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The estimation of population parameters from genetic data can help reveal past
migration patterns or past population sizes. The transformation from raw genetic
data to population parameters needs a model, which should reflect the true
relationships between subpopulations. Often the models are overly simplified and do
not allow, for example, for differences in population sizes and differences in
migration rates. I stress here the point that it is important to consider possible
asymmetries in migration rates and differences in population sizes. Very recently
several estimators based on the direct use of allele frequencies and based on
coalescence theory have been developed. All these outperform migration rate
estimators based on FST.

1. Introduction

The estimation of population parameters such as population size and migration rates
between subpopulations of a species is crucial for many ecological studies. Two very
different approaches to estimating population parameters are in use: (1) direct methods
using direct observations or radio-telemetry data of migrating individuals, and (2) indirect
methods using genetic data from samples of individuals in several subpopulations for the
inference of migration rates. Direct methods can help to determine the migration pattern of
individuals during the study, and can deliver information about very recent history. Under
the assumption that the few tracked individuals are picked at random and that their
movements are not artefacts of the study, these data can give interesting insights into the
migration pattern of a specific population. Limits are also evident, however: small
migration rates are undetectable and the accuracy of the parameter estimates is small when
the study is based only on a few individuals. If the study is too short and not repeated we
cannot know if the migration pattern we observed was accidental or is general. Current
progress in establishing the relationship between individuals using DNA finger-printing
may help to generate accurate information about very recent migration patterns. Using these
methods, it is simple to increase the number of individuals studied and to make estimates
that are less dependent on the length of the study, because one uses the shared genetic
history of parents and offspring. In the future DNA finger-printing will certainly provide a
valuable tool for the detection of very recent migration pattern between small populations
Bossart & Prowell 1998).

I will concentrate on indirect methods that also are based on genetic history. They do not
assume that we can find parent-offspring pairs, but instead use probabilistic models. The
array of possible markers is large and can include allozymes, restriction length
polymorphism, microsatellites, or protein or DNA sequences. These genetic data are then
the basis for our inference of migration patterns. This chapter focus on models for discrete
populations and their assumptions, interested readers may find more information about the



influence of different data types on the analysis in Neigel (1997).  For some of these
methods we first estimate certain meta-quantities from which we then infer population
parameters, such as population sizes and migration rates. These methods all have some
advantages compared to the direct approach. One can investigate large sample sizes or
many loci and therefore detect small amounts of migration. There is no need to track
individuals over time: the estimates are averages over evolutionary time and reveal general
rather than individual migration patterns. We can use the indirect methods for any
organism. There are also disadvantages. We need to assume that the markers are selectively
neutral, so that similarity between different subpopulations is a result of migration rather
than similar selection pressures. The population parameters are also confounded with the
mutation rate. The markers need to show enough variability, so that we can see differences
between subpopulations. A marker with a very slow mutation rate will not reveal recent
migration events, but may still have some information about migration events far in the
past, when compared with geographically more distant populations.

Several groups of approaches using genetic data for the inference of migration rates are
recognized: (1) estimators based on allele frequencies and Wright (1951)’s F-statistic
(reviewed in Michalakis & Excoffier 1996); (2) maximum likelihood estimators based on
allele frequencies (Rannala & Hartigan 1996; Tufto et al. 1996); and (3) estimators based
on genealogies of the sampled individuals (coalescent theory: Kingman 1982b) with
migration rates estimated using procedures of Wakeley (1998), Bahlo & Griffiths (1998), or
Beerli & Felsenstein (1998). Some estimators are mixtures of these groups. Slatkin &
Maddison (1989), for example, developed a method that uses results from coalescent theory
and then presents an interpolation table produced by simulating the coalescence with
migration, in which the minimal number of migration events found on the best genealogy is
related to a migration rate, 4Nem. Most of these estimators were developed under
simplifying assumptions; for example all current “all-purpose” migration rate estimators
assume that the population is in migration-mutation equilibrium; in other words they
assume that the migration and the mutation rates are constant through time. Additionally,
almost all methods use a constant sized population. There is currently one method,
developed by Bahlo & Griffiths (1998), that can allow for subpopulations that are growing.
The availability of methods for estimating population parameters under non-constant
condition will increase, but development of programs and new method is often a slow task.
Additionally, the more parameters we want to estimate the more data we need; this makes it
perhaps impractical to allow for all possibilities. Methods allowing for non-constant
conditions have first to be fully developed and then have to show that they can deliver
accurate estimates.

Most migration models are based on the Wright-Fisher population. The Wright-Fisher
population model with migration is rather simple (Fig. 1) and has properties that makes its
mathematical treatment easy. A subpopulation consists of a constant number of individuals,
either haploid or diploid (I will describe the diploid case). In each generation each
individual is producing a large number of gametes. These gametes either stay in a
subpopulation or migrate into another subpopulation. New individuals are formed by
randomly choosing two gametes in a subpopulation, and these individuals replace their
parents.
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Fig. 1: Gene genealogy of a Wright-Fisher population with migration between two subpopulations. Thick
lines show the coalescence of lineages from a sample of 4 individuals in each population.

I will focus on some of these estimators and discuss their properties and limitations
when subpopulations may exchange migrants at different rates or have different sizes, and
in which the mutation rate may vary among loci. Additionally, I will develop an F-statistic
framework introduced by Maynard Smith (1970), Maruyama (1970), and Nei & Feldman
(1972), so that population sizes and migration rates can be jointly estimated. Finally, I will
compare these FST-based approaches with an approach based on the coalescence theory.

2. How to compare different population parameter estimators

For practitioners choosing a method for the estimation of population parameters is a
difficult task, because many methods are available (see the almost certainly incomplete list
of available programs in this book). Each of these different methods has its own set of
assumptions; sometimes these are incompatible with the study. Results obtained with real
data provide rather unreliable guidance for picking a method, because we normally do not
know the underlying true parameter values. With computer generated data sets, however, it
is easy to create many replicates with the same population model and the same population



parameters. For these arbitrary data generating parameters I will use terms like the “true
value” or the “truth”. The chosen population parameters should then be recovered from
each data set with some error from randomness in the data generation (Hudson 1983) and
errors in the analysis. The averages of the parameter estimates from many data sets should
converge to the true values when we increase the number of replicates and if the method is
unbiased (does not, for example, always yield estimates that are too high). Additionally, a
good method should have a small variance and therefore produce small confidence
intervals. In short, superior methods are unbiased or have a small bias and a small variance.

3. Migration rate estimators based on F-statistics

Wright (1951) described a framework that uses his earlier inbreeding coefficient F for a
subdivided population with three coefficients: FIS, FIT, and FST. For the infinite allele model
F can be understood as a probability that two randomly chosen alleles are identical by
descent, and the FIJ’s are ratios between the F in an individual I, a subpopulation S, and all
subpopulations T (Total).

I will focus on FST, which is the correlation between the probability that two randomly
chosen gene copies within a subpopulation share an ancestor in the last generation relative
to the probability that two gene copies picked from the total population share an ancestor in
the last generation. In other words, this index uses the partitioning of total genetic
variability into variability within and between subpopulations. Using insights from Slatkin
(1991) and from Michalakis & Excoffier (1996), a highly generalized overview for the
relationship of FST is
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where FST can be replaced by different specific estimators such as  (Weir 1996), NST

(Lynch & Crease 1990), <FST> (Hudson et al. 1992), ST (Excoffier & Smouse 1994), ST

(Rousset 1996), GST (Nei 1973), and RST (Slatkin 1993). The g(x) are correction functions
used for the different FST-estimators scaling the variance within a population ( W) or
between populations ( B). These variances are proportional to the mean coalescence times
in a subpopulation and the whole population. This summary statistic, FST, is interpreted as a
measure of the differentiation between subpopulations, where values close to zero indicate
that the population is not structured.

FST is commonly transformed into a more direct measure for migration. Wright (1951)
showed that for an n-island population model (Fig. 2) with an infinite number of
subpopulations and no mutation, we can use
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where Ne is the population size of a Wright-Fisher population (Fig. 1), and m is the
migration rate per generation. I use the term effective population size Ne to mark the fact
that even when the population is not exactly behaving like a Wright-Fisher population, we
still can use Ne to make comparisons with other populations. Relaxing the rather strong
assumption of having an infinite number of subpopulations is simple and has been
described several times, for example by Li (1976):
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where d is the number of subpopulations, d is most certainly different from the number of
sampled populations. Charlesworth (1998) pointed out that results for Nem can be very
different depending on which version of FST is used.

Fig. 2: Island population model. Examples with 2 and 5 islands. The relevant population parameters are an
overall population size Ne and an immigration rate m that is the same for all subpopulations.

The n-island population model uses only two parameters: the effective population size
Ne and the immigration rate per generation m. It is assumed that the subpopulation sizes are
the same and that the migration rate is the same between all the subpopulations. These
assumptions are often violated in studies of natural populations, for which we know neither
the true migration patterns nor the population sizes.

I created simulated data sets using a technique first used by Hudson (1983). 100
different data containing sequence data (500 bp) for 20 individuals in each of 2
subpopulations were created using specific population sizes 1 and 2, and migration rates
M1 and M2, where  is 4Ne    (Fig. 3). From these data sets  ( =4Nem= M), was
estimated using Wright’s formula (2,3) with <FST> (Hudson et al. 1992). For this simple
two-population situation the estimates for  are appropriate if the subpopulation sizes are
the same and the migration rates are symmetric; as soon as the assumptions of symmetry of
migration rates or of equal population sizes is violated, however, the estimates are wrong
(Table 1). Relethford (1996) revealed similar problems with approaches that assume that
the population sizes are equal and develops an alternative approach, that allows for
different sizes but not different rates, so that mij = mji. Laurent Excoffier (personal
communication 1998) and coworkers have done extensive simulations with different
population sizes and have shown that the assumption of equal population sizes is critical to
the analysis.

