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Abstract

Current estimators of gene flow come in two methods; those that estimate parameters
assuming that the populations investigated are a small random sample of a large number
of populations and those that assume that all populations were sampled. Maximum
likelihood or Bayesian approaches that estimate the migration rates and population sizes
directly using coalescent theory can easily accommodate datasets that contain a population
that has no data, a so-called ‘ghost’ population. This manipulation allows us to explore the
effects of missing populations on the estimation of population sizes and migration rates
between two specific populations. The biases of the inferred population parameters
depend on the magnitude of the migration rate from the unknown populations. The effects on
the population sizes are larger than the effects on the migration rates. The more immigrants
from the unknown populations that are arriving in the sample populations the larger the
estimated population sizes. Taking into account a ghost population improves or at least
does not harm the estimation of population sizes. Estimates of the scaled migration rate 

 

M
(

 

migration rate per generation divided by the mutation rate per generation) are fairly robust
as long as migration rates from the unknown populations are not huge. The inclusion of a
ghost population does not improve the estimation of the migration rate 

 

M

 

; when the migra-
tion rates are estimated as the number of immigrants Nm then a ghost population improves
the estimates because of its effect on population size estimation. It seems that for ‘real
world’ analyses one should carefully choose which populations to sample, but there is no
need to sample every population in the neighbourhood of a population of interest.
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Introduction

 

When we study organisms in their natural habitat, we
almost always need to discuss the relationship of the
populations studied to each other or to populations that
were ignored. The magnitude of exchange of genetic
material between the populations whether, in the long run,
they remain separate or fuse into a single population.

Researchers often use a measure of population divergence
such as Sewall Wright’s fixation index, 

 

F

 

ST

 

 (Wright 1937;
Wright 1951), or similar statistics (Weir & Cockerham 1984;
Michalakis & Excoffier 1996) that partition the genetic
variance among individuals in a population and between
populations. Most researchers want not only to know
whether there is structure among populations but also
about the magnitude of the gene flow among them. In
conservation biology, the estimation of a migration rate
between populations of an endangered species might even
be the goal of the study. Wright (1951) showed that there is
a direct relationship between 

 

F

 

ST

 

 and the magnitude of
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gene flow between the populations for the 

 

n

 

-island model.
This approach, although widely used, is vulnerable to
violations of its basic assumptions (Whitlock & McCauley
1999). It provides only an overall average of the migration
rate assuming that the number of populations is very
large, whereas a more detailed view is often needed.
Researchers, ignoring the problem that there might be
interdependence of more than just two populations,
have used, and often misused, 

 

F

 

ST

 

-based approaches to
estimate pairwise migration rates from multiple population
data. Fu 

 

et al

 

. (2003) showed that for finite numbers of
populations, this interdependence can be substantial.
Several methods have recently been developed to take
such interdependence into account. Nicholson 

 

et al

 

. (2002)
and Weir & Hill (2002) developed statistics to estimate an

 

F

 

ST

 

-analogue for each population, Wilson & Rannala (2003)
and Pritchard 

 

et al

 

. (2000) used allele frequencies to infer
structure using Baysian approaches, whereas I and others
(Beerli & Felsenstein 1999; Bahlo & Griffiths 2000; Nielsen
& Wakeley 2001) target the direct estimation of underlying
population parameters, such as the migration rate, using
coalescence theory with maximum likelihood or Bayesian
approaches. In all these new approaches it is assumed the
sampled populations represent all the populations, in
stark contrast to methods that estimate a single migration
parameter assuming that the sampled populations are a
random sample from a large number of populations (Rousset
1996; Wakeley & Aliacar 2001). Rarely, however, are all
populations actually sampled. By neglecting populations
that are not part of the sample, are the individual-
population estimators giving a false impression of accuracy?
Is it possible to estimate migration rates among arbitrarily
chosen populations without the Herculean effort of
sampling every population? This study explores the effect
of missing data on gene flow analysis with my own
maximum likelihood method 

 

migrate

 

 (Beerli 2003),
which is based on the coalescent. I expect that findings
in this study are also valid for similar approaches, such
as 

 

genetree

 

 (Bahlo, Griffiths 2000) and 

 

mdiv

 

 (Nielsen,
Wakeley 2001).

 

Methods

 

The Markov chain Monte Carlo based coalescent methods
(Wilson & Balding 1998; Beaumont 1999; Beerli & Felsenstein
1999; Bahlo, Griffiths 2000; Beerli & Felsenstein 2001; Nielsen,
Wakeley 2001) allow for complicated population models,
but it is commonly assumed that samples from all popu-
lations are in the dataset. This is rarely the case when
researchers work with natural populations; some popu-
lations are not sampled because of logistic difficulties, or
because one is not aware that additional populations exist.
These statistical methods by themselves do not require that
all sampled populations have data, but the effects of the

unobserved populations on the results from these methods
warrants exploration.

