

Supernovae

Tomek Plewa

ASC Flash Center, University of Chicago

Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller

MPA für Astrophysik, Garching

FLASH, Nov. 2005

Outline

- Non-exotic neutrino-driven supernovae
- Rayleigh-Taylor mixing in normal Type II
- Hydrogen-free case of Type Ib
- Bits from the Labs
- Conclusions

Non-exotic neutrino-driven supernovae

- Rayleigh-Taylor mixing in normal Type II
- Hydrogen-free case of Type Ib
- Bits from the Labs
- Conclusions

Introduction

- Most core collapse supernovae are *aspherical*.
- Evidence for strong ⁵⁶Ni mixing: light curves, emission line profiles, early detection of gamma rays in SN 1987A, ...
- Mixing is currently the only source of *detailed* observational information on explosion mechanism.
- 2D/3D hydrodynamic models required to link theory to observations!

Starz!

The neutrino driven mechanism

Complex multidimensional flow with heating and cooling (Chandrasekhar, Herant, Foglizzo, plus lots of numerical simulations done in the US, Europe, and Japan). Possibly offers the most conservative hydrodynamic mechanism for kicks (requires high-quality hydrodynamic models).

2D hydrodynamic models

- Progenitor: 15 Msol blue supergiant (WPE 88)
- Parameterized neutrino luminosities (inner boundary at neutrino sphere, no transport)
- PPM hydro solver + 14 isotope nuclear network
- Selfgravity
- Block Structured Adaptive Mesh Refinement
- Relatively simple, inexpensive physics
- 3072 (2 599 933 per R_{*}) x 768 zones, remapping

Non-exotic neutrino-driven supernovae

- Rayleigh-Taylor mixing in normal Type II Done before, why to redo it?
- Hydrogen-free case of Type Ib
- Bits from the Labs
- Conclusions

Neutrino-driven Convection

Entropy, evolution up to 1 s

Numerical sanity

Naturally seeded RT phase.

FLASH, Nov. 2005

Model assumptions

Same total core emission, longer timescale.

FLASH, Nov. 2005

Long-term convection

Short wavelength modes are filtered out; m=0,I=1 survives.

Long-term convection in 3D

Confirms 2D results (but extremely expensive to obtain).

FLASH, Nov. 2005

Pulsar kicks

Observed bi-modal distribution and amplitudes recovered.

Post-bounce 1D evolution

Shock revival after ~300 ms.

The ASCI/Alliances Center for Astrophysical Thermonuclear Flashes

Basic 1D structure

Reverse shock forms after ~300 ms.

FLASH, Nov. 2005

Composition of 1D model

Layered, highly discontinuous, several material interfaces.

The ASCI/Alliances Center for Astrophysical Thermonuclear Flashes

Origins of mixing: I

Density and pressure gradients of opposite signs.

The ASCI/Alliances Center for Astrophysical Thermonuclear Flashes

Origins of mixing: II

Shock speed deceleration.

Rayleigh-Taylor growth rates

Long-term growth at He/H.

Log (density), 4 s post bounce

The ASCI/Alliances Center for Astrophysical Thermonuclear Flashes

Log (density), 10 s

Log (density), 20 s

Density + elements, 50 s

FLASH, Nov. 2005

The University of Chicago

Density + elements, 300 s

Density + elements, 1170 s

Log (density), 1620 s

Log (density), 3000 s

Log (density), 5000 s

Log (density), 10000 s

Log (density), up to 20,000 s

1 se

FLASH, Nov. 2005

Velocity distributions, Type II model

FLASH, Nov. 2005

The University of Chicago

34

Kifonidis et al. (2004)

Model ejecta AD2005

Kifonidis et al. (2006)

FLASH, Nov. 2005

Non-exotic neutrino-driven supernovae

- Rayleigh-Taylor mixing in normal Type II
- Hydrogen-free case of Type Ib
- Bits from the Labs
- Conclusions

Log (density), Type II model, 1620 s

Log (density), Type Ib model, 1600 s

<u>The ASCI/Alliances Center for Astrophysical Thermonuclear Flashes</u> The University of Chicago

Velocity distributions, Type Ib model

Mixing and spectra of Type Ib SN

FLASH, Nov. 2005

40

Non-exotic neutrino-driven supernovae

- Rayleigh-Taylor mixing in normal Type II
- Hydrogen-free case of Type Ib
- Bits from the Labs
- Conclusions

NLUF Supernova Rayleigh-Taylor

Study RM / RT instability-driven transition to turbulence in a planar system at a diagnosable scale.

Shock-cylinder interaction

- Neutrino driven convection seeds Rayleigh-Taylor instability at Si/O and O/He-interfaces. Complex post-shock flow, difficult to model, rich in surprises, not yet fully understood.
- Final ⁵⁶Ni velocities small compared to SN 1987A.
 The cause: hydrodynamic deceleration at He/H interface!
- Perhaps "non-standard" progenitor models, additional physics (rotation or MHD effects), or possibly simply better treatment of currently considered physics required for SN 1987A.
- Promising mechanism to explain Type Ib spectra and light curves!

Discussion

