRECT: FORTRANT77

FORTRANTY7 directives begin with the string c$omp and this
string must begin in column 1!

c$omp parallel private (i, j)

Directives longer than 72 characters must continue on a new line.

The continuation line also begins with the c$omp marker AND a
continuation character in column 6, such as &.

These weird rules are inherited from the miserable rules in
FORTRANTY7 about where you can put things and where you
can't. (They do not apply to FORTRANO90 and later.)

DIRECT: FORTRAN77 Example

c$omp parallel
c$omp& shared (n, s, x, y)
c$omp& private (i, t)

c$omp do
doi=1,n
t =tan (y(i) / x(i))
x(1) = s *x x(1) + t * y(i)
end do
c$omp end do <-- Must terminate the do area

c$omp end parallel <-- Must terminate parallel area

DIRECT: FORTRAN90

FORTRANOO directives begin with the string 1$omp.

!$omp parallel private (i, j)

Long lines may be continued using a terminal &.

The continued line must also be “commented out” with the
1ISomp marker.

DIRECT: FORTRAN90 Example

'$omp parallel &
!$omp shared (n, s, x, vy) &
'$omp private (i, t)

lomp do
doi=1,n
t =tan (y(i) / x(i))
x(1) = s *x x(1) + t * y(i)
end do
!$omp end do

'omp end parallel

DIRECT: What Do Directives Do?

@ indicate parallel regions of the code:
pragma omp parallel

@ mark variables that must be kept private or shared:
pragma omp parallel private (x, y, z)

@ indicate a loop or section to run in parallel:
pragma omp for
pragma omp section

@ suggest how some results are to be combined into one:
pragma omp for reduction (+ : sum)

@ indicate code that only one thread can do at a time:
pragma omp critical

@ force threads to wait til all are done:
pragma omp barrier

Shared Memory Programming with OpenMP

Introduction

Directives

SECTIONS

Loops

Critical Regions and Reductions
Data Conflicts and Data Dependence
Compiling, Linking, Running
Environment Variables and Functions
Parallel Control Structures

Data Classification

Examples

®POeB600000000O0

Conclusion

SECTIONS: Tasks That Can Be Done Simultaneously

The easiest kind of parallelism to understand involves a set of jobs
which can be done in any order.

Often, the number of tasks is small (2 to 5, say), and known in
advance. It's possible that each task, by itself, is not suitable for
processing by multiple threads.

We may try to speed up the computation by working on all the
tasks at the same time, assigning one thread to each.

SECTIONS: Syntax for C/C++

pragma omp parallel <-- inside "parallel”
{
pragma omp sections nowait <--optional “nowait” allows
{ a fast thread to move on.
pragma omp section
{
code for section 1
}
pragma omp section
{

code for section 2

<-- more parts allowed in section
} <-- section ends.
<-- more work allowed in parallel region

SECTIONS: Syntax for FORTRAN90

'$omp parallel <-- inside "parallel"
<-- optional initial work

'$omp sections nowait <-- optional nowait
!$omp section
code for section 1
!$omp section
code for section 2
<-- more parts allowed in section

I$omp end sections
<-- more work allowed in parallel region

'$omp end parallel

SECTIONS: How Sections are Executed

Each section will be executed by one thread.

If there are more sections than threads, some threads will do
several sections.

Any extra threads will be idle.

The end of the sections block is a barrier, or synchronization point.
Idle threads, and threads which have completed their sections, wait
here for the others.

If the nowait clause is added to the sections directive, then idle
and finished threads move on to the next piece of parallel work (if
any) in the parallel region.

SECTIONS: Example

Notice that, if the program is executed sequentially, (ignoring the
directives), then the sections will simply be computed one at a
time, in the given order.

A Fast Fourier Transform program needs to compute two tables,
containing the sines and cosines of angles. Sections could be used
if at least two threads are available:

'$omp parallel
I$sections nowait
!$omp section
call sin_table (n, s)
I$omp section
call cos_table (n, c)
'$omp end sections
'$omp end parallel

Shared Memory Programming with OpenMP

Introduction

Directives

Sections

LOOPS

Critical Regions and Reductions
Data Conflicts and Data Dependence
Compiling, Linking, Running
Environment Variables and Functions
Parallel Control Structures

Data Classification

Examples

®POeB600000000O0

Conclusion

LOOPS: FOR and DO

OpenMP is ideal for parallel execution of for or do loops.

It's really as though we had a huge number of parallel sections,
which are all the same except for the iteration counter I.

To execute a loop in parallel requires a parallel directive, followed
by a for or do directive.

If a parallel region is just one loop, a combined directive is allowed,
the parallel do or parallel for directive. (I find this confusing, and
try not to use it!)

We'll look at a simple example of a loop to get a feeling for how
OpenMP works.

LOOPS: How OpenMP Parallelizes Loops

OpenMP assigns “chunks” of the index range to each thread.

It's as though 2, 4, 8 or more programs are running at the same
time, each executing a different subset of the iterations.

If you have nested loops, the order can be significant! OpenMP
splits up the loop that immediately follows the directive
pragma omp for.

If you can write a pair of loops either way, you want to make sure
the outer loop has a sizable iteration count! The following example
will not take advantage of more than 3 threads!
pragma omp for
for (i =0; 1 < 3; i++)
for (j = 0; j < 100000; j++)
alil[j] = x[i] * sin (pi * y[j1);

LOOPS: Default Behavior

When OpenMP splits up the loop iterations, it has to decide what
data is shared (in common), and what is private (each thread
gets a separate variable of the same name).

Each thread automatically gets a private copy of the loop index.

In FORTRAN only, each thread also gets a private copy of the loop
index for any loops nested inside the main loop. In C/C++, nested
loop indices are not automatically “privatized”.

By default, all other variables are shared’.

A simple test: if your loop executes correctly even if the
iterations are done in reverse order, things are probably
going to be OK!

LOOPS: Shared and Private Data

In the ideal case, each iteration of the loop uses data in a way that
doesn't depend on other iterations. Loosely, this is the meaning of
the term shared data.

A SAXPY computation adds a multiple of one vector to another.
Each iteration is

y(i) = s * x(i) + y(i)

LOOPS: Sequential Version

include <stdlib.h>
include <stdio.h>

int main (int argc, char xargv[])

int i, n = 1000;
double x[1000], y[1000], s;

s = 123.456;
for (i =0; i <n; i++)
= (double) rand () / (double) RAND.MAX;
= (double) rand () / (double) RAND.MAX;
for (i =0; i <n; i++)

ylil =y[il +s * x[i];

return 0;

LOOPS: The SAXPY task

This is a “perfect” parallel application: no private data, no
memory contention.

The arrays X and Y can be shared, because only the thread
associated with loop index | needs to look at the I-th entries.

Each thread will need to know the value of S but they can all
agree on what that value is. (They “share” the same value).