1 2

21

12

Fig. 3: Two population model: 1 is 
)1(

4 eN , 2 is 
)2(

4 eN , M21 is 21m , and M12 is 12m , where Ne

is the effective population size,  is the mutation rate per generation, and mji is the migration rate per
generation from population j to population i.



Table 1: Estimates of migration rates  = 4Nem based on Wright’s formula (Formulas 2, 3) in a two population
system (Fig. 3). Averages standard deviations of 100 simulated data sets generated with the same population

parameters are shown. For each data set 2 populations with 20 sampled individuals with 500bp of sequence
data were created according to Hudson (1983). T: the parameter values under which the data sets were

created, A: Wright’s relation of FST and migration rate without correction for finite and known number of
subpopulations (Formula 2), B: Wright’s relation with the correction for two populations (Formula 3).

Population 1 Population 2

T 0.01 1.00 0.01 1.00
A - 4.56 3.08 - 4.56 3.08
B - 1.14 0.77 - 1.14 0.77
T 0.01 10.00 0.01 1.00
A - 31.20 88.78 - 31.20 88.78
B - 7.80 22.20 - 7.80 22.20
T 0.05 10.00 0.005 1.00
A - 45.86 74.15 - 45.86 74.15
B - 11.46 18.54 - 11.46 18.54

The incorporation of asymmetric migration rates in a two-population model seems
simple using the framework developed by Maynard Smith (1970), Maruyama (1970), and
Nei & Feldman (1972). Interestingly, the formulas outlined by Nei & Feldman (1972) could
have been used to estimate the effective population size and the migration rate jointly using
the F-statistic, but were to my knowledge never used in that context. Their work considered
Ne, the mutation rate , and the migration rate m, but did not show how to translate these
parameters into a more practical estimator, given that the mutation rate is usually unknown.
With two populations (Fig. 3) we have three quantities: the probability that two randomly
chosen gene copies in subpopulation 1 share the same ancestor in the past generation
( )1(

WF ), a similar probability for subpopulation 2 ( )2(
WF ), and the probability that two copies

from different subpopulations have the same ancestor in the past generation (FB). These
statistics can be simply estimated from data using heterozygosity in the subpopulation and
an overall heterozygosity; Slatkin & Hudson (1991) outlined a procedure for sequence data.
By relating FB and )(i

WF  to population sizes, migration rate and mutation rate, we can use

the following recurrence formulas, which are adapted from Nei & Feldman (1972), for two
populations with different population sizes and migration rates. The exact formulas are
simplified by removing quadratic terms like 2, m2, m and divisions by number of
individuals in a population (e.g. m/N). For two populations in equilibrium we get the
equation system
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where  is the mutation rate, mi is the immigration rate into population i, and Ni is the
subpopulation size. Because we do not know the mutation rate , I follow a common
practice in coalescence theory and use a compound parameter  which is eN4 , and

define M = m/ . Multiplying the equation system by 1/(2 ) we get
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This system can be solved only for three quantities and not for the four quantities we
would need to describe the two-population system (Fig. 3). We must either require the
population sizes to be the same, but allow different migration rates, or require the migration
rates to be the same, but allow different population sizes. For a model with = 1 = 2 and
two variable migration rates M1 and M2 we get
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and for a model with two variable 1  and 2, and M = M1 = M2 we get
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These estimators will fail when B
i

W FF )( . This can happen more often with more

subpopulations and is dependent on the asymmetry of migration rates and on the population
sizes (Table 3).

The equation system (5) can be rewritten for more than two populations. One needs,
however, to decide whether to base the FB values on pairwise differences among
subpopulations or on an average difference among all pairs of subpopulations. If we want to
solve the full model with n population sizes and n(n-1) migration rates we need n2

quantities. Table 2 shows that we cannot estimate all parameter with one locus. Adding a
second locus enables us to solve for all parameters, but complicates the analysis even more.
Additionally, we need to assume that the mutation rate is the same for all loci, which is
certainly not true for all type of data, for example microsatellites.

Table 2: Variance quantities needed to estimate asymmetric migration rates and population sizes jointly. FW is
the “homozygosity” in a population, FB is the “homozygosity” between pairs of subpopulations or the

averages among all subpopulations.
Population

s
Parameters Quantities Missing dimension

)(all
BF )( pairs

BF WF over all pairwise

2 4 1 1 2 1 1
3 9 1 3 3 5 3
4 16 1 6 4 11 6
. . . . . . .
n n2 1 n(n-1)/2 n n(n-1)-1 n(n-1)/2



Table 3: Estimates of migration rates  = 4Nem based on formula (5) in a two population system (Fig. 3).
Averages standard deviations of 100 simulated data sets with the same population parameters are shown.

For each data set 2 populations with 20 sampled individuals with 500bp sequence data were created according
to Hudson (1983). T: the parameter values under which the data sets were created, C:  is the same for both
subpopulations and M can be different for each population (Formula 7), D:  of the two subpopulations can

be different, the migration rate M is the same for both subpopulations (Formula 6). N is the number of
simulation runs used for calculating the averages and standard deviation. C1, D1: cases with illegal population

parameters were discarded. C2, D2: illegal results were set to zero.
Population 1 Population 2 N

T 0.01 1.00 0.01 1.00 -
C1 0.0096 0.0056 3.28 6.35 0.0096 0.0056 3.21 8.43 66
C2 0.0097 0.0059 2.32 5.34 0.0097 0.0059 2.52 7.05 100
D1 0.0160 0.0214 3.61 6.09 0.0157 0.0271 3.88 12.33 95
D2 0.0153 0.0211 4.08 7.49 0.0150 0.0266 3.69 12.05 100

T 0.01 10.00 0.01 1.00 -
C1 0.0063 0.0025 21.66 59.37 0.0063 0.0025 53.43 162.01 34
C2 0.0064 0.0026 7.79 35.74 0.0064 0.0026 19.75 96.75 100
D1 0.0349 0.1393 31.48 75.02 0.0186 0.0665 26.64 107.75 46
D2 0.0166 0.0954 15.89 52.86 0.0106 0.0465 14.83 73.86 100

T 0.05 10.00 0.005 1.00 -
C1 0.0133 0.0069 22.89 41.42 0.0133 0.0069 9.10 35.20 34
C2 0.0116 0.0058 7.83 26.27 0.0116 0.0058 3.59 20.73 100
D1 0.1874 0.7685 58.02 258.86 0.0071 0.0064 2.06 3.29 39
D2 0.0732 0.4849 22.63 162.88 0.0040 0.0048 2.54 4.35 100

Table 3 gives values for this more complex estimation procedure. The results are not
really reassuring. Several of the 100 runs had to be discarded or parameters had to be set to
zero because the values for the migration rates were negative for one population.
Additionally, the estimates for the migration rates are biased upwards (cf. Beerli &
Felsenstein 1998).

4. Maximum likelihood estimators based on allele frequencies

Rannala & Hartigan (1996) and Tufto et al. (1996) developed methods based on
maximum likelihood to use the allele frequency data of n subpopulations to estimate
migration rates directly. Both methods assume a specific probability distribution for the
allele frequencies and use this distribution for their likelihood functions. Rannala &
Hartigan (1996) used a simpler estimator to calculate the allele frequency estimates and
therefore reduced the number of parameters for this approximate likelihood analysis to one,
4Nem. This shortcut makes this method very fast and it is a better estimator of 4Nem than
estimators based on FST. Rannala & Hartigans’s implementation
(http://mw511.biol.berkeley.edu/homepage.html) has, however, the same
limitation as all symmetric estimators and will not to deliver correct estimates when the
migration rates are asymmetric, but it may be possible to expand it to estimate a full
migration matrix to handle asymmetric migration rates. The likelihood method of Tufto  et
al. (1996) is capable of estimating any migration scenario for a finite number of
subpopulations. This likelihood method does not make the same assumptions about the
allele frequency distribution as the method of Rannala & Hartigan (1996), but needs to
estimate the most likely population allele frequencies given the sampled allele frequencies
and a migration matrix. It seems that the approach of Tufto  et al. (1996) would work well



for allele frequency data, and Tufto has recently made the method available in form of S-
PLUS functions [S-PLUS is a computer statistics package]
(http://www.math.ntnu.no/jarlet/migration/).

5. Estimators using the coalescent

The introduction of coalescence theory (Kingman 1982a, b) changed the field of
theoretical population genetics considerably. The coalescence theory is based on an
approximation of a sampling process in a Wright-Fisher population (Fig. 1). Looking
backwards in time, one can construct a genealogy of the sampled individuals. In a single
population this process is only dependent on the effective population size. Kingman showed
that the probability of a coalescence of two randomly chosen gene copies from a sample of
size k in time interval u which is measured in generations scaled by mutation rate , is
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We can now calculate the probability Prob(g| Ne, ) of a whole genealogy g by starting
with k sampled alleles or sequences and, going back in time, multiplying the probabilities
for each time interval u between nodes on this genealogy. We could now examine all
possible genealogies and find the genealogy or a group of genealogies for which the
probability given the population parameters is highest.

