

Computational Physics and Validation

Tomek Plewa

Year 5 Site Review Chicago, October 31,2002

An Accelerated Strategic Computing Initiative (ASCI) Academic Strategic Alliances Program (ASAP) Center at The University of Chicago

This talk:

- Overview of the CompPhys group [validation: talk Rosner]
- Rationale
- Astrophysics (applications)
- CompPhys (methods)
 - Algorithms
 - Assignments
 - Timeline
- Code (implementation), CS (execution), and Vis (analysis)

Greg Weirs:

- Increasing the flexibility of FLASH
- Role of the design process

Provide a bridge between Astro and Code groups:

- Address requirements of the Astro group, relieving it from module development.
- Identify implementation requirements for the Code group.

In daily work...

- Focus on problems of the size of large physics module: key problems may never get done if distractions dominate research.
- Assess overall quality of the proposed numerical methods.
- Perform rigorous code verification.
- See validation as an ultimate test of the method.

All three problems require *similar physics*...

...and all of them consist of two very different phases:

Initial Conditions

slow accretion, close to hydrostatic equilibrium timescales entirely limited by sound speed highly subsonic

Thermonuclear Runaway

explosion or fast expansion driven by energy release timescales usually limited by advection subsonic or supersonic

We need to use two different classes of hydro solvers, however....

- Adaptive Mesh discretization [poster Dwarkadas] based on PARAMESH, restricted to no refinement in time, fixed block sizes, quad/octtree data structure, parallel
- PDE solvers [poster Weirs]
 - hyperboliccompressible explicit hydro including MHD, SRHDellipticmultipole for Poisson, multigrid for HelmholtzODEexplicit diffusion, viscosity, nuclear burning

Other components

realistic EOS

multi-species (advection, reaction, possibly diffusion) particle advection

Specific characteristics

modular, flexible, extensible, portable [talk Siegel] tested, maintained, documented [talk Riley] CS- [talk Lusk, poster Dubey] and Math-supported [talk Dupont]

Computational target

a three-dimensional explosion, natural ignition, light curve.

Initial Conditions

highly subsonic and stratified, with angular momentum transport implicit

hydrostatic equilibrium, convection, nuclear burning

Thermonuclear Runaway

supersonic, violent stellar explosion

explicit

detonation or deflagration (flamelet regime)

Computational target

a three-dimensional thermonuclear burst, fuel spreading.

Initial Conditions

subsonic for surface layers, supersonic otherwise, H to He burning strongly stratified, thin layer with shear and rotation (ocean modeling) column ($B\sim 10^{12}$ G) or equatorial ($B\sim 10^8$ G) accretion, boundary layer

Thermonuclear Runaway

inhomogeneous and transient, atmospheric winds, weak expansion explicit

deflagration or detonation

Computational target

a three-dimensional nova model, common envelope phase.

Initial Conditions

highly subsonic and stratified implicit hydrostatic equilibrium, convection, nuclear burning

Thermonuclear Runaway

slow subsonic expansion 2-D very different from 3-D violent turbulent burning (*well-stirred* regime)

Iow-Mach number flow solver [IC: SNIa, XRB, Nova] front tracking flame studies [SNIa], mixing problems with subgrid models [XRB, Nova] directionally-unsplit compressible flow solver necessary for front tracking, offers alternative to the existing solver

 compressible implicit solver accretion flows and boundary layer simulations [IC: XRB] (semi-implicit) relativistic MHD solver column accretion and spreading [IC: XRB]

1-D non-LTE radiative transfer in moving media for postprocessing of multi-D hydro results [SNIa, Nova] multi-D radiation transport inexpensive, gray (minimum) / multi-group (at most) [XRB]

 Iow-Mach number flow solver new hire: projection method, P. Colella
 front tracking Natasha Vladimirova: CIP, passive scalar (NRL), level set (MPA)
 directionally-unsplit compressible flow solver T.P.: Godunov, CTU, P. Colella
 compressible implicit solver Greg Weirs: BIC (G. Patnaik), P. Woodward, W. Dai
 (semi-implicit) relativistic MHD solver

Timur Linde: TVD, T. Gombosi, S. Komissarov, S. Falle

1-D non-LTE radiative transfer in moving media

Vikram Dwarkadas: collaborations [Avrett, Hauschildt, Hoeflich, Lundqvist, Pinto]

multi-D radiation transport
 single-T flux-limited diffusion

Alan Calder: Hayes & Norman scheme, J. Hayes/TSI, IBEAM

Iow-Mach number flow solver	2003/4
front tracking	2003/4
directionally-unsplit compressible flow solver	2003
compressible implicit solver	2004
(semi-implicit) relativistic MHD solver	2003
1-D non-LTE radiative transfer in moving media	2004
multi-D radiation transport	2004

data structure

front tracking, multi-D radiation transport

driver

implicit solvers

communication

implicit solvers

elliptic solvers

low-Mach number flow solver

data interface

1-D non-LTE radiative transfer in moving media

single processor performance

top-5 profiling, cache optimization

□ scalability studies [poster A. Dubey]

examine parallel performance in adaptive (FLASH) and uniform (community value) grid multi-physics calculations

parallel algorithms

identify opportunities for parallel execution

3-D visualization

ultimate method of data analysis, necessary for development; finishing current study and moving on to the next one

upcoming challenges: Flash Simulator

vector performance: expect substantial modifications to the computational kernels

- Astro: self-consistent initial conditions requires less intuition/speculation; replaces parameter studies
- Astro: capturing the unresolvable certain problems require front tracking + subgrid models

Code: high-level changes

current: flexible driver, next: additional data structures

CS: efficiency

scalability of integrated simulations (FLASH); uniform grid (community)

Vis: support multi-D data sets

faster data processing, closing current problem/starting a new one

CompPhys:

keep focus, interact with Astro/Code, seek help from CS/Vis, validate

Questions and Discussion