LOOPS: SAXPY with OpenMP Directives

include <stdlib.h>
include <stdio.h>
include <omp.h>

int main (int argc,

{
int i, n = 1000;
double x[1000], y[1

s = 123.456;

for (i =0; i < n;
x[i] = (double)
y[i] = (double)

¥

pragma omp parallel
pragma omp for

for (i =0; i<n;
ylil =y[i] +s =
return 0;

char xargv[])

000],

i++)

rand
rand

i+)
x[i];

S,

() / (double
() / (double

) RAND.MAX;
) RAND_MAX;

LOOPS: C Syntax

We've included the <omp.h> file, but this is only needed to refer
to predefined constants, or call OpenMP functions.

The #pragma omp string is a marker that indicates to the
compiler that this is an OpenMP directive.

The # pragma omp parallel directive opens a parallel region.

The # pragma omp for directive marks that loop as something
inside the parallel region that can actually be done in parallel.

In this example, the parallel region terminates at the closing brace
of the for loop block. We could use curly brackets to define a
larger parallel region.

LOOPS: Fortran Syntax

The include 'omp_lib.h’ command is only needed to refer to
predefined constants, or call OpenMP functions.

In FORTRANOO, try use omp_lib instead.
The marker string is comp (F77) or !$omp (F90).

The '$omp parallel directive opens a parallel region, which must
be explicitly closed with a corresponding !$omp end parallel.

Within the parallel region, the !$omp do directive marks the
beginning of a loop to be executed in parallel. The end of the loop
must be marked with a corresponding '$omp end do.

LOOPS: SAXPY with OpenMP Directives

program main
include 'omp.lib.h’

integer i, n
double precision x(1000), y(1000), s

n = 1000
s = 123.456
do i =1, n
x(i) = rand ()
y(i) = rand ()
end do
c$omp parallel
c$omp do
do i =1, n
y(i) =y(i) + s * x(i)
end do

c$omp end do
c$omp end parallel
stop
end

LOOPS: QUIZ: Which of these loops are “safe”?

y(i) = (x(1) +

x(i-1)) / 2 Loop #1

<
~
'_I.
N
I~
~
™
~
'_I
\—a
+

x(i+1)) / 2 Loop #2

»

~
'_‘-
N

o~

~
ol

~
'—‘

~
+

x(i-1)) / 2 Loop #3

x(1) = (x(1) + x(@i+1)) / 2 Loop #4

LOOPS: How To Think About Threads

To visualize parallel execution, suppose 4 threads will execute the
1,000 iterations of the SAXPY loop.

OpenMP might assign the iterations in chunks of 50, so thread 1
will go from 1 to 50, then 201 to 251, then 401 to 450, and so on.

Then you also have to imagine that the four threads each execute
their loops more or less simultaneously.

Even this simple model of what's going on will suggest some of the
things that can go wrong in a parallel program!

LOOPS: The SAXPY loop, as OpenMP might think of it

if (thread_.id = 0) then
do ilo =1, 801, 200
do i = ilo, ilo + 49
y(i) =y(i) + s = x(i)
end do
end do
else if (thread.id = 1) then
do ilo = 51, 851, 200
do i = ilo, ilo + 49
y(i) = y(i) + s * x(i)
end do
end do

else if (thread.id = 2) then
do ilo = 101, 901, 200

do i = ilo, ilo + 49
y(i) = y(i) + s * x(i)
end do
end do
else if (thread.id = 3) then
do ilo = 151, 951, 200
do i = ilo, ilo + 49
y(i) =y(i) + s = x(i)
end do
end do

end if

LOOPS: Comments

What about the loop that initializes X and Y7
The problem here is that we're calling the rand function.

Normally, inside a parallel loop, you can call a function and it will
also run in parallel. However, the function cannot have side effects.

The rand function is a special case; it has an internal “static” or
“saved” variable whose value is changed and remembered
internally.

Getting random numbers in a parallel loop requires care. We will
leave this topic for later discussion.

Shared Memory Programming with OpenMP

Introduction

Directives

Sections

Loops

CRITICAL REGIONS AND REDUCTIONS
Data Conflicts and Data Dependence
Compiling, Linking, Running
Environment Variables and Functions
Parallel Control Structures

Data Classification

Examples

®POeB600000000O0

Conclusion

CRITICAL: Critical Regions and Reductions

Critical regions of a code contain operations that should not be
performed by more than one thread at a time.

A common cause of critical regions occurs when several threads
want to modify the same variable, perhaps in a summation:

total = total + x[i]

To see what a critical region looks like, let's consider the following
program, which computes the maximum entry of a vector.

CRITICAL: Sequential Version of Vector Sum

include <cstdlib>
include <iostream>
using namespace std;

int main (int argc, char xargv[])

int i, n = 1000;
double total, x[1000];

for (i =0; i <n; i++)
{
x[i] = (double) rand () / (double) RAND.MAX;
total = 0.0;
for (i =0; i <n; i++)
total = total + x[i];
cout << "Sum._=_" << total << "\n";
return 0;

CRITICAL: Making an OpenMP Version

To create an OpenMP version might seem easy:

@ add the statement # include <omp.h>

@ add the directive # pragma omp parallel before the for loop
@ then add the directive # pragma omp for before the for loop
@ compile, say with g++ -fopenmp vector_sum.C

But the results of this program are likely to be incorrect. The
problem arises because we are asking several threads to work on a
single variable, reading and writing it all at the same time.

CRITICAL: OpenMP Version 1

include <cstdlib>
include <iostream>
include <omp.h>

using namespace std;

int main (int argc, char xargv[])

int i, n = 1000;
double total, x[1000];

for (i =0; i <n; i++)
{ x[i] = (double) rand () / (double) RAND.MAX;
total = 0.0;

pragma omp parallel

pragma omp for
for (i =0; i <n; i++)
{

total = total + x[i];

cout << "Sum.=." << total << "\n";
return 0;

CRITICAL: Synchronization Problems

The problem is one of synchronization. Because more than one
thread is reading and writing the same data, it is possible for
information to be mishandled.

When OpenMP uses threads to execute the iterations of a loop:
@ the statements in a particular iteration of the loop will be
carried out by one thread, in the given order
@ but the statements in different iterations, carried out by
different threads, may be “interleaved” arbitrarily.

CRITICAL: TOTAL Becomes Ambiguous

The processors must work on local copies of data.

PO: read TOTAL, X1

P1: read TOTAL, X2
PO: local TOTAL = TOTAL + X1
PO: write TOTAL

P1: local TOTAL = TOTAL + X2
P1: write TOTAL

If X =[10,20], what is TOTAL at the end?

CRITICAL: The TOTAL Update is Critical

As soon as processor 0 reads TOTAL into its local memory, no
other processor should try to read or write TOTAL until processor
0 is done.

The update of TOTAL is called a critical region.

The OpenMP critical clause allows us to indicate that even
though we are inside a parallel section, the critical code may only
be performed by one thread at a time.

Fortran codes also need to use an end critical directive. C/C+-+
codes simply use curly braces to delimit the critical region.

CRITICAL: OpenMP Version 2

include <cstdlib>
include <iostream>
include <omp.h>

using namespace std;

int main (int argc, char xargv[])

{
int i, n = 1000;
double total, x[1000];

for (i =0; i <n; i++)

x[i] = (double) rand () / (double) RAND.MAX;

total = 0.0;

pragma omp parallel

pragma omp for

for (i =0; i <n; i++)
{

pragma omp critical

total = total + x[i];

cout << "Sum.=." << total << "\n";
return 0;

CRITICAL: Correct...but Slower!