This framework can be expanded and now, for the first time it seems possible to include
all possible population parameters into a single consistent framework (Hudson 1990),
Kingman’s original framework can be easily expanded by incorporating other population
parameters (Hudson 1990) such as population growth (Griffiths & Tavar  1994; Kuhner et
al. 1998), migration rates (Nath & Griffiths 1996; Bahlo & Griffiths 1998; Beerli &
Felsenstein 1998), recombination rates (Griffiths & Marjoram 1996), and selection (Krone
& Neuhauser 1997; Neuhauser & Krone 1997). Including migration with a two population
system (Fig. 4) changes the formula to
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where  is the actual probability of the event, either a coalescent in population i, with
probability )(42 i

eN  or a migration event from population j to i with probability mji .
Watterson (1975) used the number of segregating sites in a sample of sequences to infer

population size. Coalescence theory facilitates finding expectations and variances for
population parameters based on the segregating sites method (Wakeley 1998), so that there
are two main streams of inference using the coalescent: (1) methods using segregating sites,
(2) methods using maximum likelihood analysis based on the coalescence of the total
sample. There are additional approximations of the coalescent process (for example Fu
1994), but they have not been extended to incorporate migration.
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Fig. 4: Coalescent genealogy of 4 sampled individuals with migration. Samples from population 1 are shown
in white, samples from population 2 in black. The migration events are shown as black bars. t is the time
interval, k1 and k2 are the number of lineages in population 1 or 2, respectively, during a time interval ui.

Formula (8) shows the probability for each given time interval ui on the genealogy.

5.1 Estimators based on analysis of segregating sites

Wakeley (1998) developed an approximation for the length of a genealogy when there
are an infinite number of subpopulations that uses the number of segregating sites of a
sample of genes from one to several subpopulations. This approximation to the length of
the genealogy is then used to find a new estimator MS = 2Nm that is dependent on the
number of segregating sites within subpopulations and the average number of segregating
sites among subpopulations. This estimator is better than those based on FST, because it has
a smaller standard deviation, but shares the same problems: (1) it estimates a symmetric
migration rate; and (2) some data sets cannot be analyzed because the estimation of MS fails
when the number of segregating sites in a subpopulation is too large relative to the number
of segregating sites over all subpopulations.

5.2 Maximum likelihood estimators using the coalescent

Kingman’s probability calculation can be used to construct a maximum likelihood
method for the estimation of population parameters. One can weight the probability of a
given genealogy g with the likelihood of g which is the probability of the data given the
genealogy. This is a quantity well known in phylogenetic studies. Because we do not know
the true genealogy of our sample, we use the sum over all possible genealogies and then
maximize this function to find the population parameters P,

( ) ( ) ( )=
Gg

gDgL |ProbP|ProbP (10)

where D is the sampled data, and P are the population parameters we want to estimate.
Taking into account the uncertainty of the genealogy should deliver more accurate
parameter values than methods (Slatkin & Maddison 1989) that assume that the topology
and the branch length of the genealogy is known.

Griffiths & Tavar (1994) were the first o use this type of inference of population
parameters. There is, however, a problem, that one cannot sample all genealogies, because
there are too many. Our group (Joseph Felsenstein, Mary K. Kuhner, Jon Yamato, and PB)
uses a Markov chain Monte Carlo Metropolis-Hastings importance sampling scheme to
generate an approximation of the likelihood (10) where we integrate over a large sample of



genealogies G with different topologies and different branch lengths (Kuhner et al. 1995
1998). The approach chosen by Griffiths & Tavar (1994) and Bahlo & Griffiths (1998)
appears rather different from ours (Kuhner et al. 1995; Kuhner et al. 1998; Beerli &
Felsenstein 1998), but estimates the same quantitites. Felsenstein (unpubl.) showed that one
can explain the method of Griffiths & Tavar (1994) in terms used by our group and that it
then is very similar to our approach. Both groups have released programs to estimate
population parameters. For migration patterns these are genetree at the Internet site
http://www.maths.monash.edu.au/~mbahlo/mpg/gtree.html, and migrate at
http://evolution.genetics.washington.edu/lamarc.html. Both programs use a
Markov chain Monte Carlo approach and sample genealogies that are then used to find the
maximum likelihood estimate of a full migration matrix with population sizes. Migrate
estimates the parameters
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For potential users of these methods, differences in the respective underlying models of
evolutionary change are perhaps more important than the similarities between the
approaches. Griffiths & Tavar (1994) and Bahlo & Griffiths (1998) use an infinite sites
model that is inappropriate for highly variable sequence data, because it does not allow
multiple substitutions at the same site and the researcher needs to discard such sites from
the data. This is unfortunate, because discarding variable sites from the data set biases the
population parameters; the population size estimates, for example, are too small. Our group
uses a more generalized, two parameter mutation model developed by Felsenstein in 1984
(PHYLIP 3.2) (Swofford et al. 1996) that is an extension of Kimura’s (1980) two-
parameter model. Additionally a stepwise mutation model for microsatellites and a model
for electrophoretic data are available (Beerli & Felsenstein 1998).

Simulated data sets were analyzed with migrate. As Table 4 shows, migrate
delivers less biased estimates and smaller standard deviations than the other methods I have
presented (cf. Tables 1, 3) when the population parameters are unequal.

Table 4: Simulation with unequal population parameters of 100 two-locus data sets with 25 individuals in
each population and 500 base pairs (bp) per locus. T: Parameter values used to generate the data sets; Migrate:
maximum likelihood estimator using the coalescence theory; B: Wright’s relation between FST and  with the

correction for two populations; C2:  is the same for both subpopulations and M can be different for each
population (Formula 7); D2:  of the two subpopulations can be different, the migration rate M is the same for

both subpopulations (Formula 6); illegal results in C2 and D2 were set to zero.
Population 1 Population 2

T 0.05 10.00 0.005 1.00
Migrate 0.0476 0.0052 8.35 1.09 0.0048 0.0005 1.21 0.15
B - 11.46 18.54 - 11.46 18.54
C2 0.0116 0.0058 7.83 26.27 0.0116 0.0058 3.59 20.73
D2 0.0732 0.4849 22.63 162.88 0.0040 0.0048 2.54 4.35



5. Variable mutation rate

When we assume that loci are independent and neutral, then each locus delivers an
independent estimate of the population parameters Ne and m. It is difficult, however, to
exclude the mutation rate from these estimates, so that we normally estimate = 4Ne  and
M = m/ . In principle, this allows us to estimate  = 4Ne m, which is independent of the
mutation rate. For real data, this is only partly true: if there are only a few variable sites, or
very few alleles in the data M will probably be high, but there is much uncertainty because
we do not know whether these high values are caused by a high migration rate m or by a
very small mutation rate . The estimate of  therefore has large confidence intervals.

Using more than one locus improves the parameter estimates because, when the loci are
unlinked, we have independent replicates from which we can calculate means and
variances. We still need, however, to assume that the mutation rate is the same for all loci.
If one is willing to assume that the mutation rate follows a Gamma-distribution with shape
parameter  (Fig. 5), it is then easy to incorporate variable mutation rates into a maximum
likelihood framework by integration over all possible mutation rates.

A comparison of migrate with the FST approach (Table 5) shows that the estimates for
 are less biased when we take variation of the mutation rate into account. The estimates

for the FST-based migration parameters  are remarkably good, suggesting that the mutation
rates really cancel in  and that for the parameter values used, FST is a good estimator for
symmetrical migration rates, even when the mutation rate is exponentially distributed.

Table 5: Estimates of population parameters from data with mutation rate variation between loci. The true
mutation rate variation follows an exponential distribution (  = 1, see Fig. 5). The values are estimates from
one single data set for two populations with 30 electrophoretic marker loci. T: the parameter values used to

generate the data sets; D: calculation based on formula (6); Migrate: maximum likelihood estimator based on
the coalescence theory.  is 4Ne ,    can be different for the two subpopulations and the scaled migration

rate (M = m/ ) is symmetrical.  is M .
Population 1 Population 2 Shape 

T 1.00 1.00 1.00 1.00 1.0
Migrate 1.02 1.03 1.26 1.48 1.7

D 0.70 1.10 0.68 1.07
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Fig. 5: Gamma distributed mutation rates, with different shape parameter  and the same mean  for all
curves. With  = 1 the Gamma distribution is an exponential distribution.



6. Testing whether migration rates are symmetric

Given the difficulties of developing a general framework to estimate asymmetric
migration rates using FST , it seems rather cumbersome to develop a test for symmetry of
migration rates. A way to solve the problem would be to generate simulated data sets using
the estimated migration rates and population sizes (Rousset & Raymond 1997). These
simulated data sets could then be used to compare the variances between the different
migration rates with an ANOVA.

In the maximum likelihood framework, one would use a log-likelihood ratio test. The
standard procedure for testing uses the assumption that in the limit, when we have an
infinite amount of data the log-likelihood curves can be approximated by a normal
distribution, so that we can use a 2-distribution for the test statistic. This approach may
encounter difficulties because the current maximum likelihood estimators (Beerli &
Felsenstein 1998; Bahlo & Griffiths 1998) approximate the likelihood using a Markov
chain Monte Carlo approach. These methods are known to deliver good point estimates, but
these approximate likelihood curves are exact only close to the point estimated; we (Mary
K. Kuhner, Jon Yamato, & PB) are currently investigating this issue. The current speed of
computers makes it too tedious to generate a data dependent test distribution for these
maximum likelihood based estimators.

