1. Write a for loop which prints the integers from 100 down to 0 by fives; that is, the first three lines should be 100, 95, 90...

 int i;

 for (i = 100; 0 <= i; i = i - 5)
 {
 cout << i << "\n";
 }

2. A user is going to input several integers to a program, terminating with an extra, dummy value of 999. Write C++ code which reads the user’s data and computes the sum, while ignoring the final 999 value.

 int i, sum = 0;

 while (true)
 {
 cin >> i;
 if (i == 999)
 {
 break;
 }
3. A cab company charges $2.50 on entry into the cab, an additional $1.75 per mile for each of the first 10 miles, and an additional $1.00 per mile for each mile traveled beyond 10 miles. If the int variable miles contains the miles traveled, display the C++ statements necessary to compute bill, the amount of money owed.

```cpp
int miles;
float bill;

if ( miles < 10 )
{
    bill = 2.50 + 1.75 * ( double ) * miles;
}
else
{
    bill = 2.50 + 1.75 * 10.0 + 1.00 * ( double ) ( miles - 10 );
}
```

4. Write C++ code that will find and print the first integer which is greater than 1000, is divisible by 347, and is not divisible by 7.

```cpp
int i = 1000;

while ( true )
{
    i = i + 1;
    if ( ( i % 347 == 0 ) && ( i % 7 ) != 0 )
    {
        break;
    }
}
```

5. The array a has dimension 100. Write C++ code that will print the array using 25 lines of output, with each line containing four entries of the array.
int a[100], i;

for (i = 0; i < 100; i = i + 4)
{
 cout << " " << a[i] << " " << a[i+1] << " " << a[i+2] << " " << a[i+3] << "\n";
}

6. Suppose the function `rand(float)` has returned a random number \(r \) between 0 and 1. Write a one-line C++ formula that converts \(r \) to a random number \(s \) between the values \(a \) and \(b \).

```cpp
float a, b, r, s;

r = random_float ( );
s = a + ( b - a ) * r;
```

7. Suppose the variable \(c \) has been declared as `double c[100]`, and that values have been assigned to each entry, and that many, but not all, values are zero. Write C++ code that will find and print the largest index \(i \) such that \(c[i] \) is not zero.

```cpp
double c[100];
int i;

for ( i = 99; 0 <= i; i-- )
{
    if ( c[i] != 0.0 )
    {
        cout << "c[" << i << "] is not zero.\n";
        break;
    }
}
```

8. Write a C++ function called `summer()` that accepts a `float` array \(d \) and an integer \(n \), the dimension of the array, and which returns the number of negative entries in \(d \).
int summer (float d[], int n)
{
 int i, value = 0;

 for (i = 0; i < n; i++)
 {
 if (d[i] < 0.0)
 {
 value = value + 1;
 }
 }
 return value;
}

9. A sequence starts with $x_0 = 0.5$, and subsequent entries are determined by:

 $$x_{n+1} = 0.7 \cdot x_n \cdot (1 - x_n);$$

Write a C++ loop that computes the value of the 1,000,000th entry, but which uses as little memory as possible. In other words, do not use an array to store the entries of x^n.

```cpp
double xn, xnp1;
int i;

xnp1 = 0.5;
for ( i = 1; i <= 1000000; i++ )
{
    xn = xnp1;
    xnp1 = 0.7 * xn * ( 1.0 - xn );
}
```

10. The factorial function $n!$ is defined by

 $$n! = n \cdot n - 1 \cdot \ldots \cdot 3 \cdot 2 \cdot 1$$

and 0! is defined to be 1. Write a C++ function called `fact()` whose input is a nonnegative integer n and which returns the value of $n!$.

```cpp
int fact ( int n )
{
```
int i, value = 1;

for (i = 1; i <= n; i++)
{
 value = value * i;
}
return value;

11. Write C++ statements to estimate the integral of $f(x) = x^2 + \sin(x)$ over the interval [0,1], using 10,000 function evaluations. You may assume that there is a function available, called `random_double()`, which will return random `double` values in the interval [0,1].

double fx, integral, sum, x;
int i;

sum = 0.0;
for (i = 1; i <= 10000; i++)
{
 x = random_double ();
 fx = x * x + sin (x);
 sum = sum + fx;
}
integral = 1.0 * sum / 10000;