This is code is correct, and it uses OpenMP.

However, it runs no faster than sequential code! That's because
our critical region is the entire loop. So one processor adds a
value, than waits. The other processor adds a value and waits.
Nothing really happens in parallel!

Here's a better solution. Each processor keeps its own local total,
and we only have to combine these at the end.

CRITICAL: OpenMP Version 3

include <cstdlib>
include <iostream>
include <omp.h>
using namespace std;
int main (int argc, char xargv[])
int i, id, n = 1000;
double total, total_local, x[1000];
for (i =0; i <n; i++)
x[i] = (double) rand () / (double) RAND.MAX;

total 0.0;
pragma omp parallel private (id, total_local)

id = omp_get_thread_num ();
total_-local = 0.0;

pragma omp for

for (i =0; i <n; i++)

total_-local = total_local + x[i];
}

pragma omp critical

total = total + total_local;

cout << "Sum._=."

<< total << "\n";
return 0;

CRITICAL: A Little Mysterious

The process here is subtle. Inside the parallel region, there are
multiple variables called total_local. Each thread is going to be
assigned a subset of the vector entries to add up. Each thread
computes its own sum in a variable called total_local. Presumably,
this task takes the most time.

Once the thread finishes its part of the addition, it wanders
towards the critical region. If no other thread is busy messing with
total, this thread can add its contribution. Otherwise, it waits just
before the critical region until it is free.

It's something like using a bathroom on an airplane!

CRITICAL: Success

This code is correct, and efficient.

I've had to jump ahead and include some OpenMP clauses and
function calls you won't recognize yet.

Can you see where and why the nowait clause might be useful?

However, without understanding the details, it is not hard to see
that the critical clause allows us to control the modification of the
TOTAL variable, and that the private clause allows each thread
to work on its own partial sum until needed.

CRITICAL: Reduction Clause

Simple operations like summations and maximums, which require a
critical section, come up so often that OpenMP offers a way to
hide the details of handling the critical section.

OpenMP offers the reduction clause for handling these special
examples of critical section programming.

Computing a dot product is an example where help is needed.

The variable summing the individual products is going to cause
conflicts - delays when several threads try to read its current value,
or errors, if several threads try to write updated versions of the
value.

CRITICAL: Sequential dot product

include <stdlib.h>
include <stdio.h>

int main (int argc, char x

int i, n= 1000;

double x[1000], y[1000],
for (i =0; i<n; i+t)
{
x[i] = (double) rand
y[i] = (double) rand
}
xdoty = 0.0;
for (i =0; i <n; i++)
{
xdoty = xdoty + x[i] =*

printf ("XDOTY_=_%e\n",
return 0;

argv(])

xdoty ;

() / (double) RAND-MAX;
() / (double) RAND-MAX;

ylil:

xdoty);

CRITICAL: Reduction Examples

The vector dot product is one example of a reduction operation.

Other examples;
@ the sum of the entries of a vector,
@ the product of the entries of a vector,
@ the maximum or minimum of a vector,
@ the Euclidean norm of a vector,

Reduction operations, if recognized, can be carried out in parallel.

The OpenMP reduction clause allows the compiler to set
up the reduction correctly and efficiently.

The reduction clause is included with the for or do directive
associated with the loop where the reduction occurs.

CRITICAL: OpenMP Version

include <stdlib.h>
include <stdio.h>
include <omp.h>

int main (int argc, char xargv[])
{

int i, n= 1000;

double x[1000], y[1000], xdoty;

for (i =0; i<n; i++)

{ x[i] = (double) rand () / (double) RAND.MAX;
y[i] = (double) rand () / (double) RAND.MAX;

}

xdoty = 0.0;

pragma omp parallel private (i) shared (n, x, y)
pragma omp for reduction (+ : xdoty)

for (i =0; i <n; i++)

{

xdoty = xdoty + x[i] * y[i];

printf ("XDOTY_=_%e\n", xdoty);
return 0;

CRITICAL: The reduction clause

Variables which are the result of a reduction operator must be
identified in a reduction clause of the for or do directive.

Reduction clause examples include:

e # omp for reduction (+ : xdoty) : we just saw this;
e # omp for reduction (+ : suml, sum2, sum3) :
several sums in one loop;
e # omp for reduction (* : factorial): a product;
e !$omp do reduction (max : pivot) :
maximum or minimum value (Fortran only);)

Shared Memory Programming with OpenMP

Introduction

Directives

Sections

Loops

Critical Regions and Reductions
DATA CONFLICTS AND DATA DEPENDENCE
Compiling, Linking, Running
Environment Variables and Functions
Parallel Control Structures

Data Classification

Examples

®POeB600000000O0

Conclusion

CONFLICTS: “Shared” Data

Shared data is data that can be safely shared by threads during a
particular parallel operation, without leading to conflicts or errors.

By default, OpenMP will assume all data is shared.

A variable that is only “read” can obviously be shared. (Although
in some cases, delays might occur if several threads want to read it
at the same time).

Some variables may be shared even though they seem to be
written by multiple threads;

An example is an array A.
If entry A[l] is never changed except during loop iteration I,
then the array A can probably be shared.

CONFLICTS: “Private” Data

Private data is information each thread keeps separately.
A single variable name now refers to all the copies.

Simple examples:

@ the iteration index of the loop, i
@ temporary variables

For instance, it's common to create variables called im1 and ipl
equal to the loop index decremented and incremented by 1.

A temporary variable x_inv, defined by
x_inv = 1.0 / x[i]
would also have to be private, even though x would not be.

CONFLICTS: PRIME SUM Example

The PRIME SUM program illustrates private and shared variables.
Our task is to compute the sum of the prime numbers from 1 to N.

A natural formulation stores the result in TOTAL, then checks
each number [from 2 to N.

To check if the number [is prime, we ask whether it can be evenly
divided by any of the numbers J from 2 to / — 1.

We can use a temporary variable PRIME to help us.

CONFLICTS: Sequential Version of Prime Sum

include <cstdlib>
include <iostream>
using namespace std;

int main (int argc, char xargv[])

int i, j, total;

int n = 1000;

bool prime;

total = 0;

for (i =2; i<=n; i++)
{

prime = true;

for ((j =27 j<i: j++)

{
if (i %j=0)
{
prime = false;
break ;
}
}
if (prime)
total = total + i;
}
}

cout << "PRIMESSUM(2:" << n << ").=." << total << "\n";
return 0;

CONFLICTS: Handling Conflicts!

Data conflicts will occur in PRIME SUM if all the data is shared
during a parallel execution. We can't share a variable if two
threads want to put different numbers into it.

A given thread, carrying out iteration I:

@ works on an integer |

@ initializes PRIME to be TRUE

o checks if any J divides | and resets PRIME if necessary;
@ adds | to TOTAL if PRIME is TRUE.

The variables J, PRIME and TOTAL represent possible data
conflicts that we must resolve.