7. Discussion

The simulation studies for the FST based estimators (Tables 1, 3) show rather clearly that,
when we violate the assumption that exchange of migrants between subpopulations is
symmetrical the estimates of the migration rates are biased, if not completely wrong. Only
those methods allowing the estimation of asymmetric migration rates have a chance of
recovering the possible migration pattern in natural populations. This comes at a price: we
need to estimate many more parameters. At least for estimation of growth rate and
population sizes, coalescence theory suggests that we need to increase the quantity of data
not by sampling more individuals, but by sampling more loci (Kuhner et al. 1998). This is
probably true even for estimation of migration rates (cf. Wakeley 1998; PB unpubl.).
Adding more individuals will mainly add lineages in the very recent past, so little additional
information is gained about historical events at the bottom of the genealogy.

Even when by some external knowledge, for example using direct methods, we know
that the subpopulations are approximately equal in size and the migration rates are
symmetric, the FST-based approaches are still superseded by using the pseudo-maximum
likelihood approach of Rannala & Hartigan (1996) or using the segregating sites approach
of Wakeley (1998). Alternatively, the computationally more demanding but more accurate
maximum likelihood methods that sample over all genealogies (Bahlo & Griffiths 1998;
Beerli & Felsenstein 1998) can be employed.

8. Conclusion

During the last 60 years many researchers have used and continue to use F-statistics or
genetic distances to make inferences about migration patterns. With the advent of newer
methods, such as maximum likelihood using allele frequencies and their possible
extensions or methods based on coalescence theory, tools now exist that allow us to
estimate migration patterns without the unrealistic assumption of symmetry of migration
rates or equal population sizes.
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Abstract. We briefly discuss software packages for the analysis of molecular
ecological data, focusing on three levels of analysis: parentage and relatedness,
population genetic structure, and phylogeny reconstruction.  For the first two
levels of analysis, we have gathered lists of some of the packages that we
consider to be the most useful and user-friendly.  For each package, we provide
information on names of authors, date of latest update, compatible operating
systems, types of data handled and analyses supported, availability, and
literature citations.  For software packages dealing with phylogeny
reconstruction, we refer the reader to specific literature and website sources
where this information has already been compiled.

1. Introduction

Molecular ecologists use protein or DNA markers to address questions about
interactions between organisms and their biotic and abiotic environments.  These studies
often result in the generation of large and complex molecular data sets, and one of the
challenges facing many workers is how to analyze those data properly.  In this chapter,
we present summary information on several of the numerous computer software
packages for the analysis of genetic relationships among individuals, populations, and
species.  We do not claim that this information is complete, because or perfectly up-to-
date, because new programs and updates of older programs are appearing almost
monthly.  Although some overlap will inevitably exist between different levels of
analysis, we have chosen to divide the summary into three areas: parentage and
relatedness, population genetic structure and gene flow, and phylogeny reconstruction.

2. Relationships among individuals: parentage and relatedness

Our understanding of social systems, mating behaviours, correlates of reproductive
success, and dispersal patterns in natural populations depends on the possibility of
genetically differentiating individuals, assigning both male and female parentage to
individual progeny, and estimating with sufficiently high precision the genetic
relatedness between groups or pairs of interacting individuals (Queller & Goodnight
1989; Cruzan 1998; Parker et al. 1998; Estoup, this volume). Studies of plant
populations often use parentage analyses to address questions of outcrossing rates,
effective pollen dispersal, and variation in male fertility, but rarely is the focus on



genetic relatedness per se (Schnabel, this volume).  On the other hand, in animal studies,
relatedness and parentage are linked through studies of altruistic behavior, social and
genetic mating systems, and kin selection (Hughes 1998; Rico, this volume).  Although
polymorphic genetic markers have been used for a long time in cases when pedigree
information must be ascertained, as in animal breeding selection programs or in human
paternity analysis, the advent of molecular markers with high levels of polymorphism
has opened new perspectives for studies of parentage and relatedness in natural
populations  (Queller et al. 1993; Avise 1994; Estoup et al. 1994; Morin et al. 1994;
Blouin et al. 1996; Taylor et al. 1997; Aldrich and Hamrick 1998; Hughes 1998;  Parker
et al. 1998; Pr l et al. 1998).

Compared with the number of software packages available for higher levels of
analyses (see below), very few programs are available for the analysis of parentage or
for the estimation of genetic relatedness (Appendix 1).  Written specifically for plants,
the set of programs by Ritland (1990) is the most widely used package for the analysis
of outcrossing rates.  More detailed parentage analyses are possible with PollenFlow
(JD Nason, unpublished), which combines paternity exclusion analyses with the
fractional paternity model of Devlin et al. (1988) and the maximum-likelihood models
of Roeder et al. (1989) and Devlin & Ellstrand (1990), such that the user is able to
obtain estimates both of pollen gene flow into the study population and relative
fertilities of all possible male parents (Schnabel, this volume).  A similar approach to
parentage inference is taken in CERVUS (Marshall et al. 1998), which implements the
likelihood models of Thompson (1975, 1976) and Meagher (1986).  A very simple
approach is taken by Danzmann (1997) in PROBMAX, which calculates probabilities
that individuals are the offspring of specific parental pairs.  The probability values
indicate the number of loci sampled for each progeny that conform to Mendelian
expectations for the pair of parents being tested.  Finally, two well-developed programs
are available for the estimation of relatedness based on the models of Queller and
Goodnight (1989).  The package Kinship tests hypotheses of pedigree relationships
between pairs of individuals, and Relatedness uses a regression technique to measure
relatedness between groups of individuals.

3. Relationships among populations: population genetic structure and gene flow

Many questions asked by molecular ecologists require that they conduct a survey of
genetic diversity across several populations of a species.  Such surveys estimate how
much genetic variation a particular species maintains within its populations for a
particular set of molecular markers (e.g., allozymes) and how that variation is
partitioned among populations.  Based on these data, inferences can be made about
effective population sizes, natural selection, patterns of mating and dispersal, gene flow,
and biogeographical history of the populations (e.g., Gentile & Sbordoni 1998; Godt &
Hamrick 1998; Gonzalez et al. 1998; Xu et al. 1998).  Hundreds of surveys of
population genetic structure can be found in the literature, most of which prior to 1990
used either allozymes or mitochondrial DNA restriction sites (Hamrick & Godt 1989;
Avise 1994).  In the past decade, however, a large and rapidly growing number of
studies have used a wider variety of molecular markers, such as DNA sequences,
RAPDs, AFLPs, and microsatellites (e.g., Arden & Lambert 1997; Fischer & Matthies
1998; Paetkau et al. 1998; Winfield et al. 1998).

Given this great abundance of studies, it is not surprising that the number of available
software packages for the analysis of population genetic structure is also large.  Most of
the early programs were written with allozymes in mind, and several of the currently
available packages are still limited in the types of data that can be handled.  In contrast
to software for phylogenetic reconstruction (see below), there is no single source either
in print or as a website that brings all of this information together.  In collecting this
diverse array of programs, we found that many of the more user-friendly programs (e.g.,
Arlequin, GDA, GENEPOP, GENETIX, POPGENE, TFPGA) had much overlap in the



analyses they perform (Appendix 2).  First, several packages calculate basic statistics of
genetic variation, such as the proportion of polymorphic loci, the average number of
alleles per locus, and heterozygosity.  Those programs that handle a wider variety of
data types also calculate statistics such as nucleotide diversity.  Second, many packages
will conduct tests for Hardy-Weinberg equilibrium.  Third, most of the programs we
report will estimate patterns of genetic stucturing using the hierarchical approach of
Wright and/or Cockerham and Weir.  A smaller proportion of the programs also include
methods for analyzing microsatellite data using RST (e.g., Arlequin, Fstat, GENEPOP,
RSTCALC) or Analysis of Molecular Variance (AMOVA in Arlequin).  Fourth, a
several of the programs will calculate one or more pairwise genetic distance measures
(e.g., Nei’s distance, Rogers distance), and will analyze those distances using some sort
of clustering algorithm (e.g., UPGMA or neighbor joining).  Last, several of the
programs will estimate the level of linkage disequilibrium between loci.  Although a
number of home-grown programs for Macintosh computers must certainly exist, the
large majority of packages we found were written for either a DOS or Windows
platform.  On a final note, the best available program for analyzing genetic structure
within hybrid zones appears to be Analyse by Barton & Baird (1998).

All of the programs in Appendix 2 work within a traditional Wrightian framework of
geographic structuring and estimation of gene diversity statistics based on allele
frequencies.  The introduction of coalesence theory by Kingman (1982) created new
methods for analyzing population data (Hudson 1990; Beerli, this volume).
Coalescence theory focuses on the sampled gene copies and looks backward in time to
calulate the probability that two randomly chosen gene copies in the sample have a
common ancestor t time units in the past. This process is driven only by the effective
population size, Ne, and mutation rate.  Kingman (1982) showed that the time when all
lineages coalesced for a sample of 2, 4, and infinite gene copies is 2Ne, 3Ne, and 4Ne,
respectively.  This Kingman coalescence process can be easily extended to incorporate
other population parameters like population size, growth rate, recombination rate, and
migration rates (Hudson 1990).  Beerli (this volume) and Wakeley (1998) have shown
that approaches based on coalescence theory are superior to approaches based on allele
frequencies.

Two main groups of programs exist for coalescence analysis (Appendix 3), those that
use segregating sites in the sample and those that integrate over all possible genealogies.
In the sofware package SITES (Hey & Wakeley 1997), the coalescent is used to
generate expectations for the number of segregating sites in a sample of sequences, and
these expecetations are subsequently used to estimate population parameters.  Most
other programs listed in Appendix 3 integrate over all possible genealogies (e.g.,
MIGRATE).  These programs are very computer intensive, but they use all possible
information in the data, such as the history of mutation events.  They also can be applied
to several different types of molecular data other than sequence data. The general
approach is to find the maximum likelihood of the population parameters, where the
likelihood function is defined as the sum of probabilities over all possible genealogies.
For each of these genealogies, one calculates the probability given the parameters and
given the sampled data (Beerli, this volume).