Artificial datasets were created using a coalescent simu-
lator similar in concept to Hudson’s (1983) simulator (the
C source code for the coalescent tree generator simtree and
the data simulator simdata can be obtained by request
from PB). The simulation study was kept as simple as
possible to reduce problems caused by having too many
parameters. I simulated two main scenarios to explore
the effect of missing populations: the effect of the magni-
tude of migration, and the effect of the number of missing
populations.

To explore the effect of the magnitude of the migration,
a set of three interacting, equally sized populations was
created of which only two are sampled (Fig. 1). I call
the unsampled third population 

 

world

 

. The immigration
rate into the sampled populations from the 

 

world

 

 is called

 

world

 

-immigration to contrast it to the migration rates
between the sampled populations (sample-immigration).
Each dataset contains 20 individuals, 10 in each sampled
population, each individual was scored for 100 unlinked
loci and each locus has a length of 1000 bp. The populations
all have the same size 

 

Θ

 

 = 0.01, where 

 

Θ

 

 is 4 

 

×

 

 effective
population size 

 

N

 

e

 

 

 

×

 

 mutation rate 

 

µ

 

 per generation and
site; this is roughly equivalent to having 2500 individuals
with a substitution rate 

 

µ

 

 of 10

 

−

 

6

 

 per generation. For most
of the simulations the migration rate between the sampled
populations is kept at migration rate 

 

M

 

 = 100, where 

 

M

Fig. 1 Basic migration model used in the simulation study. Θ is
4 × effective population size Ne × mutation rate µ per generation
and site; M is the scaled migration rate m/µ where m is the
immigration rate per generation. 4Nm (ΘM) is the number of
immigrants per generation. The subscripts indicate the population
and the direction of the migration, the first letter is the donor and
the second the recipient.
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is the immigration rate 

 

m

 

 scaled by 

 

µ

 

. Using the above
substitution rate, 

 

M

 

 = 100 translates into 

 

m

 

 = 0.0001 per
generation. This is equivalent to one immigrant every four
generations (

 

m

 

 = 

 

m

 

 = 1). The migration rate
into population 1 from 2 is labelled 

 

M

 

2-1

 

 and the migration
from 

 

world

 

 to 1 similarly is 

 

M

 

world-1

 

.
The following scenarios were simulated:

 

No immigration from the world

 

: (Fig. 2A) the two sampled popu-
lations do not receive migrants from the 

 

world

 

 population.

 

Unequal world-immigration

 

(Fig. 2B,C): (B) the 

 

world

 

-
immigration is of the same magnitude as the migration rate
between the two populations, 

 

M

 

 = 100 (

 

m

 

world-1

 

 = (1);
(C) the immigration from the 

 

world

 

 is much bigger than the
exchange between the samples, 

 

M

 

 = 1000 (

 

m

 

world-1

 

 = 10).
There is no migration from the sample to the 

 

world

 

.

 

Symmetric immigration from the world 

 

(Fig. 2D,E): All migra-
tion rates are the same as before except that all immigration
from the 

 

world

 

 populations are matched with an immigra-
tion into the 

 

world

 

 population with the same magnitude.

To check the variability of the outcome, I generated 10
additional datasets for the scenario with symmetric migra-
tion rates between all three populations (Fig. 2D), and two
further datasets containing 50 and 100 individuals using
the same scenario.

For the analysis of the effect of the number of missing
populations, datasets were created in which two sampled
populations are part of a network of unobserved popula-
tions; sets of 3, 5, and 9 populations were simulated. For
these simulations I kept the migration rate the same
between all populations (Fig. 2D).

Additionally, effects of the 

 

world

 

 populations when there
is no migration between the sample populations (

 

M

 

 = 0)
were analysed, using unequal and symmetric 

 

world

 

-
immigration scenarios.

I analysed these artificial datasets with 

 

migrate

 

 (Beerli
and Felsenstein 1999; Beerli, Felsenstein 2001). 