CONFLICTS: OpenMP Version

include <cstdlib>
include <iostream>
include <omp.h>

using namespace std;

int main (int argc, char xargv[])

{
int i, j, total, n = 1000, total = O;
bool prime;
pragma omp parallel private (i, prime, j) shared (n)

pragma omp for reduction (+ : total)
for (i =2, i<=n; i++)

prime = true;

for ((j =2 j<i: j++)

{
if (i %j=0)
prime = false;
break;
}
}
if (prime)
total = total + i;
}

}
cout << "PRIMESSUM(2:" << n << ").=." << total << "\n";
return 0;

CONFLICTS: Controlling Data Access

The shared, private and reduction clauses allow us to specify
how every variable is to be treated in the following loop.

We didn’t have to declare that i was private...but we did have to
declare that j was private!

By default, private variables have no value before or after the loop
- they are purely temporary quantities.

If you need to initialize your private variables, or need to save the
value stored by the very last iteration of the loop, OpenMP offers
the firstprivate and lastprivate clauses.

CONFLICTS: Data Dependence

Data Dependence is an obstacle to parallel execution. Sometimes
it can be repaired, and sometimes it is unavoidable.

In a loop, the problem arises when the value of a variable depends
on results from a previous iteration of the loop.

Examples where this problem occurs include the solution of a
differential equation or the application of Newton's method to a
nonlinear equation.

In both examples, each step of the approximation requires the
result of the previous approximation to proceed.

CONFLICTS: A Dependent Calculation

For example, suppose we computed factorials this way:

fact[0] = 1;
for (i =1; 1 < n; i++)
{

fact[i] = fact[i-1] * i;
}

We can’t let OpenMP handle this calculation. The way we've
written it, the iterations must be computed sequentially.

The variable on the right hand side, fact[i-1],
is not guaranteed to be ready,
unless the previous iteration has completed.

CONFLICTS: The STEPS Program

The STEPS program illustrates an example of data dependence.
Here, we evaluate a function at equally spaced points in the unit
square.

Start (X,Y) at (0,0), increment X by DX. If X exceeds 1, reset to
zero, and increment Y by DY.

This is a natural way to “visit” every point.
This simple idea won't work in parallel without some changes.
Each thread will need a private copy of (X,Y).

...but, much worse, the value (X,Y) is data dependent.

CONFLICTS: Sequential Version

program main

integer i, j, m, n
real dx, dy, f, total, x, y

total = 0.0
y = 0.0
do j =1, n
x = 0.0
do i =1, m
total = total + f (x, y)
x = x + dx
end do
y =y + dy
end do

stop
end

CONFLICTS: We Can Fix this Dependence

In this example, the data dependence is simply a consequence of
a common programming pattern. It's not hard to avoid the
dependence once we recognize it.

Our options include:
e precompute X(1:M) and Y(1:N) in arrays.
@ or notice X =//Mand Y =J/N

The first solution, converting some temporary scalar variables to
vectors and precomputing them, may be able to help you
parallelize a stubborn loop.

The second solution is simple and
saves us a separate preparation loop and extra storage.

CONFLICTS: OpenMP Version

program main

use omp_lib

integer i, j, m, n
real f, total, x, y
total = 0.0

!$omp parallel private (i, j, x, y) shared (m, n)
!$omp do reduction (+ : total)
do j =1, n
y =] / real ((n)

do i 1, m
x =1 / real ((m)
total = total + f (x, y)
end do
end do

!$omp end do
!$omp end parallel

stop
end

CONFLICTS: Calling a Function

Another issue pops up in the STEPS program. What happens
when you call the function f(x,y) inside the loop?

Notice that f is not a variable, it's a function, so it is not declared
private or shared.

The function might have internal variables, loops, might call other
functions, and so on.

OpenMP works in such a way that a function called within a

parallel loop will also participate in the parallel execution. We
don't have to make any declarations about the function or its
internal variables at all.

Each thread runs a separate copy of f.

(But if f includes static or saved variables, trouble!)

Shared Memory Programming with OpenMP

Introduction

Directives

Sections

Loops

Critical Regions and Reductions
Data Conflicts and Data Dependence
COMPILING, LINKING, RUNNING
Environment Variables and Functions
Parallel Control Structures

Data Classification

Examples

®POeB600000000O0

Conclusion

RUN: From Source Code to Executable

Strictly speaking, compilation takes one or more source code files,
say myprog.c, and translates them into "object” files, myprog.o.

Compiler errors have to do with syntax, (as well as “include” files
that can't be found).

Linking joins the object files, along with compiled libraries to
create an executable file a.out.

Linking errors have to do with calls to functions or routines that
cannot be found.

RUN: Compiling

A typical compile-only command is:

cc -c myprog.c
cc —c graphics.c

Typical link-only commands include:
cc myprog.o graphics.o -lnag
A one-shot compile-and-link command would be

cc myprog.c graphics.c -lnag

RUN: Linking and Loading

Linking brings together your compile program, system libraries and
external libraries. Once all the information is available, the loader
can create a single executable program. Typically, this will be
called a.out. It's best to rename the executable to something
meaningful:

cc myprog.c graphics.c -lnag
mv a.out myprog

or you can do everything in one shot:
cc -o myprog myprog.c graphics.c -lnag

The executable program can be run by typing its (full) name. But
the current directory is symbolized by “dot”, so you can type

./myprog

RUN: Compiling an OpenMP Program

When you compile an OpenMP source code file, some errors may
be reported because
@ the compiler you invoked doesn't actually support OpenMP;

@ the compiler does support OpenMP, but you didn’t include
the appropriate compiler switch.

So if your program doesn’'t compile, that doesn’t necessarily mean
you made a programming error.

You might be seeing complaints about a missing include file, or
unrecognized function names.

RUN: Directives are Invisible by Default

On the other hand, if you didn't call any OpenMP functions, then
any compiler will compile your code...because all the directives
look like comments.

So if your program does compile, that doesn't necessarily mean
you're actually using an OpenMP compiler!

RUN: Activate the Directives with a Switch

You build a parallel version of your program by telling the compiler
to activate the OpenMP directives.

GNU compilers need the fopenmp switch:
e gcc -fopenmp myprog.c
o g++ -fopenmp myprog.C
e gfortran -fopenmp myprog.f
e gfortran -fopenmp myprog.f90

RUN: Intel Compiler Switches

Intel C compilers need the openmp and parallel switches:
@ icc myprog.c -openmp -parallel
@ icpc myprog.C -openmp -parallel

Intel Fortran compilers also require the fpp switch:
o ifort myprog.f -openmp -parallel -fpp
o ifort myprog.f90 -openmp -parallel -fpp

RUN: Executing the Program

Once you have an executable OpenMP program, you can run it
interactively, the same way you would any executable program.

./a.out

The only thing you need to do is make sure that you have defined
the number of threads of execution - that is, “how parallel” you
want to be.

RUN: Specifying the Number of Threads

OpenMP looks for the value of an environment variable called
OMP_NUM_THREADS to determine the default number of
threads. You can query this value by typing:

echo $0MP_NUM_THREADS
A blank value means it hasn't been defined, so it's essentially 1.
You can redefine this environment variable using the command
export OMP_NUM_THREADS=4
and this new value will hold for any programs you run interactively.