4. Relationships among species: phylogeny reconstruction

The field of molecular systematics has become an increasingly important part of
ecological studies during the past two decades.  During that time, the number of
computer programs for data preparation (e.g., entering and aligning DNA sequences),
phylogenetic inference, tree comparisons, and other associated analyses has
mushroomed to the point of being beyond the scope of any paper or website.  For those
readers considering phylogenetic analysis for the first time, we recommend reading
Hillis (this volume) and the volume, Molecular Systematics (Hillis et al. 1996), within
which Swofford et al. (1996) present an extensive list of software programs for the



analysis of phylogenetic and population genetic data.  Because that publication is now
nearly 3 years old, some of the information may be out of date, but nonetheless it
represents a good starting point.  Alternatively, we advise visiting the website of the J.
Felsenstein lab at the University of Washington
(http://evolution.genetics.washington.edu).  At that website, one can find descriptions of
approximately 120 phylogeny packages that are arranged by (i) method of phylogenetic
inference; (ii) computer systems on which they work; (iii) most recent listings; and (iv)
those most recently updated.
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Appendix 1:  List of software packages for the study of parentage and relatedness using molecular
markers

Package name,
lastest update
(author) Operating

system

Types of data
handled

Analyses supported

Availability,
literature citation

CERVUS
v. 1.0,
17/6/98
(T Marshall)

Windows95 Diploid,
codominant
markers

Uses a most-likely approach
to parentage inference and
estimates confidence in
parentage of most likely
parents.  Can be used to
calculate allele frequencies,
run simulations to determine
critical values of likelihood
ratios and analyse parentage
in populations of animals and
plants.  A simulation system
can estimate the resolving
power of a series of single-
locus marker systems for
parentage inference.

Freeware from
http://helios.bto.ed.
ac.uk/evolgen/index
.html

Marshall et al.
(1998)

Kinship
v. 1.2,
(KF

Goodnight, DC
Queller, T
Posnansky)

MacOS
(PowerPC and
68K)

Diploid,
codominant
markers

Performs maximum
likelihood tests of pedigree
relationships between pairs
of individuals in a
population. The user enters
two hypothetical pedigree
relationships, a primary
hypothesis and a null
hypothesis, and the program
calculates likelihood ratios
comparing the two
hypotheses for all possible
pairs in the data set. Includes
a simulation procedure to
determine the statistical
significance of results. Also
calculates pairwise
relatedness statistics.

Freeware from
http://www.bioc.
rice.edu/~kfg/
GSoft.html

Queller &
Goodnight (1989)

MLT
(K Ritland)

DOS Diploid or
tetraploid,
codominant
markers

A set of programs that finds
maximum-likelihood
estimates of outcrossing rates
for plant populations.  Also
estimates parental gene
frequencies and inbreeding
coefficients.  Special
programs within the package
can handle autotetraploids
and ferns.

Freeware by
contacting the
author at ritland@
unixg.ubc.ca

Ritland (1990)
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Package
name, lastest
update
(author)

Operating
system

Types of data
handled

Analyses supported

Availability,
literature citation

PollenFlow
v. 1.0,
26/3/98
(JD Nason)

MacOS
(PowerPC and
68K)

Diploid,
codominant
markers

Implements two different
models.  First, a paternity
exclusion-based model
estimates total rate of pollen
immigration from a single
external source into a defined
local population.  Second, a
likelihood-based model
estimates relative male
fertility within a population
as well as pollen immigration
from one or more external
sources.  Male fertility
estimates are adjusted to
eliminate biases due to
cryptic gene flow.

Freeware by
contacting the
author at john-
nason@uiowa.edu

Sork et al.
(1998)

PROBMAX
, 17/11/97

(RG
Danzmann)

DOS Codominant
and dominant/
recessive
diploid markers

Ascertains the parentage
of individuals when
genotypic data on both
parents and progeny are
available.  Also includes
PROBMAXG, which
generates possible progeny
genotypes from the parental
mixtures to test whether a
given set of genetic markers
will be able to discriminate
all progeny back to parental
sets, and PROBMAXN,
which allows testing of
possible parent/progeny
assignments if null alleles
segregating at some markers
are suspected.

Freeware by
anonymous ftp to
131.104.50.2
(password =
danzmann) or
contact the author at
rdanzman@

uoguelph.ca

Danzmann
(1997)

Relatedness
v. 5.0.4,

29/6/1998
(KF

Goodnight, DC
Queller

MacOS
(PowerPC and
68K

Diploid,
codominant
markers

Estimates genetic relatedness
between demographically-
defined groups of individuals
using a regression measure of
relatedness.  Calculates
symmetrical and
asymmetrical relatedness and
jackknife standard errors.
Allows up to 32 demographic
variables in defining those
individuals to be used in
calculating the relatedness
statistic.

Freeware from
http://www.bioc.ric
e.edu/~kfg/GSoft.

html

Queller &
Goodnight (1989)



Appendix 2: List of software packages that will analyze geographically structured populations using
traditional estimators based on gene frequencies.

Package
name, lastest
update
(author)

Operating
system

Types of data
handled

Analyses supported

Availability,
literature citation

Analyse
v. 2.0,
5/98
(SJE Baird,

NH Barton)

MacOS
(PowerPC)

Diploid and
haploid genetic
markers,
quantitative
trait values,
spatial
coordinates

(1 and 2
dimensions),
environmental
variables

Likelihood analysis of data
from hybrid zones.  Performs
three types of analyses:
general data handling (e.g.,
selecting subsets of the data
satisfying particular criteria),
analysis of random
fluctuations in genotype
frequency (e.g., estimating
Fst, Fis, and standardized
linkage disequilibrium), and
analysis of a set of multilocus
clines (e.g., estimating
variation between clines).

Freeware from
http://helios.bto.ed
.ac.uk/evolgen/inde
x.html

Barton & Baird
(1998)

Arlequin
v. 1.1,
17/12/97
(S Schneider,

JM Kueffer, D
Roessli, L
Excoffier)

Windows
3.1 or later

RFLPs,
microsatellites,
allozymes,
RAPDs,
AFLPs, allele
frequencies,
DNA sequences

Calculates gene and
nucleotide diversity,
mismatch distribution,
haplotype frequencies,
linkage disequilibrium, tests
of Hardy-Weinberg
equilibrium, neutrality tests,
pairwise genetic distances,
analyses of molecular
variance (AMOVA).

Freeware from
http://anthropolo

gie.unige.ch/
arlequin

Schneider et al.
(1997)

DnaSP
v. 2.52,
9/97
(J Rozas, R

Rozas); v. 2.9 is
available as a
beta version

Windows
3.1 or later

DNA
sequences

Estimates several
measures of DNA sequence
variation within and between
populations (in  noncoding,
synonymous or
nonsynonymous sites), and
also linkage disequilibrium,
recombination, gene flow,
and gene conversion
parameters.  Also can
conduct several tests of
neutrality.

Freeware from
http://www.bio

.ub.es/~julio/Dn
aSP.html

Rozas & Rozas
(1995, 1997)

Fstat
v. 1.2,
12/95; Fstat

for windows v.
2.3, is available
as beta upon
request

(J Goudet)

DOS; new
version will be
Windows
compatible

Allozymes,
microsatellites,
mtDNA RFLPs

Calculates gene diversity
statistics of Weir and
Cockerham (Weir, 1996).
Computes jackknife and
bootstrap confidence
intervals of the statistics or
can test gene diversity
statistics using a permutation
algorithm.

Freeware by
writing to J. Goudet
at jerome.goudet@

izea.unil.ch

Goudet (1995)
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Package
name, lastest
update
(author)

Operating
system

Types of data
handled

Analyses supported

Availability,
literature citation

GDA,
11/7/97
(PO Lewis,

D Zaykin)

Windows 3.1 or
later

Allozymes,
microsatellites

Calculates standard gene
diversity measures, Wright’s
F-statistics using the method
of Weir and Cockerham
(Weir, 1996), genetic
distance matrices, UPGMA
and neighbor-joining
dendrograms, exact tests for
disequilibrium

Freeware;
http://chee.unm.edu/
gda

Designed to
accompany Genetic
Data Analysis
(Weir, 1996).

GENEPOP
 v. 3.1b,
12/97
(M.

Raymond, F.
Rousset)

DOS Allozyme,
microsatellites

Calculates exact tests for
Hardy-Weinberg equilibrium,
population differentiation,
and genotypic disequilibrium
among pairs of loci.
Computes estimates of
classical population
parameters, such as allele
frequencies, Fst, and other
correlations.  Includes
Linkdos (Garnier-Gere and
Dillmann, 1992), which is a
program for testing pairwise
linkage disequilibrium.

Freeware from 3
ftp sites:

ftp://ftp.cefe.cnr
s-mop.fr/genepop/

ftp://ftp2.cefe.cn
rs-mop.fr/pub/pc/

msdos/genepop/

ftp://isem.isem.u
niv

-montp2.fr/pub/
pc/genepop/

Raymond &
Rousset (1995a, b)

GENETIX
v. 3.3,
14/05/98
(K Belkhir,

P Borsa, L
Chikhi, J
Goudet, F
Bonhomme)

Windows95/
NT

Allozymes,
microsatellites

Calculates estimates of
classical parameters (e.g.,
genetic distances, variability
parameters, Wright’s fixation
indices, linkage
disequilibrium) and tests
their departure from null
expectations through
permutation techniques.  The
interface is not user-friendly
for everyone, because it is
currently only in French.