 

migrate

 

estimates migration rates and population sizes jointly
using a maximum likelihood approach that is based on the

coalescent (for an overview see Kingman 2000). The program
finds parameters by maximizing a relative likelihood using
the Markov chain Monte Carlo sampling scheme devised
by Metropolis 

 

et al

 

. (1953) with modifications by Hastings
(1970). For a set of 

 

n

 

 populations, 

 

n

 

 population sizes and

 

n

 

(

 

n

 

 

 

−

 

 1) immigration rates are estimated. The population
sizes are reported as 

 

Θ

 

 (that is, 4

 

N

 

e

 

µ

 

 for nuclear data). The
immigration rates are estimated as 

 

M

 

, which is 

 

m

 

/

 

µ

 

.
Each dataset was analysed by assuming first that there

are only two populations and second, that there is in addi-
tion a third unknown population, which I call a ghost
population because the data do not indicate its presence or
absence or how many such populations are present. For
datasets with multiple unknown populations, only one
ghost population was used. For each dataset, I performed
two 

 

migrate

 

 runs to get a rough estimate of the Markov
chain Monte Carlo error. The design of the study allowed
to employ an 

 

anova

 

 analysis that checked the major effects
of the variance introduced by having two datasets per
scenario, the two replicates, the magnitude of the 

 

world

 

-
immigration, and the variance of the sample-immigration
rates. The 

 

anova

 

 analysis was performed with 

 

mathematica

 

4.2 (Wolfram Research 1999). Mean square errors (MSE) were
calculated to explore the benefits of including the ghost
population in the analysis. The MSE measure is the expecta-
tion of the squared differences of the estimates and the
expected values, MSE 

 

=

 

 

 

E

 

(

 

W

 

 

 

−

 

 

 

T

 

)

 

2

 

 

 

=

 

 

 

Var

 

(

 

W

 

) 

 

+

 

 

 

Bias

 

2

 

, where

 

W

 

 is the estimate and 

 

T

 

 is its expectation. Here, 

 

T

 

 is the
values used to simulate the dataset (the truth), and the 

 

Bias

 

is the difference from the mean estimate and the truth. The
MSE incorporates two components, variance and bias. One
seeks the method that minimizes MSE.

The program version used was 

 

migrate

 

 1.7.3 (Beerli
2003) and all options were default except that a heating
scheme (Markov Coupled Markov chain Monte Carlo:
Geyer & Thompson 1992) with three heated chains and one
cold chain in effect. The program was compiled for parallel
execution using the Message Passing Interface (Gropp 

 

et al

 

.
1999) and the analyses were done on an IBM eServer pSeries
690 cluster running AIX and using up to 101 processors
concurrently. Details of the parallel implementation and its
performance are described in the Appendix.

 

Results

 

Effects on the estimation of the population size

 

In Fig. 3 results from the three scenarios each with two
datasets generated with the same parameters are shown.
The migration rate is unidirectional from the 

 

world

 

 to the
sampled populations (Fig. 3 A1 and A2). When there is
no connection between the 

 

world

 

 and the samples, the
two-population analysis estimates the sizes for the two
populations well, with (MSE = 0.088 

 

×

 

 10

 

−

 

6

 

) with an expected

4 1N e
( ) 4 2N e

( )

Fig. 2 Migration models used to generate the simulated datasets:
unsampled world population are white, sampled populations,
black. Thickness of arrows show the magnitude and direction of
the immigration. Details are explained in the Methods section:
(A) no immigration from world; (B, C) unidirectional immigration
from world; (D, E) symmetric immigration.

4N e
i( )
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i( )
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value of Θ = 0.01. Both datasets recover the true value
whereas the ghost-analysis tends to underestimate the
population size (MSE = 1.73 × 10−6). With increased world-
immigration, the two-population analysis overestimates
the sizes considerably (MSE = 8.2 × 10−6), whereas the
ghost-analysis recovers the true values (MSE = 0.15 × 10−6).
The result for the high world-immigration is puzzling
as one might expect that all the parameters might be
overestimated, but the two-population analysis recovers
the true values with an MSE of 0.33 × 10−6. A summary of
the MSEs for all parameters is shown in Table 1. The results
for Θ from the simulations with symmetric immigration rates
between sampled populations and the world reveal s a similar
pattern except for the high migration scenario (Fig. 3B1 and

B2). With low world-immigration, the two-population
analysis overestimates and the ghost-analysis recovers the
true values, but the high world-immigration simulations show
over-estimation of the population sizes. There is a tight
correlation with the magnitude of world-immigration rates:
the MSE for all three two-population scenarios are 0.09 ×
10−6, 9.0 × 10−6, 15.6 × 10−6. The bias of the ghost-analysis is
less well correlated with the magnitude of the immigration
with MSEs of 1.7 × 10−6, 0.01 × 10−6, and 0.86 × 10−6.