This value only represents the default. That means your program
can use the default, or request a specific number of threads by
making a function call internally.

RUN: Trying Different Numbers of THreads

Suppose you want to compile, link and run on the lab computer?

We can presume we've already got the program file, compiled it
and linked it, and called it...let's say we called it md.

If we are simply going to run the program on the command line,
changes we make to OMP_NUM_THREADS will affect the
program. We could experiment with 1, 2, 4 and 8 threads by:

export OMP_NUM_THREADS=1
./md
export OMP_NUM_THREADS=2
./md
export OMP_NUM_THREADS=4
./md
export OMP_NUM_THREADS=8
./md

RUN: Using a Shell Script

It is often convenient to put a group of useful commands into a
shell script, which we might call run_md.sh:

#!/bin/bash
export OMP_NUM_THREADS=1
./md
export OMP_NUM_THREADS=2
./md
The first line indicates that this is a BASH shell script.
We execute the shell script by “feeding it” to BASH:

bash run_md.sh

which has the disadvantage that we must wait until the script
has finished before we get a command prompt again.

RUN: Running in the Background

If we expect md to take a long time to run, we could instead run
the shell script “in the background”, using an ampersand, in which
case we get our command prompt back immediately.

bash run_md.sh &

but probably we want the program output to go to a file then, so
we can be typing new commands without interference:

bash run_md.sh > output.txt &

RUN: Running in the Background with NOHUP

If we expect md to run a really really long time, then it's likely
we'll want to log out before it finishes. Normally, that would kill
the job, even though it's running in the background.

However, we can specify that this job runs in the background,
writes its output to a file, and continues to run even if we log out,
by using the nohup command:

nohup bash run_md.sh > output.txt &

What | have told you is just an outline of what is possible if you
want to run long jobs on a system. Naturally, if you try these
operations, you are going to want to learn more about how to
monitor or kill a background job!

RUN: Running on a Cluster

If you have a really big job, or lots of them, or you need a log of
parallel threads, you are not going to want to mess around on our
lab system. Instead, you want to try to run your program on a
cluster, such as the FSU HPC system.

Obviously, you need to use sftp to transfer files to the system, and
ssh to log in. The environment there is similar, so we can compile
our program in the same way. But running the program is quite
different. Now we are going to use a sophisticated queueing system
which will handle our job.

To use the queue, we must prepare a script file, which might be
called md_batch.sh.

RUN: HPC Batch Script

#!/bin/bash << Job uses BASH shell

#MOAB -N md << Job name is "MD"

#MOAB -q classroom_q << Run job in this queue

#MOAB -1 nodes=1:ppn=4 << Want 1 node, 8 processors.
#MOAB -1 walltime=00:02:00 << Request 2 minutes of time.
#MOAB -j oe << Join output and error files
cd $PBS_O_WORKDIR << Move to directory

export OMP_NUM_THREADS=4 << Number of threads <= PPN
./md > output.txt << Finally!

RUN: Using the HPC Batch Script

Briefly, once you have a compiled version of md on the HPC, and
your batch script file md_batch.sh, you “submit” the job with the
command

msub md_batch.sh

and then you wait for the job to complete. You can check the job's
program using the command

showq

and, the way this script was written, the interesting results will
show up in the file output.txt.

We will go over the details of HPC job execution during the la

Shared Memory Programming with OpenMP

Introduction

Directives

Sections

Loops

Critical Regions and Reductions
Data Conflicts and Data Dependence
Compiling, Linking, Running
ENVIRONMENT VARIABLES AND FUNCTIONS
Parallel Control Structures

Data Classification

Examples

®POeB600000000O0

Conclusion

ENVIRON: Customizing the OpenMP Environment

We have already run across the mysterious variable
OMP_NUM_THREADS.

| told you it specifies how many parallel threads of execution there
will be. You can set this variable externally, in the Unix
environment, or you can fiddle with it inside the program as it runs.

This variable is one example of a set of OpenMP environment
variables.

It's time to take a look at these variables, how they influence the
way your program is run, and how your program can access and
modify their values.

ENVIRON: Environment Variables and Function Calls

OpenMP uses internal data which can be of use or interest.

In a few cases, the user can set some of these values by means of a
Unix environmental variable.

There are also functions the user may call to get or set this
information.

ENVIRON: Information You Can Set or Get

You can set:

@ maximum number of threads - most useful!
@ details of how to handle loops, nesting, and so on

You can get:

number of “processors’ (=cores) are available
individual thread id's
maximum number of threads

wall clock time

ENVIRON: Variables

If you are working on a UNIX system, you can “talk” to OpenMP
by setting certain environment variables.

The syntax for setting such variables varies slightly, depending on
the shell you are using.

Many people use this method in order to specify the number of
threads to be used. If you don't set this variable, your program
runs on one thread.

ENVIRON: Variables

There are just 4 OpenMP environment variables:

OMP_NUM_THREADS, maximum number of threads
OMP_DYNAMIC, allows dynamic thread adjustment
OMP_NESTED, allows nested parallelism, default 0/FALSE
OMP_SCHEDULE, determines how loop work is divided up

ENVIRON: Variables

Determine your shell by:
echo $SHELL

Set the number of threads in the Bourne, Korn and BASH shells:
export OMP_NUM_THREADS=4

In the C or T shells, use a command like
setenv OMP_NUM_THREADS 4

To verify:

echo SOMP_NUM_THREADS

ENVIRON: Functions

OpenMP environment functions include:

omp_set_num_threads (t)

t = omp_get_num_threads ()
p = omp_get_num _procs ()
id = omp_get_thread_num ()
wtime = omp_get_wtime()

ENVIRON: How Many Threads May | Use?

A thread is one of the “workers” that OpenMP assigns to help do
your work.
There is a limit of

@ 1 thread in the sequential sections.
o OMP_NUM_THREADS threads in the parallel sections.

ENVIRON: How Many Threads May | Use?

The number of threads
@ has a default for your computer.
@ can be initialized by setting OMP_NUM_THREADS before
execution
@ can be reset by calling omp_set_num_threads(t)
@ can be checked by calling t=omp_get_num_threads()

ENVIRON: How Many Threads Should | Use?

If OMP_NUM_THREADS is 1, then you get no parallel speed up
at all, and probably actually slow down.

You can set OMP_NUM_THREADS much higher than the
number of processors; some threads will then “share” a processor.

Reasonable: one thread per processor.
p = omp_get_num_procs ();

t = p;
omp_set_num_threads (t);

These three commands can be compressed into one.

ENVIRON: Which Thread Am | Using?

In any parallel section, you can ask each thread to identify itself,
and assign it tasks based on its index.

!$omp parallel

id = omp_get_thread_num ()

write (*, *) ’Thread ’, id, ’ is running.’
I$omp end parallel

ENVIRON: How Much Time Has Passed?

You can take “readings” of the wall clock time before and after a
parallel computation.

wtime = omp_get_wtime ();
pragma omp parallel
pragma omp for
for (i =0; i < n; i++)
{
Do a lot of work in parallel;

}

wtime = omp_get_wtime () - wtime;

cout << "Work took " << wtime << " seconds.\n";

ENVIRON: "Hiding" Parallel Code

OpenMP tries to make it possible for you to have your sequential
code and parallelize it too. In other words, a single program file
should be able to be run sequentially or in parallel, simply by
turning on the directives.