Freeware from
http://www.univ-
montp2.fr/~genetix/
genetix.htm

Belkhir et al.
(1998)

Immanc,
17/10/97

(JL
Mountain)

Windows
3.1 or later,
MacOS
(PowerPC),
NeXT HP-
RISC, Sun
UltraSPARC

Allozymes,
microsatellites,
RFLPs

Tests whether or not an
individual is an immigrant or
is of  recent immigrant
ancestry. The program uses
Monte Carlo simulations to
determine the power and
significance of the test.

Freeware from
http://mw511.biol

.berkeley.edu/
software.html

Rannala &
Mountain (1997)
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Package
name, lastest
update
(author)

Operating
system

Types of data
handled

Analyses supported

Availability,
literature citations

Migrlib
v. 1.0
(J Tufto)

Unix
(available as a
collection of S-
Plus functions
and some C
code)

Allele
frequencies

Estimates the pattern of
migration in a subdivided
population from genetic
differences generated by
local genetic drift.  Functions
are also provided for carrying
out likelihood ratio tests
between alternative models
such as the island model and
the stepping stone model.

Freeware from
http://www.math
.ntnu.no/~jarlet/
migration

Tufto et al.
(1996)

PMLE12
v. 1.2,
4/3/96
(B Rannala)

Windows
3.1 or later,
MacOS
(PowerPC or
68K),
NeXTStep

Allozymes,
mtDNA RFLPs

Estimates the gene flow
parameter theta for a
collection of two or more
semi-isolated populations by
(pseudo) maximum
likelihood. For discrete-
generation island model,
theta=2Nm.  For a
continuous-generation island
model, theta is the ratio of
the immigration rate phi to
the individual birth rate
lambda.

Freeware from
http://mw511.biol

.berkeley.edu/
bruce/exec.html

Rannala & Hartigan
(1996)

POPGENE
v. 1.21,
22/12/97
(F Yeh, RC

Yang,
T Boyle)

Windows
3.1 or later

Co-
dominant or
dominant
markers using
haploid or
diploid data.

Calculates standard
genetic diversity measures,
tests of Hardy-Weinberg
Equilibrium, Wright’s F-
statistics, genetic distances,
UPGMA dendrogram,
neutrality tests, linkage
disequilibrium

Freeware from
http://www.ualb

erta.ca/~fyeh/
index.htm

Yeh & Boyle
(1997); Yeh et al.
(1997)

RSTCALC
v. 2.2,
6/10/97
(SJ

Goodman)

DOS,
Windows 3.1 or
later

Microsatellit
es

Performs analyses of
population structure, genetic
differentiation, and gene
flow.  Calculates estimates of
Rst, tests for significance and
calculates 95% CI.

Freeware from
http://helios.bto.ed
.ac.uk/evolgen

Goodman
(1997)

TFPGA
(Tools for
Population
Genetic
Analyses),
12/5/98

(MP Miller)

Windows
3.1or later

Codominant
(allozyme) and
dominant
(RAPD, AFLP)
genotypes

Calculates descriptive
statistics, genetic distances,
and F-statistics.  Performs
tests for Hardy-Weinberg
equilibrium, exact tests for
genetic differentiation,
Mantel tests, and UPGMA
cluster analyses.

Freeware from
http://herb.bio.nau

.edu/~miller

No citation
available



Appendix 3: List of software packages that will analyze geographically structured populations
using estimators based on coalescence.

Package
name, lastest
update
(author)

Operating
system

Types of data
handled

Analyses supported

Availability,
literature citation

Bottleneck
v. 1.1.03,
27/11/97
(JM

Cornuet, G
Luikart, S Piry)

Windows95 Allele
frequencies

Detects recent reductions in
effective population size
from allele frequency data.
Tests whether a set of loci
shows a significant excess of
heterozygosity (i.e., the
observed heterozygosity is
larger than the heterozygosity
expected at mutation-drift
equilibrium and assuming a
given mutation model).

Freeware from
http://www.ensam.

inra.fr/~piry

Cornuet & Luikart
(1997)

Fluctuate
v. 1.50B,
6/2/98
(M Kuhner,

J Yamato)

Windows
95/NT, MacOS
(PowerMac);
UNIX;
available also as
C source code

DNA sequences Estimates the effective
population size and an
exponential growth rate of a
single population using
maximum likelihood and
Metropolis-Hastings
importance sampling of
coalescent genealogies.

Freeware from
http://evolution.

genetics.washin
gton.edu/lamarc.ht
ml

Kuhner et al.
(1995, 1998)

Genetree,
9/6/98
(M Bahlo,

RC Griffiths)

Windows
95/NT, Dec
Alpha;
available also as
C source code

DNA
sequences

Finds maximum likelihood
estimates of population sizes,
exponential growth rates,
migration matrices, and time
to the most recent common
ancestor.

Freeware from
http://www.math

s. monash.edu.au/
~mbahlo/mpg/
gtree.html

Griffiths &
Tavar (1996)

Bahlo &
Griffiths (1998)

Migrate-0.4
v. 0.4.3,
25/5/98
(P Beerli)

Windows
95/98/NT,
MacOS
(PowerMac),
Dec Alpha,
LINUX/Intel,
NeXTStep;
available also as
C source code

Allozymes,
microsatellites,
DNA sequences

Menu driven, character-based
program that finds 4+1
maximum-likelihood
estimates of population
parameters for a two-
population model: effective
population sizes for
subpopulation1 and
subpopulation 2, migration
rates between the two
subpopulations, and for
multilocus data, a shape
parameter for the distribution
of the mutation rate.

Freeware from
http://evolution.

genetics.washington
.edu/lamarc.html

Beerli, this
volume
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Package
name, lastest
update
(author)

Operating
system

Types of data
handled

Analyses supported

Availability,
literature citation

Migrate-n
v. Alpha-3,
25/5/98
(P Beerli)

Windows
95/98/NT,
MacOS
(PowerMac),
Dec Alpha,
LINUX/Intel,
NeXTStep;
available also as
C source code

Allozymes,
microsatellites,
DNA sequences

Menu driven, character-
based program that finds n*n
maximum-likelihood
estimates of population
parameters for n-population
model: effective population
sizes for each subpopulation,
migration rates between the n
subpopulations, and for
multilocus data, a shape
parameter for the distribution
of the mutation rate.

Freeware from
http://evolution.

genetics.washington
.edu/lamarc.html

Beerli, this
volume

Recombine
v. 1.0,
17/6/98
(MK

Kuhner, J
Yamato, J
Felsenstein)

MacOS
(PowerMac),
Windows95/NT
; available as C
source code that
will compile on
DEC ULTRIX,
DEC alpha,
INTEL
machines,
NeXT, SGI, but
needs gcc to
compile on
Suns

DNA or
RNA
sequences,
single
nucleotide
polymorphisms

Fits a model which has a
single population of constant
size with a single
recombination rate across all
sites.  It estimates 4Nu and r,
where N is the effective
population size, u is the
neutral mutation rate per site,
and r is the ratio of the per-
site recombination rate to the
per-site mutation rate.

Freeware from
http://evolution.
genetics.washington
.edu/lamarc.html

No citation
available

SITES
v. 1.1,
21/4/98
(J Hey)

DOS,
MacOS;  also
available as
ANSI C source
code

DNA
sequences

Generates tables of
polymorphic sites, indels,
codon usage.  Computes
numbers of synonymous and
replacement base positions,
pairwise sequence
differences, and GC content.
Performs group comparisons
and polymorphism analyses
and estimates historical
population parameters.
Primarily intended for data
sets with multiple closely
related sequences.

Freeware from
http://heylab.rutgers
.edu/index.html
#software

Hey & Wakeley
(1997)

Wakeley & Hey
(1997)



Analysis of geographically structured populations:
(Traditional) estimators based on gene frequencies

Peter Beerli
Department of Genetics, Box 357360,
University of Washington, Seattle WA 98195-7360,
Email: beerli@genetics.washington.edu

This is an introduction and overview of the currently used methods for the analysis of population
subdivision and estimation of migration rates. We will discuss theoretical population models such
as the group of single migration parameter models with two or n islands, stepping stone models,
and multi-parameter models such as the migration matrix model. In this lecture I will concentrate
on approaches using gene frequencies, and will neglect complicating evolutionary forces such as
selection and age structured populations. Sewall Wright introduced 1922 the fixation index F and
the term F statistic. This summary statistic is based on the avariability in and between subpop-
ulations. For different data types (e.g. enzyme electrophoretic markers, microsatellite markers,
sequence data) different coefficients are in use (e.g. FST , RST ). These different methods take into
account that the variability generating process, mutation, is different for different types of data.
Most of these FST based estimators were developed for symmetrical population models. I will
discuss an extension which is able to cope with asymmetrical population models, compare these
different methods, and analyze their performance. Confidence limits of FST of population parame-
ters can be found using the boostrap over loci, or a maximum likelihood ratio test if we are working
in a maximum likelihood framework. Most of these methods will be superseded by either maxi-
mum likelihood concepts in the context of gene frequency data, or methods taking the genealogy
of the sample into account [second lecture].