Effects on the estimation of the sample-immigration rates

The effect on the immigration rate M between the samples
follows a pattern very similar to those described for the

Fig. 3 Population size estimates with and without ghost-analysis. A1 and A2 are results from two simulated datasets using unequal
migration rates between world and samples. B1 and B2 are results from datasets using symmetric migration rates between world and
samples. Dots mark the maximum likelihood estimate, the lines cover the range of the approximate 98% support interval. The box in the
corner indicates the order of the parameters in the graph: each subblock consists of the sizes Θ1 and Θ2 using only the sampled populations
(black), including a ghost (grey), respectively. The groups ‘none’, 1:1; 10:1 indicate the strength of the immigration from the unsampled world
population, where for example 10:1 means that the immigration from the world was 10 times the immigration rate between the sampled
populations.

Table 1 Mean square error (MSE) of the different scenarios (world population is source: B, C, and symmetric rates: D, E) used to analyse
the simulated datasets. The MSE and its standard deviation is calculated based on the average of parameters over two replicates (numbers
in parantheses show the values for 10 replicates). The scenarios A–E are the same as in Fig. 2. 2:3 and 2:7 are the ratios between sampled
and unsampled populations. The true values for Θ and M are 0.01 and 100, respectively

Mean square error Θ Mean square error M

Simulated scenario
Two-population  
analysis (×106) ghost-analysis (×106) Two-population-analysis ghost-analysis

A No world-immigration 0.088 ± 0.022 1.73 ± 0.26  115 ± 105  286 ± 325
B Medium world-immigration 8.2 ± 0.03 0.15 ± 0.05  190 ± 2  4 ± 5
C High world-immigration 0.33 ± 0.09 2.67 ± 0.05 45 041 ± 12 562 30 637 ± 7226
D Medium world-immigration 9.02 ± 0.94 0.01 ± 0.00  320 ± 101  517 ± 110

 (9.46 ± 2.89)  (0.10 ± 0.16) (125 ± 144) (144 ± 157)
E High world-immigration 15.6 ± 1.25 0.86 ± 0.89 20 862 ± 5791 15 068 ± 7651
2:3 65.10 ± 79.04 15.19 ± 2.13  58 ± 19  232 ± 202
2:7 647.01 ± 574.98 186.54 ± 23.50  40 ± 37  4 ± 2
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effective population size Θ. The two sample-immigration
rates (M1-2, M2-1) should be equal, even when the world-
immigration is unequal, because the immigration pattern
between the samples was kept symmetrical. The M1-2
and M2-1 are quite accurate when there is no or low
immigration from the world and overestimated with world-
immigration (Fig. 4). The MSE for the two-population and
the ghost-analysis are very similar: for some scenarios the
two-population analyses performs better than the ghost-
analyses, but there is no clear pattern emerging except that
MSE for the two-population analysis is correlated with the
magnitude of world-immigration (Table 1).

An anova analysis of the major effects of the data used
for Fig. 4(B) was performed. We compared the effects of
the analysis-type (Two-population vs. ghost-analysis), the
magnitude of world-immigration (none, 1:1, 10:1; Fig. 2 A,D,E),
the variance between datasets, the variance between
replicates of the same dataset (the variance resulting from
the Markov chain Monte Carlo procedure), and the vari-
ance of the sample-immigration rates within a replicate. At
the significance level α = 0.05 and using a Bonferroni test
only two effects are significant: the analysis-type (there is
a difference whether one is using a ghost population or
not), and the magnitude of world-immigration (the results
for the high world-immigration are very different from the
others). Upon closer inspection, the effect of the analysis-
types can be differentiated because the group 1:1 shows
that the ghost-analyses are much more biased than the
two-population analysis. This case was re-examined with
10 simulated datasets using the same parameter settings as

the two datasets used for the anova. Visual inspection of the
results does not reveal a consistent difference between
the two-population and the ghost-analysis (Fig. 5). Aver-
aging over the 10 different datasets gives parameter values
that are very close to the truth (Table 2). The MSE of the
immigration rate based on these 10 datasets for the two-
population analysis is 125, and 144 for the ghost-analysis,
somewhat better numbers than the crude MSE from two
data sets of 320 and 517. The smaller the MSE, the more
confidence we have that the method has a small bias and
small variance. The variances for the sample immigration

Fig. 4 Immigration rates estimates with and without ghost-analysis. A1 and A2 are results from two simulated datasets using unequal
migration rates between world and samples. B1 and B2 are results from datasets using equal migration rates between word and samples.
Dots mark the maximum likelihood estimate of M, which is migration rate m over mutation rate µ, the lines cover the range of the
approximate 98% support interval. The box in the corner indicates the order of the parameters in the graph: each sub-block consists of the
sizes Μ2-1 and Μ1-2 using only the sampled populations (black), including a ghost population (grey), respectively. The groups ‘none’, 1:1;
10:1 indicate the strength of the immigration from the unsampled world population, where for example 10:1 means that the immigration
from the world was 10 times the immigration rate between the sampled populations.