This isn’t going to work so well if we have these calls to
omp_get_wtime or omp_get_proc_num running around. They
will cause an error when the program is compiled and loaded
sequentially, because the OpenMP library will not be available.

Fortunately, you can “comment out” all such calls, just as you do
the directives, or, in C and C++4, check whether the symbol
_OPENMP is defined.

ENVIRON: Hiding Parallel Code in C++

ifdef _OPENMP

include <omp.h>

wtime = omp_get_wtime ();
endif

pragma omp parallel
pragma omp for
for (i =0; i < nj; i++)
{
Do a lot of work, possibly in parallel;
}

ifdef _OPENMP

wtime = omp_get_wtime () - wtime;

cout << "Work took " << wtime << " seconds.\n";
else

cout << "Elapsed time not measured.\n";
endif

ENVIRON: Hiding Parallel Code in F90

'$ use omp_lib
'$ wtime = omp_get_wtime ()

!$omp parallel
'$omp do
doi=1,n
Do a lot of work, possibly in parallel;
end do
'$omp end do
'$omp parallel

'$ wtime = omp_get_wtime () - wtime
I$ write (*, *) ’Work took’, wtime, ’ seconds.

Shared Memory Programming with OpenMP

Introduction

Directives

Sections

Loops

Critical Regions and Reductions
Data Conflicts and Data Dependence
Compiling, Linking, Running
Environment Variables and Functions
PARALLEL CONTROL STRUCTURES
Data Classification

Examples

®POeB600000000O0

Conclusion

CONTROL: C Loops

pragma omp parallel
pragma omp for
for (i = ilo; i <= ihi; i++)
{

C/C++ code to be performed in parallel

}

I$omp parallel
'$omp do
do i = ilo, ihi
FORTRAN code to be performed in parallel
end do
'$omp end do
!$omp end parallel

CONTROL: FORTRAN Loops

FORTRAN Loop Restrictions:
The loop must be a do loop of the form;
do i = low, high (, increment)

The limits low, high (and increment if used), cannot change
during the iteration.

The program cannot jump out of the loop, using an exit or goto.
The loop cannot be a do while.

The loop cannot be an “infinite” do (no iteration limits).

CONTROL: Loops

C Loop Restrictions:
The loop must be a for loop of the form:
for (i = low; i < high; increment)
The limits low and high cannot change during the iteration;
The increment (or decrement) must be by a fixed amount.

The program cannot break from the loop.

CONTROL: No Loop

It is possible to set up parallel work without a loop.

In this case, the user can assign work based on the ID of each
thread.

For instance, if the computation models a crystallization process
over time, then at each time step, half the threads might work on
updating the solid part, half the liquid.

If the size of the solid region increases greatly, the proportion of
threads assigned to it could be increased.

CONTROL: No Loop, C/C++

pragma omp parallel
{
id = omp_get_thread_num ();
if (id % 2 ==10)
{
solid_update ();
}
else
{
liquid_update ();
}
}

CONTROL: No Loop, FORTRAN

!$omp parallel
id = omp_get_thread_num ()

if (mod (id, 2) == 0) then
call solid_update ()

else if (mod (id, 4) == 1) then
call liquid_update ()
else if (mod (id, 4) == 3) then

call gas_update ()

end if
I$omp end parallel

(Now we've added a gas update task as well.)

CONTROL: WORKSHARE

FORTRANOQ expresses implicit vector operations using colon
notation.

OpenMP includes the WORKSHARE directive, which says that
the marked code is to be performed in parallel.

The directive can also be used to parallelize the FORTRAN90
WHERE and the FORTRAN95 FORALL statements.

Unfortunately, | have not yet found any FORTRAN compiler that
has implemented the WORKSHARE directive!

CONTROL: FORTRAN90

!$omp parallel
'$omp workshare
y(1:n) = a * x(1:n) + y(1:n)
'$omp end workshare
!$omp end parallel

I$omp parallel
'$omp workshare
where (x(1:n) /= 0.0)
y(1:n) = log (x(1:n))
elsewhere
y(1:n) = 0.0
end where
!$omp end workshare
I$omp end parallel

CONTROL: FORTRAN95

!$omp parallel
'$omp workshare
forall (i = k+1:n,j = k+1l:n)
a(i,j) = a(i,j) - a(i,k) * a(k,j)
end forall
!$omp end workshare
I$omp end parallel

(This calculation corresponds to one of the steps of Gauss
elimination or LU factorization)

CONTROL: Parallel Computing Without Loops

OpenMP s easiest to use with loops.

Here is an example where we get parallel execution without using
loops.

Doing the problem this way will make OpenMP seem like a small
scale version of MPI.

CONTROL: Problem specification

What values of X make F(X) evaluate TRUE?

&&
&&

f(x) = x(1) |1 x(2)

x(3) Il x(4)

() (=2 Il x4)
() x4 Il 'x(6))
C xB) Il 'x(6)) && ¢ x(6) || '=x(7))
C x6) Il =)) && ¢ x(7) |l 'x(16))
C x8) Il 'x(9)) && ('x(8) || 'x(14)) &&
C x99 Il x(10)) && ¢ x(9 |l 'x(10))
C'x(10) Il 'x(11)) && C x(10) || =x(12))
C x(11) Il x(12)) & (x(13) |l =x(14))
C x(14) |l 'x(15)) && (x(15) || =x(16))

CONTROL: Problem specification

Sadly, there is no clever way to solve a problem like this in general.
You simply try every possible input.

How do we generate all the inputs?

Can we divide the work among multiple processors?

CONTROL: Algorithm Design

There are 216 = 65,536 distinct input vectors.

There is a natural correspondence between the input vectors and
the integers from 0 to 65535.

We can divide the range [0,65536] into T-NUM distinct (probably
unequal) subranges.

Each thread can generate its input vectors one at a time, evaluate
the function, and print any successes.

CONTROL: Program Design

#pragma omp parallel

{
T = omp_get_num_threads ();
ID = omp_get_thread_num ();
IL0 = (ID) * 65535 / T;
IHI = (ID + 1) * 65535 / T;

for (I = IL0O; I < IHI; I++)

{
X[0:15] <=1 (set binary input)
VALUE = F (X) (evaluate function)
if (VALUE) print X

end

CONTROL: FORTRAN90 Implementation

thread_num = omp_get_num_threads ()

solution.num = 0
!$omp parallel private (i, ilo, ihi, j, value, x) &
!$omp shared (n, thread.num) &
!$omp reduction (+ : solution-num)
id = omp_get_thread_num ()
ilo = id % 65536 / thread_num
ihi = (id + 1) % 65536 / thread_num

do i = ilo, ihi —1
value = circuit_value (n, x)
if (value =1) then
solution_.num = solution_.num + 1
write (*, '(2x,i2,2x,i10,3x,16i2)"') solution_num,

end if
call bvec_next (n, x)
end do

!$omp end parallel

i — 1, x(1:n)

CONTROL: Observations

| wanted an example where parallelism didn’t require a for or do
loop. The loop you see is carried out entirely by one (each) thread.