Introduction and context

In the early twenties Sewall Wright introduced the notation of the fixation index F to char-
acterize the influence of mating systems on heterozygosity in inbred guinea pig lines. Such
an inbred line looks like a “natural” population (Fig. 1) with very few individuals; genes are
passed in a random fashion to offspring, who re-
place their parents. WRIGHT (1973) wrote: “It
became evident that the same set of parameters,
the F-statistics, which measure relative change of
heterozygosis in an array of diverging inbred lines
also measures the differentiation of their gene fre-
quencies” and we can apply it to geographically
structured populations. F-statistic itself gives us
a summary statistic about isolation of subpopula-
tions and their variability, but if we want to un-
derstand more clearly the underlying processes we
want to know the population parameters such as
population size and migration rate and perhaps be
able to determine routes of gene flow between pop-

Figure 1: Wright-Fisher population model: idealized
population with random mating. The genes are rear-
ranged so that we can see the genealogy. Each line of
dots is a generation, the number of individuals is 10
with 20 genes

ulations. A general overview on the problems of estimating effects of migration on gene frequen-
cies can be found in FELSENSTEIN (1982).

Models of geographically structured populations

Most of the migration models have several very restrictive assumptions and assume a specific
way of replacing individuals from one generation to the other (Fig. 2).

The n island model (Figure 4: A,B) (WRIGHT, 1931): All subpopulations have the same effective

population size, N i
e . Individuals migrate from one subpopulation to the other with the same rate

m. The distances between subpopulations are not taken into account.

Stepping stone model (Figure 4: C) (MALECOT, 1950; KIMURA, 1953): All subpopulations have
the same effective population size, N i

e . The migration rate m is constant and defines the rate of
exchange from one neighboring population to the other along the possible paths.

Continuum model (WRIGHT, 1940): in which a populaiton is spread out in geographical contin-
uum. Unfortunately, these models have mathematical properties so that they are not able to define
stable subpopulations at one location through time, although they come very close to our intuition
about real populations.

Migration matrix model (Figure 4: B,D)(BODMER and CAVALLI-SFORZA, 1968): All subpopu-
lations have the same effective population size, N i

e . The migration rates between subpopulations
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All parents
contribute a large
number of
gametes

Immigration

Emigration

Each offspring
receives 2 genes
at random from
the genepool

Figure 2: Sequence of events in a migration model

can be different and for four populations (Figure 3) one could have for example the following
migration matrix (I chose the migration rates to reflect an isolation by distance model).

m m
2

m
4

m m m
2

m
2 m m
m
4

m
2 m Figure 3: Four populations

In an arbitrary migration model some of the migration path can be disallowed (set to 0.0). A further
extension of these models includes variable subpopulation size.

B

A

C D

Figure 4: Migration models: A, B: n-island model, C: Stepping stone model (2-dimensional),
D: arbitrary migration matrix model. Black disks are sampled subpopulations, gray disks are
unsampled subpopulations
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Transformation of variability into summary statistics

To develop a summary statistic we can use the variability in and between populations, but we
need to consider the underlying model of evolution.

FST
1, GST, Infinite allele model: WEIR (1996), SLATKIN (1991)

RST, Microsatellites: SLATKIN (1993)

FST, Sequences: HUDSON et al. (1992b), NEI (1982), and LYNCH and CREASE (1990)

Assessments of confidence limits

Bootstrapping over loci is appropriate to generate confidence limits.

Estimates of migration rate

Wright’s formula

FST
1

1 4Nm

to transform FST values into migration rates is still most commonly used. It assumes that the
mutation rate is 0.0 and the number of subpopulations is very large. Also, we will not gain any
information about the population sizes themselves, they are convoluted with the migration rates.
Additionally, a mutation rate of 0.0 is perhaps appropriate for
enzyme electrophoretic data, but it is not appropriate for mi-
crosatellites or intron-sequences. We can incorporate these re-
laxations of the assumptions. In a two population model (Fig. 5)
we can solve the following equation system using the homozy-
gosity within a population FW and the homozygosity between
populations FB (NEI and FELDMAN, 1972) by replacing 4N

m2

m1

Ne
(1)

Ne
(2)

Figure 5: Two population model with
population sizes N 1

e , N 2
e , and migra-

tion rates m1, m2.

with and m with

F 1
W

1
2N1

1 2 2m1
1

2N1
F 1

W 2m1FB

F 2
W

1
2N2

1 2 2m2
1

2N2
F 2

W 2m2FB (1)

FB FB 1 m1 m2 m1F 1
W m2F 2

W

With one locus we can only solve for 3 parameters, either a constant 4N (4 effective
population size Ne mutation rate ; because we do not know the mutation rate we include it into
the estimate) and two migration rates 1 m1 and 2 m2 or for two different 1 and 2

values and one symmetric migration rate .

1WEIR (1996) called this , but we will use for 4Ne in approaches using coalescence theory
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Problems with F-statistic approaches:

Wright’s formula is often inappropriate for real world situations.

Rather complicated estimation procedure, when we consider more than two populations and
want to estimate population sizes and migration rates.

If for some subpopulations the FW are smaller than the FB the estimation procedure breaks
down.

Gene frequencies are considered to be the true gene frequencies of the sampled populations.
This can produce wrong results with small sample sizes.

Parameter estimates based on FST do not make full usage of the data [see second lecture].

Maximum likelihood estimators

Estimation using PMLE of RANNALA and HARTIGAN (1996)

Estimation using the approach of TUFTO et al. (1996)

Other approaches

Distance measures (NEI and FELDMAN, 1972)

Parsimony related (EXCOFFIER and SMOUSE, 1994)

Rare allele approach (SLATKIN, 1985)

Summary

We recognize several different migration models: n-island model, stepping stone model, and
migration-matrix model. Their assumptions strongly influence the estimates of population
parameters. Complications in computations of estimates can arise by relaxing assumptions
such as equal population size or symmetric migrations.

Quality of transformation of the variability in the data into summary statistics is dependent
how well the underlying model for the estimator fits the data.

Current F-statistic approaches assume symmetry of migrations and often equal population
sizes.

Allowing for unequal population sizes and unequal migration rates complicates migration
rate estimation considerably. Also, in a F-statistics framework it is not possible to estimate
all four parameters of a two population model with one locus (e.g. mtDNA).
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Maximum likelihood approaches, e.g. work by RANNALA and HARTIGAN (1996) and
TUFTO et al. (1996), utilizing the distribution of gene frequencies promise to give good
results, but some of this work is still in the beginning stages.

For sequence data the current estimators based on F-statistics are less accurate than coales-
cence theory based estimators, because they do not not use information about the history of
mutations.
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Software, with emphasis on methods using gene frequencies

[this list is certainly not complete]

ANALYSE An ”easy-to-use” MacOS application for the analysis of hybrid zone data. Calcu-
lates several statistics: e.g. FST, and isolation by distance.
Website through http://helios.bto.ed.ac.uk/evolgen
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ARLEQUIN is an exploratory population genetics software environment able to handle large
samples of molecular data (RFLPs, DNA sequences, microsatellites), while retaining the
capacity of analyzing conventional genetic data (standard multi-locus data or mere allele
frequency data). A variety of population genetics methods have been implemented either at
the intra-population or at the inter-population level.
Website at http://anthropologie.unige.ch/arlequin

DNASP computes (among lots of other things) different measures of the extent of DNA
divergence between populations, and from these measures it computes the average level of
gene flow, assuming the island model of population structure. DnaSP estimates the following
measures: dST, gST and Nm, NST and Nm, FST and Nm (Rozas, J. and R. Rozas. 1997.
DnaSP version 2.0: a novel software package for extensive molecular population genetics
analysis. Comput. Applic. Biosci. 13: 307-311). Binary for Windows 3.1 and 95.
Website at http://www.bio.ub.es/ julio/DnaSP.html

GDA (Genetic Data Analysis) is a Microsoft Windows program for analyzing discrete ge-
netic data based on WEIR (1996).
Website at http://chee.unm.edu/gda

GENEPOP is a population genetics software package for DOS and can be fetched by anony-
mous ftp from ftp.cefe.cnrs-mop.fr in the directory /PUB/PC/MSDOS/GENEPOP or
can be used through a web interface at
http://www.curtin.edu.au/curtin/dept/biomed/teach/genepop/
web docs/gene form.html

IMMANC is a program designed to test whether or not an individual is an immigrant or is of
recent immigrant ancestry. The method is appropriate for use with allozyme, microsatellite,
or restriction fragment length data. Loci are assumed to be in linkage equilibrium. The
power of the test depends on the number of loci, the number of individuals sampled, and the
extent of genetic differentiation between populations RANNALA and MOUNTAIN (1997).
Binaries for Macintosh, Windows, and NEXTSTEP.
Website at http://mw511.biol.berkeley.edu/software.html

MICROSAT estimates several indices using microsatellite data. C source code and binaries
for DOS and Macintosh.
Website at http://lotka.stanford.edu/microsat.html

PMLE12 estimates the gene flow parameter theta for a collection of two or more semi-
isolated populations by (pseudo) maximum likelihood using either allozyme or mtDNA
RFLP data RANNALA and HARTIGAN (1996). C source code and binaries for Macintosh,
Windows, and NEXTSTEP.
Website at http://mw511.biol.berkeley.edu/software.html

POPGENE computes both comprehensive genetic statistics (e.g., allele frequency, gene
diversity, genetic distance, G-statistics, F-statistics) and complex genetic statistics (e.g., gene
flow, neutrality tests, linkage disequilibria, multi-locus structure). Binaries for Windows3.1,
Windows95.
Website at http://www.ualberta.ca/ fyeh/index.htm.
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RELATEDNESS 4.2 calculates average genetic relatedness among groups of individuals spec-
ified by up to three user-defined demographic variables. It also calculates F-statistics mea-
suring inbreeding and genetic differences among sub-populations. Binary for Macintosh.
Website at http://www-bioc.rice.edu/ kfg/GSoft.html