Fig. 5 Immigration rate estimates of 10 independent datasets for
100 loci, simulated using a value of M = 100 for all migration rates.
Dots mark the maximum likelihood estimate, the lines cover the
range of the approximate 98% support interval. The box in the
corner indicates the order of the parameters in the graph: each
sub-block consists of the sizes Μ2-1 and Μ1-2 using only the
sampled populations (black), including a ghost population (grey),
respectively.
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rates of the 10 replicates are 137.4 and 150.8, respectively.
The ghost-analysis has higher variance because it estimates
nine parameters instead of just four; for low world-
immigration rates both estimators seem to have small bias
because the variance is of the same magnitude as the MSE.

No direct migration between the sampled populations

Table 3 shows the MSEs for datasets where there is no
migration between the sample populations. All gene
flow between the samples is indirect through the world
population. The two-population analyses have larger MSEs
for Θ and M than the ghost-analyses, except for the
unidirectional, large world-immigration where the two-
population has a minimal MSE for Θ.

Effects of the number of missed populations

The estimated sample-immigration rates M are astonish-
ingly robust when we increase the number of unsampled

populations (Fig. 6, bottom). The estimates for ratios of 2:1
between sampled and unsampled populations, 2:3, and 2:7
are very similar for both types of analyses, both the two-
population and the ghost-analysis seems to improve with
more unsampled populations (Table 1). In contrast, the

Table 2 Averages of the migration rate M over 10 datasets. M
is m/µ where m is the migration rate per generation and µ is
the mutation rate per generation and site. The datasets were
simulated with migration rates from population two into
population one (M2-1) and from one into two (M1-2) of 100, the
migration rate from and to the world population was also set to
100. The percentage values are the averages of the respective
percentiles, MLE is the average of the maximum likelihood
estimates
 

 

Immigration 
rate

Two-population-
analysis

ghost-
analysis

M2-1 1% 86 85
MLE 100 100
99% 116 117

M1-2 1% 88 79
MLE 102 94
99% 118 110

Table 3 Mean square error (MSE) when the migration between the samples is zero and migrants are only exchanged through the world
population. The MSE and its standard deviation are calculated based on the average of parameters over two replicates. Letters B-E mark
the scenarios B–E from Fig. 2, except that the true values for M between the samples are 0

3

Mean square error Θ Mean square error M

Simulated scenario
Two-population 
analysis (×10–6) ghost-analysis (×10–6)

Two-population 
analysis ghost-analysis

B Medium world-immigration 8.42 ± 0.78 0.37 ± 0.02  1547 ± 72  658 ± 112
C High world-immigration 0.18 ± 0.02 2.87 ± 0.58 83 918 ± 1982 65 655 ± 234
D Medium world-immigration 9.60 ± 2.220 0.20 ± 0.12  1154 ± 142  828 ± 106
E High world-immigration 21.39 ± 1.77 1.87 ± 0.52 38 381 ± 5404 39 628 ± 2881

Fig. 6 Effect of the number of unsampled vs. sampled populations.
Dots mark the maximum likelihood estimate for population sizes
(top) and the immigration rates (bottom), the lines cover the range
of the approximate 98% support interval. The box in the corner
indicates the order of the parameters in the graph: each sub-block
consists of the sizes Μ2-1 and Μ1-2 using only the sampled popu-
lations (black), including a ghost population (grey), respectively.
The groups 2:1, 2:3, 2:7 reflect the ratio of sampled to unsampled
populations.
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estimates of the population sizes are strongly affected by
missed populations (Fig. 6, top). For the two-population
analysis, the MSE increase about nine fold between the
ratios of sampled vs. missing populations of 2:1, 2:3, and
2:7. For the ghost-analysis, the values are smaller, but they
show a similar, but weaker, trend as the two-population
analysis (Table 1).

Sample size

To make sure that the above comparisons are not an effect
of small sample size (10 individuals per population),
additional datasets with 50 and 100 total individuals were
analysed. These datasets were simulated under the scenario
that all migration rates are equal (Fig. 2D). The effect of
small sample size on the estimates of the immigration rate
is minimal (Fig. 7), except that the support intervals are
somewhat larger with fewer individuals. The results for
the population sizes are not shown but follow the same
pattern; this is expected and has been found before
(Pluzhnikov & Donnelly 1996).