The “implicit loop” occurs when when we begin the parallel
section and we generate all the threads.

The idea to take from this example is that the environment
functions allow you to set up your own parallel structures in cases
where loops aren't appropriate.

Shared Memory Programming with OpenMP

Introduction

Directives

Sections

Loops

Critical Regions and Reductions
Data Conflicts and Data Dependence
Compiling, Linking, Running
Environment Variables and Functions
Parallel Control Structures

DATA CLASSIFICATION
Examples

®POeB600000000O0

Conclusion

DATA: Private/Shared

The very name “shared memory” suggests that the threads share
one set of data that they can all “touch”.

By default, OpenMP assumes that all variables are to be shared —
with the exception of the loop index in the do or for statement.

It's obvious why each thread will need its own copy of the loop
index. Even a compiler can see that!

However, some other variables may need to be treated specially
when running in parallel. In that case, you must explicitly tell the
compiler to set these aside as private variables.

It's a good practice to declare all variables in a loop.

DATA: Private/Shared

do k=1, 3
dif (k) = coord(k,i) - coord(k,j)
d =d + dif(k) * dif(k)
end do
do k=1, 3
f(k,i) = £(k,i) - dif(k) * pfun (d) / d
end do
end do
end do

DATA: Private/Shared

I've had to cut this example down a bit. So let me point out that
coord and f are big arrays of spatial coordinates and forces, and
that f has been initialized already.

The variable n is counting particles, and where you see a 3, that's
because we're in 3-dimensional space.

The mysterious pfun is a function that evaluates a factor that will
modify the force.

List all the variables in this loop, and try to determine if they are
shared or private or perhaps a reduction variable.

Which variables are already shared or private by default?

DATA: QUIZ

doi=1, n <-- 1I7 N7
do j=1, n <-- J7
d =0.0 <-- D7
dok=1, 3 <-- K
dif (k) = coord(k,i) - coord(k,j) <-- DIF?
d =d + dif(k) * dif(k) -— COORD?
end do
do k=1, 3
f(k,i) = £(k,i) - dif(k) * pfun (d) / d
end do <-- F?7, PFUN?
end do

end do

DATA: Private/Shared

!$omp parallel private (i, j, k, d, dif) &
!$omp shared (n, coord, f)

!'$ omp do
doi=1,n
doj=1,n
d =0.0
do k=1, 3
dif (k) = coord(k,i) - coord(k,j)
d =d + dif (k) * dif(k)
end do
do k=1, 3
f(k,i) = f(k,i) - dif(k) * pfun (d) / d
end do
end do
end do
!'$ omp end do

!$omp end parallel

DATA: Private/Shared /Reduction

In the previous example, the variable D looked like a reduction
variable.

But that would only be the case if the loop index K was executed
as a parallel do.

We could work very hard to interchange the order of the I, J and K
loops, or even try to use nested parallelism on the K loop.

But these efforts would be pointless, since the loop runs from 1 to
3, a range too small to get a parallel benefit.

DATA: Private/Shared /Reduction

Suppose in FORTRANO90 we need the maximum of a vector.

x_max = - huge (x_max) -——+
doi=1,n |

x_max = max (x_max, x(i)) | Loop #1
end do -——+
x_max = maxval (x(1:n)) ---> Loop #2

How could we parallelize loop #1 or loop #2!

DATA: Private/Shared /Reduction

In loop 1, the reduction variable x_max will automatically be
initialized to the minimum real number.

!$omp parallel private (i) shared (n, x)
!'$ omp do reduction (max : x_max)
doi=1, n
x_max = max (x_max, x(i))
end do
!'$ omp end do
!$omp end parallel

!$omp parallel
!'$ omp workshare
x_max = maxval (x(1:n))
!'$ omp end workshare
!$omp end parallel

DATA: DEFINE'd Variables in C/C++

In C and C++, it is common to use a #define statement. This
can look almost like a declaration statement, with a variable name
and its value. It is actually a preprocessor directive, and the
“variable” is really a text string to be replaced by the given value.

By convention, defined variables are CAPITALIZED.

A typical defined variable is actually a constant, that is, a number.
And this means that even though it may look like a variable, it is
not appropriate nor necessary to include a defined variable in the
shared or private clauses of an OpenMP directive!

DATA: DEFINE'd Variables in C/C++

Do NOT put the defined variable N in the shared clause!

define N 100

pragma omp parallel shared (x, y) \
private (i, xinv)

pragma omp for
for (i =0; i < N; i++)
{
xinv
y[i]
X

1.0 / x[il;
y[i] * xinv;

DATA: FORTRAN Parameters

In FORTRAN, it is common to use a parameter statement to
define constants such as 7 or /2.

The important thing about a parameter is that, although it looks
like a “variable”, it is a constant. At least for some compilers, this
means that it is neither appropriate nor necessary to include a
FORTRAN parameter in the shared or private clauses of an
OpenMP directive!

DATA: FORTRAN Parameters

Do NOT put the parameters pi or n in the shared clause!

integer, parameter :: n = 100
real, parameter :: pi = 3.14159265

!$omp parallel shared (c, s) private (angle, i)
'$omp do
doi=1,n
angle = (i -1) *pi/n

c(i) = cos (angle)
s(i) = sin (angle)
end do

!'$ omp end do
!$omp end parallel

Shared Memory Programming with OpenMP

Introduction

Directives

Sections

Loops

Critical Regions and Reductions
Data Conflicts and Data Dependence
Compiling, Linking, Running
Environment Variables and Functions
Parallel Control Structures

Data Classification

EXAMPLES

Conclusion

®POeB600000000O0

EXAMPLES: The Index of the Maximum Entry

In Gauss elimination, the K-th step involves finding the row index
P of the largest element on or below the diagonal in column K of
the matrix.

What's important isn’t the maximum value, but its index.
That means that we can’t simply use OpenMP’s reduction clause.
Let's simplify the problem a little, and ask:

Can we determine the index of the largest element of a vector in
parallel?

EXAMPLES: The Index of the Maximum Entry

The reduction clause can be thought of as carrying out a critical
section for us. Since there's no OpenMP reduction clause for index
of maximum value, we'll have to do it ourselves.

We want to do this in such a way that, as much as possible, all the
threads are kept busy.

We can let each thread find the maximum (and its index) on a
subset of the vector, and then have a cleanup code (and now we
use the critical section!) which just compares each thread’s results,
and takes the appropriate one.

EXAMPLES: The Index of the Maximum Entry

all_ max =1
!$omp parallel private (i,id,i_max) shared (n,p_num,x)
id = omp_get_thread_num ();
i_max = id + 1;
doi=1id + 1, n, p_num
if (x(i_max) < x(i)) then
i_max = i;
end if
end do
'$omp critical
if (x(all_max) < x(i_max)) then
all_max = i_max
end if
!$omp end critical
I$omp end parallel

EXAMPLES: Random Numbers

Random numbers are a vital part of many algorithms. But you
must be sure that your random number generator behaves properly.

It is acceptable (but hard to check) that your parallel random
numbers are at least “similarly distributed.”