RSTCALC is a program for performing analyses of population structure, genetic differen-
tiation and gene flow using microsatellite data. Binary for Windows.
Website through http://helios.bto.ed.ac.uk/evolgen
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Analysis of geographically structured populations:
Estimators based on coalescence

Peter Beerli
Department of Genetics, Box 357360,
University of Washington, Seattle WA 98195-7360,
Email: beerli@genetics.washington.edu

The rapid increase in the collection of population samples of molecular sequences, plus the great
expansion of the use of microsatellite markers, makes it possible to investigate the patterns and
rates of migration among geographically subdivided populations with much greater power than
was previously possible. The difficulty with methods for analyzing these data has been that they
do not allow the researcher to observe the genealogical tree of ancestry of the sampled sequences,
but only make an estimate of it which has a great deal of uncertainty. Taking the uncertainty in our
estimate of the genealogy into account is the major challenge for a proper statistical analysis of
these data. The statistical approach of maximum likelihood is used to infer these rates and patterns,
using the Markov Chain Monte Carlo (MCMC) method of computing the likelihoods. This method
samples genealogies from the space of possible genealogies, using an acceptance-rejection method
to concentrate the sampling in the regions which contribute most to the outcome. Even though the
number of possible genealogies is vast, the MCMC sampling can avoid wasting computer time
on possibilities that can have made little contribution to the observed outcome. This sampling of
different genealogies in computing a likelihood for the parameters correctly accounts for our lack
of knowledge of the true gene tree.

It can be shown that these ML-methods are superior to methods based on FST. Additionally,
ML-methods can take into account variability in mutation rate and can estimate all relevant popu-
lation parameters jointly and also analyze cases with different population sizes and migration rates.
Comparison of different data types reveals that number of loci sampled is a key factor in reducing
the variability of the parameter estimates.



The coalescent

Most current population genetics analyses are using theoretical findings of Sewall Wright and
R. A. Fisher which were made in the early 20th century. Their work is based on a view which
uses discrete generations of idealized individuals pass-
ing their genes to offspring in the next generation. This
“looking forward” strategy implies that calculation of the
probability of a given genotype is rather difficult. King-
man (1982a,b) formalized a “looking backward” strategy:
the coalescent. Hudson (1990) and Donnelly and Tavaré
(1997) give comprehensive reviews on the subject. Co-
alescence theory takes the relatedness of the sample into
account, so it incorporates random genetic drift and muta-
tion. This approach makes it very easy to calculate prob-
abilities of a genealogy of a sample of individuals with a
given effective population size, P g . Hudson (1990)
and others showed that we can extend this single popula-
tion approach to multiple populations and estimate migra-
tion rates and also that we can include other forces such as

T
im

e

Figure 1: A coalescent tree with sampled se-
quences

growth, recombination, and selection.

Markov chain Monte Carlo (MCMC) integration

Construction of random genealogies (Simulation studies) is simple with the coalescent ap-
proach (e.g. the method of Slatkin and Maddison 1989). Inference of parameters is much harder,
especially when we want not to lose any information in the data (Felsenstein 1992). In a likelihood
framework we would like to simply integrate over all possible genealogies G and solve for the
population parameters at the maximum likelihood

L
g G

P g P D g dg (1)

where P D g is the likelihood of the genealogy with the sample data. This is not possible; there
are too many different topologies with different branch lengths. But we can approximate by using
a biased random walk through the genealogy space and then infer the parameters from the sampled
genealogies correcting for the biased sampling:

L
g P g 0 P D g

P g
P g 0

dg (2)

(MCMC: Hammersley and Handscomb 1964, MCMC and coalescence: Kuhner et al. 1996)
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Table 1: Simulation with unequal known parameters of 100 two-locus datasets with 25 individuals
in each population and 500 base pairs (bp) per locus. Std. dev. is the standard deviation.

Population 1 Population 2

4Ne 4Nem 4Ne 4Nem
Truth 0 0500 10 00 0 0050 1 00
Mean 0 0476 8 35 0 0048 1 21
Std. dev. 0 0052 1 09 0 0005 0 15

Two population exchange migrants

We will explore the details of the MCMC mech-
anism in a simple two population model with the pa-
rameters: 1 4N 1

e , 2 4N 2
e , 1 m1 ,

2 m2 (we need to scale by the unknown mu-
tation rate of our data).

m2

m1

Ne
(1)

Ne
(2)

Figure 2: Two population model with population

sizes N 1
e , N 2

e , and migration rates m1, m2.

Assumptions: Population have constant size and exist forever, migration rate is constant
through time, and the genetic markers are neutral.

We can jointly estimate migration rates and population sizes

Example of a simulation study (Table 1), where I generated 100 single locus data sets and
then analyzed them with the program MIGRATE (Beerli 1997).

Problems: perhaps not a natural situation; how long do we need to run the genealogy sam-
pler?

Migration matrix model

Assumptions: same as with 2 populations

Simulation studies with (a) 4 sampled populations and (b) with 3 sampled population and
one population where we don’t have data.

Figure 3: Population structure used in simulations.

Problems: how many genealogies to sample? Number of parameters increases quadratically.
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Comparison with FST

Simulation studies can show that the ML-estimator delivers better result than FST, and results are
still accurate when population sizes and/or migration rates are unequal (Table 1).

Hypothesis testing using likelihood ratios

The maximum likelihood framework makes it easy to test hy-
potheses. I expect that these tests will supersede standard test
based on FST. I will show a few examples and hope that I am
able to have a version of MIGRATE finished in March so that
everybody can experiment with their own data in the “data sec-
tion”.

H0 : N̂e N x
e

Test-statistic: 2 log
L x

L ˆ
2
d f

ln( )

0.02 0.04 0.06

- 4.0

- 2.0

0.0

2
df,

1
2

Figure 4: Likelihood ratio test:
dashed areas are outside of the 95%
confidence limit. is 4Ne ; d f 1,

0 05

Data type and mutation rate

We have mutation models for infinite allele model, microsatellite stepwise mutation model
(Valdez and Slatkin 1993, Di Rienzo et al. 1994), and finite sites sequence model (e.g. Swofford
et al. 1996).

What’s the effect of the data type to the estimate of migration rates? The data type is not that
important, for the quality of the migration rate estimates, but the variance of the estimates is depen-
dent on the number of unlinked loci (Fig. 5) having independent coalescent trees and the variability
in the data, the more segregating sites or polymorphic loci are present the better the estimates of
the migration rates.

4 Nm

4N
e

1

101 100

100

10

1

0.1

0.01

101 1001010.1 100

3 10

Figure 5: Variance of parameter estimates: the dashed area is the 95% confidence area, the
numbers 1, 3, and 10 are the numbers of sampled loci
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Mutation rate is not constant: incorporation of the vari-
ance of the mutation rate is possible by assuming that it
follows a Gamma distribution (Fig. 6) and estimating the
shape parameter of this distribution jointly with the pop-
ulation parameters by integrating over all mutation rates
x

1 2

= 100

= 10

= 0.1

= 1

Mutation rate ]

P
ro

ba
bi

lit
y

0

Figure 6: Gamma distributed mutation rates,
with different shape parameter and the same
mean

L
l 0

e x 1x 1

1
L x l l dx

Summary

Coalescence theory enables us to estimate population parameters by including sample data
and taking the possible histories of the populations into account.

Expansion of the coalescence model to any migration model is possible.

Maximum likelihood ratio test of arbitrary hypotheses.

Multi-locus enzyme electrophoretic data and microsatellite markers delivers good migra-
tion rate estimates compared to mtDNA sequence data, because the quality of the result is
dependent on the number of loci and the variability in the data.

The assumption that the mutation rate over loci is constant is obviously wrong for elec-
trophoretic markers and microsatellites and taking the variation of the mutation rate into
account should improve the estimates of population parameters.
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Software, with emphasis on using the coalescent

[this list is certainly not complete]

LAMARC package [Likelihood Analysis with Metropolis Algorithm using Random Coalenscence.
Three programs are currently available: COALESCE, FLUCTUATE, and MIGRATE. C-source
code and binaries for Windows, Mac, LINUX, DUNIX, NEXTSTEP.
Website at evolution.genetics.washington.edu/lamarc.html

MISAT estimates the effective population size of a single population using microsatellite
data and can also test if the one-step model or a multi-step model is appropriate. Binaries for
Macintosh and Windows.
Website at http://mw511.biol.berkeley.edu/software.html

SITES is a computer program for the analysis of comparative DNA sequence data (Hey and
Wakeley, 1997. A coalescent estimator of the population recombination rate. Genetics 145:
833-846) . C source code and binaries for DOS and Macintosh.
Website at http://heylab.rutgers.edu

UPBLUE is a least square estimator for population size (Fu, Y. X., 1994. An phylogenetic
estimator of effective population size or mutation rate. Genetics 136:685-692). Fortran
program or use the website directly to calculate results
http://www.hgc.sph.uth.tmc.edu/fu/

Calculation of 4Nm using the method of SLATKIN and MADDISON (1989), you need to
calculate the minimal mumber of migration events on the genealogy either by hand or using
MacClade (Maddison and Maddison 1992, Sinauer). Pascal source code.
Website at http://mw511.biol.berkeley.edu/software.html

Several programs for the estimation of population size, exponential growth, recombination
rate, migration rate, time of the last common ancestor. Contact Bob Griffiths (email: ...) for
more information.
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