Effects on the estimation of the number of immigrants into 
a sample population

The number of immigrants can be expressed as 4Nem =
ΘM = 4Neµ × m/µ. The biases that affect Θ and Μ will
affect the 4Nem the same way. The biases of Θ for scenarios
with medium and high world-immigration rates are large
whereas the biases for M are much smaller for medium
world-immigration than for large world-immigration, the
biases for 4Nem follow closely the biases for Θ.

Discussion

Results were partly expected and partly surprising. The
estimates of the migration rate M between the samples are
stable when there is no or low immigration from the world.
The estimates deteriorate with large immigration rates
from the world: the many alleles imported into the two
sampled populations from the same source increase the
estimates of M because the occurrence of the same allele in
all the populations increases the chance that there was a
migration. Surprisingly, with moderate world-immigration
rates the number of missed populations does not affect the
estimates of the migration rates between the samples. The
local alleles are not swamped by alleles from world as in
the large world-immigration scenarios and therefore allow
to estimate successfully the migration rates between the
samples. This confirms Hudson’s (1998) assertion that
is possible to estimate a migration rate in a subgroup
of populations in a n-island model based on a ‘local’ FST.
Whether one uses a ghost population in the analysis or
not, is not that important because ignoring unknown
populations or taking them into account provides very
similar results for the migration rate estimates.

The estimates of population sizes show more deviation
from the true values than those for the migration rates. The
quality of the estimates depends on the simulation sce-
nario. With symmetric migration rates between the sample
and the world a steady increase in population sizes was
found and the deviation from the true value gets larger
when the immigration rate increases or the number of
missed population increases; having a migration rate M of
1000 from a single missed population is similar of having
an M of 100 from 10 missed populations. The ghost popu-
lation analysis improves the estimates of Θ somewhat with
small immigration rates but the estimates are still biased
upward when the gene flow from the unknown populations
is large. There is a discrepancy between the source-sink
and the symmetric migration scenario. In the source-sink
scenario with large immigration rate the population sizes
are estimated quite accurately. This is an artifact because
the sample populations get swamped with alleles from the
world and essentially become copies of the world population
and therefore should have its size; instead of measuring
the size of the samples under these conditions one is meas-
uring the size of the unknown population. With symmetric
and high migration rates all populations exchange many
migrants through the world populations, so that the three
populations essentially behave like one large population in
which the coalescences are independent from the location
of the sampling (Nagylaki 2000).

Fu et al. (2003) showed that many estimators using allele
frequencies have difficulties estimating the degree of iso-
lation for a finite number of small connected populations
because the allele frequencies co-vary. This effect is more

Fig. 7 Comparison of the effect of sample size on the accuracy of
the migration rate estimate. M is m/µ, where m is the immigration
rate per generation and µ is the mutation rate per generation. Dots
mark the maximum likelihood estimate, the lines cover the range
of the approximate 98% support interval. The box in the corner
indicates the order of the parameters in the graph: each sub-block
consists of the sizes Μ2-1 and Μ1-2 ignoring the world (black), taking
the world into account (grey), respectively.
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pronounced with small sizes because genetic drift acts on
all populations and on the group as a whole. One might
wonder how much approaches based on the limit of in-
finite number of populations (for example Wright 1951;
Wakeley, Aliacar 2001) correctly estimate migration rates
when the immigration rates deviate from an n-island
model. I expect that for moderate and low migration rates
the overall parameter estimates might be quite accurate
because there was no strong deviation in simulations for
these scenarios even with a large number of unsampled
populations, but one would need to evaluate the behaviour
of these methods when the immigration rates from world
populations to the sample populations are large.

Migration rates might be expressed as genetic distances
that take into account variances and covariances of allele
frequencies (Wood 1986; but see Fu et al. 2003). When there
is no direct migration between the sample populations,
variability still can be distributed through the world and we
would expect an upwards bias for the sample migration
rates because with large world-immigration the sample
populations are swamped with alleles from the world. This
results in a considerably biased sample-immigration rate
for the scenario with unidirectional world-immigration
where there is no exchange between the sample popula-
tions, the many similar world-alleles make it impossible to
establish whether this is the result of sample-immigration
or export of world-alleles into the samples. When there is
more interest in historical processes than interest in vari-
ability patterns this distinction is relevant and migration
rates cannot be replaced by pairwise genetic distances.
Inclusion of a ghost population seems to improve the esti-
mates of sample population sizes considerably, suggesting
that a simple pairwise treatment of migration incorporates
some of the variability imported from locations other than
the pair under consideration and so will lead to overestima-
tion of local variability.