It would be ideal if you could generate the same stream of random
numbers whether in sequential or parallel mode.

EXAMPLES: Random Numbers

Most random number generators work by repeatedly "scrambling”
an integer value called the seed. One kind of scrambling is the
linear congruential generator:

SEED = (A * SEED + B) modulo C

If you want a real number returned, this is computed indirectly, as
a function of the updated value of the SEED;

float my_random (int *SEED)
*SEED = (A * *SEED + B) modulo C
R = (double) *SEED / 2147483647.0
return R

EXAMPLES: Random Numbers

Many random number generators have you set the seed first:

seed = 123456789;
srand48 (seed);

This value of SEED is stored somewhere in “static’ memory,
where the generator can get to it as needed.

When you call the random number generator, it gets a copy of the
seed, updates it, writes the updated seed back to static memory,
and then returns the random number you asked for:

x = drand48 (); <-- Hidden calculations
involve SEED.

EXAMPLES: Random Numbers

For typical random number calculations, SEED determines
everything.

For parallel computations, it is dangerous to use an algorithm
which has hidden variables that are stored statically.

It's important to test. Initialize SEED to 123456789, say, compute
20 values sequentially; repeat in parallel and compare.

Random number generators using hidden seeds may or may not
work correctly in parallel.

They may work inefficiently, if multiple processors contend
for access to a single shared seed.

EXAMPLES: Random Numbers

include ...stuff...
int main (void)
{

int 1i;

unsigned int seed = 123456789;
double y[20];

srand (seed);
for (i =0; i < 20; i++)
{

y[i] = (double) rand () / (double) RAND_MAX;
}

return O;

EXAMPLES: Random Numbers

There are random number generators which use a seed value, but
which have you pass the seed as an argument.

This means there is no internal memory in the random number
generator to get confused when multiple processes are involved.

It allows you to assign separate (and different!) seeds to each
thread, presumably resulting in distinct random sequences.

We can do this using a parallel section, setting a seed based on the
thread ID.

EXAMPLES: Random Numbers

pragma omp parallel private (i, id, r, seed)
{
id = omp_get_thread_num ();
seed = 123456789 * id
for (i =0; 1 < 1000; i++)
{
r = my_random (seed);
(do stuff with random number r)

EXAMPLES: Random Numbers

For the MPI system of parallel programming, generating distinct
sets of random numbers is also a big issue.

However, in that case, there is at least one well-tested package,
called SPRNG, developed at FSU by Professor Michael Mascagni,
which can generate distinct random numbers for multiple
processes.

EXAMPLES: Carry Digits

Suppose vectors X and Y contain digits base B, and that Z is to
hold the base B representation of their sum. (Let's assume for
discussion that base B is 10).

Adding is easy. But then we have to carry. Every entry of Z that is
B or greater has to have the excess subtracted off and carried to
the next higher digit. This works in one pass of the loop only if we
start at the lowest digit.

And adding 1 to 9,999,999,999 shows that a single carry operation
could end up changing every digit we have.

EXAMPLES: Carry Digits

doi=1,n

z(1) = x(1) + y(1)
end do
overflow = .false.

doi=1,n
carry = z(i) / b
z(i) = z(i) - carry * b
if (i < n) then
z(i+1) = z(i+1) + carry
else
overflow
end if
end do

.true.

EXAMPLES: Carry Digits

In the carry loop, notice that on the I-th iteration, we might write
(modify) both z[i] and z[i+1].

In parallel execution, the value of z[i] used by iteration | might be
read as 17, then iteration I-1, which is also executing, might
change the 17 to 18 because of a carry, but then iteration I, still
working with its temporary copy, might carry the 10, and return
the 7, meaning that the carry from iteration I-1 was lost!

99% of carries in base 10 only affect at most two higher digits. So
if we were desperate to use parallel processing, we could use
repeated carrying in a loop, plus a temporary array z2.

EXAMPLES: Carry Digits

do
'$omp parallel
!$omp workshare

z2(1) =mod (z(1) , b))
z2(2:n) = mod (z(2:n), b) + z(1:n-1) / b
z(1:n) = z2(1:n)

done = all (z(1:n-1) / b ==0)
!$omp end workshare
I$omp end parallel

if (done)
exit
end if

end do

Shared Memory Programming with OpenMP

Introduction

Directives

Sections

Loops

Critical Regions and Reductions
Data Conflicts and Data Dependence
Compiling, Linking, Running
Environment Variables and Functions
Parallel Control Structures

Data Classification

Examples

CONCLUSION

®POeB600000000O0

CONCLUSION: Clauses We Skipped

Although OpenMP is a relatively simple programming system,
there is a lot we have not covered.

The single clause allows you to insist that only one thread will
actually execute a block of code, while the others wait. (Useful for
initialization, or print out).

The schedule clause, which allows you to override the default rules
for how the work in a loop is divided.

There is a family of functions that allow you to use a lock variable
instead of a critical clause. Locks are turned on and off by
function calls, which can be made anywhere within the code.

CONCLUSION: Nested Parallelism

In nested parallelism, a parallel region contains smaller parallel
regions. A thread coming to one of these nested regions can then
fork into even more threads. Nested parallelism is only supported
on some systems.

OpenMP has the environment variable OMP_NESTED to tell if
nesting is supported, and functions to determine how nesting is to
be handled.

CONCLUSION: Parallel Debugging

Debugging a parallel programming can be quite difficult.

If you are familiar with the Berkeley dbx or Gnu gdb debuggers,
these have been extended to deal with multithreaded programs.

There is also a program called TotalView with an intuitive
graphical interface.

However, | have a colleague who has worked in parallel
programming for years, and who insists that he can always track
down every problem by using print statements!

He's not as disorganized as that sounds. When debugging,
he has each thread write a separate log file of what it's
doing, and this gives him the evidence he needs.

CONCLUSION: Tuesday's Lab Exercises

Exercises for the laboratory session will introduce you to OpenMP.
You'll write a simple program to estimate an integral.

You will make OpenMP versions of FFT, molecular dynamics, and
heat equation programs, using directives on just one or two loops.

You will investigate (a little) the speedup as you increase the
number of processors, or make other changes in the codes.

CONCLUSION: Weekend Headache

For Tuesday, write a program, using OpenMP, that computes a
matrix product, using three loops.

@ Loop 1 sets A(l,J) = sin(%n)(ﬁl)) + cos(zﬂLn)(Fl))

@ Loop 2 sets B(I,J) = A(l,lJ) / n

@ Loop 3sets C = A * B.
Note that | and J loop from 1 to N (FORTRAN indexing).
C/C++ users replace the factor (i —1)(j — 1) by ij.

Print the value of C(n,n) or C[n-1][n-1];
Print the elapsed time in seconds to carry out all three loops.
Run with n =500 on 1, 2, 4 and 8 threads.

If you don't have it finished, we'll work on it in the lab!

CONCLUSION:

References:

© Chandra, Parallel Programming in OpenMP

@ Chapman, Using OpenMP

© Petersen, Arbenz, Introduction to Parallel Programming
@ Quinn, Parallel Programming in C with MPI and OpenMP

https://computing.11lnl.gov/tutorials/openMP/

