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Population growth (2 paramete), fluctuations, bottlenecks

Migration among populations (2 to many, potentially thousands, parameters)

Population splitting (2 to many parameters)

Recombination (2 parameters)
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches.
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In a small population lineages coalesce quickly

In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size Θ.
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth
could be modeled as

dN

dt
= rN

Nt = N0e
−rt

N0 = 80

r = 0.02

Past Present
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For constant population size we found

p(G|Θ) =
∏

j
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Relaxing the constant size to exponential
growth and using g = r/µ leads to

p(G|Θ0, g) =
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Problems with the exponential model: Even
with moderately shrinking populations, it is
possible that the sample lineages do not
coalesce. With growing populations this
problem does not occur. This discrepancy
leads to an upwards biased estimate of the
growth rate for a single locus. Multiple locus
estimates improve the results.

Past

Present



Grow-A-Frog
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Expansion of Pelophylax lessonae in Europe
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Past Present

Random fluctuations of the population size are most often ignored. BEAST
(and to some extent MIGRATE) can handle such scenarios. BEAST is using
a full parametric approach (skyride, skyline) whereas MIGRATE uses a non-
parametric approach for its skyline plots that has the tendency to smooth the
fluctuations too much, compared to beast.
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Comparison of the skyline
plots of simulated influenza
dynamics analyzed by
MIGRATE and BEAST. The
x-axis is the time in years
and the y-axis is effective
population size. The data
are sequences from 250
individuals sampled at regular
intervals over 5 years. The
dashed curve is the actual
population size deduced from
the true genealogy; black
lines are the mean results of
MIGRATE or BEAST; gray area
is the 95% credibility interval.
BEAST skyline matches
the actual population size
better than all other methods.
Simulation and graphs
courtesy of Trevor Bedford.
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The single population coalescence rate is
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.
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Structured populations Migration

Reanalysis of data from Rosenberg et al. Science 2001 24 of 65 – c©2015 Peter Beerli

A total of 70 individuals from 7 populations analyzed for 377 microsatellite loci:
Mutation model is Brownian motion approximation to the single-step mutation

model
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4

Somewhat less
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Reanalysis of data from Rosenberg et al. Science 2001 31 of 65 – c©2015 Peter Beerli



Structured populations Model selection
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1.

2.

3.

4.

5.

6.

7.
4

Somewhat less

Model order and probability using Bayes factors

all other models: 0.0
Minimal model 1.0
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Model Probability

0.000

Bayesian Model Comparison

work with Stuart Barker, Yi Zhang, and Johannes Lenstra
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0.41 MYR

central western

 Ancestral Ne (thousands): 8.4

0.41***

0.092**

IM: isolation with migration;
co-estimation of divergence
parameters, population
sizes and migration rates.
Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.
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0.41 MYR

central western

 Ancestral Ne (thousands): 8.4

0.41***

0.092**

IM: isolation with migration;
co-estimation of divergence
parameters, population
sizes and migration rates.
Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.



Population splitting

42 of 65 – c©2015 Peter Beerli



Population splitting 0.0
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(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.)

if we consider only a single individual that is today in population A. We also know
that its ancestor was a member of population B then it will be only a matter of
time to change the population label, but when?

Today Past
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(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.)

Looking backwards in time we could think about the risk of A turning into B
which becomes larger and larger the further back in time the lineage goes. In
the coalescence framework we are well accustomed to that thinking: we use the
risk of a coalescent or the risk of a migration event. This risk can be expressed
using the hazard function (or failure rate). Here we use the hazard function of
the Normal distribution.

Today Past
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(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.)

One lineage is easy, but what about the genealogy? Each lineage is at risk
of being in the ancestral population, thus we need to consider coalescences,
migration events, and population label changing events. This results in
genealogies that are realizations of migration and population splitting events.
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(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with migration model.)
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Estimation of splitting dates of 6 subspecies
of pygmy rattle snakes using MIGRATE (data
from Kubatko et al. 2011)

 -- 20

Migrate 4.0: (http://popgen.sc.fsu.edu) [program run on 22:12:41]

Bayesian Analysis: Posterior distribution over all loci
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Migrate 4.0: (http://popgen.sc.fsu.edu) [program run on 22:12:41]
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Estimation of splitting dates of 6 subspecies
of pygmy rattle snakes using MIGRATE (data
from Kubatko et al. 2011)

S. m. miliaris
S. m. barbouri
S. m. streckeri 

S. c. tergeminus
S. c. edwardsii

S. c. catenatus



Robustness of the coalescence Population model

52 of 65 – c©2015 Peter Beerli



Violating assumptions
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The evil reviewer says: “You shall not use method/programX because your data
does not fit the assumptions for...”

Required samples

Recombination

Population size fluctuation

Divergence
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The time to the most recent common ancestor is robust to different sample
sizes.

Simulated sequence data from a single population have shown that after 8
individuals you should better add another locus than more individuals.



Required number of samples is small Multiple populations

55 of 65 – c©2015 Peter Beerli

2 5 10 20
Sample size

0.00

0.02

0.04

0.06

0.08

0.10

Θ

2 5 10 20
Sample size

0

200

400

600

800

1000

M

2 loci
5 loci
10 loci

Medium variability DNA dataset: Mutation-scaled population size Θ and
mutation-scaled migration rate M versus sample size for 2, 5, and 10 loci. The
true ΘT = 0.01 is marked with the dotted gray line; M = 100



Ignoring recombination 0.0

56 of 65 – c©2015 Peter Beerli

Ratio of recombination rate versus mutation rate R
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.
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recombination rates R = C/µ. The dotted lines mark the ’true’ values.
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.

Downward bias

Ignoring recombination 0.0
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Ignored selection
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The standard coalescent assumes neutral mutations and also exchangeable
number of offspring, loci under selection will violate both tenets. In the allele
frequency spectrum literature recently there is a strong push on looking at
signals of selection, which seems still very difficult in ’traditional’ coalescence
approaches.

A new mutation that has a positive effect will replace some of the variability
present in the population. All linked sites will suffer a drop in effective
population size.

A new mutation that has a negative effect and will be most likely removed ,
also resulting in a reduction of variability (and population size)

This is used in genome-wide selection scans, but influence of population growth,
population structure on such estimates are not well studied.
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We will have a lab tonight where you will differentiate between 7 simple
population models that include speciation with and without migration.

(On the http://popgen.sc.fsu.edu website, check out “Bayes factors” and
“Parallel migrate”, there is also a Google support group to look up answers,
ask questions and receive answers [mostly by me])