It seems unnecessary to add a ghost population to
analyse migration rates M because in many comparisons
the MSE do not strongly favour the ghost-analysis over a
two-population approach although it seems that the two-
population method is favoured because of the larger vari-
ance of the ghost-analysis caused by the higher number of
parameters to estimate. If the migration rate M from the
unsampled population is known to be large or if the focus
of the analysis is to estimate the population size Θ, or the
number of immigrants 4Nem, which is the product of Θ and
M, then the addition of a ghost does help to reduce the
upwards bias. Bittner & King (2003) were using my ghost
approach to estimate 4Nem between snake populations on
islands in Lake Erie. They report that a ghost is useful only
when few populations were sampled but when additional
samples from more populations are available the inclusion
of a ghost has no benefit for the estimation of 4Nem. We
might extrapolate that when only two populations are

sampled, the population sizes are most likely overesti-
mated and the only hope for getting accurate numbers is
to sample the dominating populations. Adding samples
from other populations is fairly simple because one is not
required to sample huge numbers of individuals to get
decent results from a coalescent based analysis.

Acknowledgements
This study was supported by a grant from the National Science
Foundation DEB-0108249 to Scott Edwards and the author; pre-
liminary simulations were initiated while I was at the University
of Washington supported by grants from National Science Foun-
dation (DEB-9815650), the National Institute of Health (GM-51929
and HG-01989) to Joseph Felsenstein, whom I thank for many dis-
cussions on the topic. The simulations were supported by Florida
State University School for Computational Science and Information
Technology and utilized their IBM eServer pSeries 690 Power4-
based supercomputer Eclipse. I also want to thank Thomas Uzzell,
Laurent Excoffier, Mary Kuhner, Scott Edwards, Richard King, and
an anonymous reviewer for helpful comments on the manuscript.

References
Bahlo M, Griffiths RC (2000) Inference from gene trees in a sub-

divided population. Theoretical Popul Biology, 57, 79–95.
Beaumont MA (1999) Detecting population expansion and decline

using microsatellites. Genetics, 153, 2013–2029.
Beerli P (2003) migrate — a maximum likelihood program to

estimate gene flow using the coalescent, Tallahassee/Seattle.
http://evolution.gs.washington.edu/lamarc/migrate/html

Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of
migration rates and effective population numbers in two popu-
lations using a coalescent approach. Genetics, 152, 763–773.

Beerli P, Felsenstein J (2001) Maximum likelihood estimation of
a migration matrix and effective population sizes in n sub-
populations by using a coalescent approach. Proceedings of
the National Academy of Sciences of the USA, 98, 4563–4568.

Bittner TD, King RB (2003) Gene flow and melanism in garter snakes
revisited: a comparison of molecular makers and island vs. coale-
scent models. Biology Journal of the Linnean Society, 79, 389–399.

Fu R, Gelfand AE, Holsinger KE (2003) Exact moment calculations
for genetic models with migration, mutation, and drift. Theoret-
ical Population Biology, 63, 231–243.

Geyer CJ, Thompson EA (1992) Constrained Monte-Carlo
maximum-likelihood for dependent data. Journal of the Royal
Statistical Society Series B-Methodology, 54, 657–699.

Gropp W, Lusk E, Skjellum A (1999) Using MPI Portable Parallel
Programming with the Message–Passing Interface, 2nd edn. MIT
Press, Cambridge, Mass.

Hastings WK (1970) Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 57, 97–109.

Hudson RR (1983) Properties of a neutral allele model with intra-
genic recombination. Theoretical Population Biology, 23, 183–201.

Hudson RR (1998) Island models and the coalescent process.
Molecular Ecology, 7, 413–418.

Kingman JF (2000) Origins of the coalescent 1974–82. Genetics, 156,
1461–1463.

Metropolis N, Rosenbluth AW, Rosenbluth N, Teller AH, Teller E
(1953) Equation of state calculation by fast computing machines.
Journal of Chemical Physics, 21, 1087–1092.



E F F E C T  O F  M I S S I N G  P O P U L A T I O N S 835

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 827–836

Michalakis Y, Excoffier L (1996) A generic estimation of popula-
tion subdivision using distances between alleles with special
reference for microsatellite loci. Genetics, 142, 1061–1064.

Nagylaki T (2000) Geographical invariance and the strong-
migration limit in subdivided populations. Journal of Mathe-
matical Biology, 41, 123–142.

Nicholson G, Smith AV, Jonsson F et al. (2002) Assessing population
differentiation and isolation from single-nucleotide polymor-
phism data. Journal of the Royal Statistical Society Series B-Statistical
Methodology, 64, 695–715.

Nielsen R, Wakeley J (2001) Distinguishing migration from isolation:
a Markov chain Monte Carlo approach. Genetics, 158, 885–896.

Pluzhnikov A, Donnelly P (1996) Optimal sequencing strategies for
surveying molecular genetic diversity. Genetics, 144, 1247–1262.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of popu-
lation structure using multilocus genotype data. Genetics, 155,
945–959.

Rousset F (1996) Equilibrium values of measures of population
subdivision for stepwise mutation processes. Genetics, 142,
1357–1362.

Wakeley J, Aliacar N (2001) Gene genealogies in a metapopu-
lation. Genetics, 159, 893–905.

Weir BS, Cockerham CC (1984) Estimating F-statistics for the
analysis of population structure. Evolution, 38, 1358–1370.

Weir BS, Hill WG (2002) Estimating F-statistics. Annual Review of
Genetics, 36, 721–750.

Whitlock MC, McCauley DE (1999) Indirect measures of gene flow
and migration: FST not equal to 1/(4Nm + 1). Heredity, 82 (2),
117–125.

Wilson IJ, Balding DJ (1998) Genealogical inference from micro-
satellite data. Genetics, 150, 499–510.

Wilson GA, Rannala B (2003) Bayesian inference of recent
migration rates using multilocus genotypes. Genetics, 163,
1177–1191.

Wolfram Research (1999) Mathematica: Wolfram Research, Inc,
Champaign, Illinois.

Wood JW (1986) Convergence of genetic distances in a migration
matrix model. American Journal of Physical Anthropology, 71, 209–
219.

Wright S (1937) The distribution of gene frequencies in popu-
lations. Proceedings of the National Academy of Sciences of the USA,
23, 307–320.

Wright S (1951) The genetical structure of populations. Annals of
Eugenics, 15, 323–354.



836 P E T E R  B E E R L I

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 827–836

Appendix

The program migrate-n summarizes multiple unlinked
loci calculating the likelihood

(Beerli & Felsenstein 1999). Each locus is independent
from any other so that the integration over all possible
genealogies for each locus can be run independently. This
makes the problem embarrassingly parallel. On multiple
computers one can run all loci concurrently, and reduce the
analysis time considerably. migrate-n can be compiled for
parallel machines utilizing MPI (Gropp et al. 1999). The
current version uses a master-worker architecture. The flow
of the analysis is as follows: the parameter file is read by
the master-node. On interactive systems the menu can be
displayed (all input/output related function are guided
through the master). After the menu, the data are read and
distributed to all worker nodes; the master orchestrates the
workers, each of which gets a locus to work on. Once a
locus is finished, the worker receives either a new locus or
waits until all other workers are done with their work; the
master then calculates the maximum likelihood estimate
(MLE) by delegating the calculation of likelihoods and
gradients to the workers. When the MLE is found, the first
overview table is printed and the workers send all their
locus summary data (sampled genealogies) to the master
so that they can be redistributed to all other workers. After
the redistribution of the data, the workers calculate the
approximate support intervals for each parameter using
the method of profile likelihood. The results are then
forwarded to the master and printed in the outfile. The
program needs to run on minimally two nodes and maxi-
mally as many as one can accommodate. A natural upper
limit is the maximum number of loci or of parameters.

A typical speedup is displayed in Fig. 8 and it shows that
for a dataset with 100 loci and nine parameters, 32 processors
are very efficient and the use of more processors does
not greatly improve the speed, although the 101 processor
run is still 1.4 times faster than the 32-processor run. Even
so the program is ‘embarrassingly parallel’; with more
nodes more data need to be transferred on the network,
which is much slower than the central processing unit (CPU).
Another problem is that work on some loci is much faster
than work on others; if all the k loci are distributed to k nodes
then for further computation one needs to wait for that
node that received the locus that was most time consuming
to compute. When each node can take several loci then
some loci will be calculated rapidly and others slowly,
averaging the total waiting time.

With the help of a computer-savvy person it is feasible
for a lab group to set up a small cluster or group of con-
nected workstations, and run batch jobs of migrate-n
without blocking individual researcher’s desktop com-
puters and get a decent turn-around time for individual runs
of the program.
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Fig. 8 Comparison of the run-time improvement of the parallel
version of migrate-n.


