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Overview

c©2009 Peter Beerli

1. Changes through time affect the overall estimates

2. Slice sampling (quick)

3. Replication and parallel runtime (longer)

4. Thermodynamic integration (quick)



Average of parameters over long time
Coalescent-
based methods

c©2009 Peter Beerli

Researchers from the frequency-based camp claim that the coalescence-based
methods are working on an evolutionary time-scale and therefore are not really
usable in a conservation genetics or management context.

There is some truth to this claim because the time scale for the genealogies is in
generations and with large populations such genealogies are deep, but ...



Average of parameters over long time
Coalescent-
based methods

Beerli, P. 2009. How to use migrate or why are Markov chain Monte Carlo programs di?cult to use?
In G. Bertorelle et al.: Population Genetics for Animal Conservation. Cambridge University Press, pp. 4279. c©2009 Peter Beerli
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Improvement of sampling Slice Sampling
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we can calculate any point on the
posterior probability distribution up to
a constant.
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Run time concerns MCMC
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MCMC works perfectly fine when run infinitely long. It is rather difficult to know
when the (finite) run has converged and is sampling from the distribution of
interest and is reaching all important parts. Several methods are used to improve
convergence and sampling:

Improve the changing procedure between the MCMC steps (in MIGRATE: Slice
sampling)

Use Metropolis-coupled MCMC to improve finding peaks in the distribution.
[this is needed to do BF]

Program optimization can improve runtime considerably.

Run several analyses in parallel



Embarrasingly parallel computation MIGRATE

MIGRATE 2.0 (2004) c©2009 Peter Beerli

Each locus is completely independent, therefore can run on a different computer.
Embarrasingly simple parallel computing can be done by splitting up data set and
gathering “results” from individual nodes by “hand”. This gets really tedious with
100+ loci.

MIGRATE uses a more sophisticated strategy (MPI) and can use a cluster of
(loosely) connected computer nodes. With more loci than nodes a load balancing
scheme is used.

Genetic data

Auxillary files
Output filesDirector

Locus 1 Locus 2 Locus n



Speed up

Beerli (2004) Effect of unsampled populations on the estimation of population sizes and migration rates .... Molecular Ecology c©2009 Peter Beerli

Estimation of 9 parameters in a 3 population migration model using data from a
total of 100 loci, distributed over 4, 8, 16, 32, 64, 101 computer nodes.
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Speed up

c©2009 Peter Beerli

Speed of total run depends on the “slowest” locus (here out of 50)

51 nodes

0 2 4 6 8

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50



Speed up
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11 nodes

51 nodes
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Load-balancing allows more
effective use of all available
compute nodes.



Speed up even more? MIGRATE

MIGRATE 2.2 (2007) c©2009 Peter Beerli

Genetic data

Auxillary files

Output files

Director

Locus 1
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Replicate 1
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Run time versus accuracy One long run
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Posterior density for a 2-parameter model (population size and gene flow) A run

for 50 × 106 steps (sampling 3 quantities: 2 parameters and genealogies) took

about 20 hours.



Run time versus accuracy 10 replicated runs
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Accuracy

c©2009 Peter Beerli

Posterior densities for a 2-parameter model (size and gene flow) for different runs

(all with a total of 50× 106 steps).
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Run time versus accuracy 10 replicated runs∗
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Thermodynamic integration
Marginal

likelihood
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With 32 different temperature classes the averages of the log-likelihoods look like

this.



Thermodynamic integration
Marginal

likelihood

c©2009 Peter Beerli

0.0 0.2 0.4 0.6 0.8 1.0
-2800

-2600

-2400

-2200

-2000

-1800
ln L

Inverse temperature



Thermodynamic integration
Marginal
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Thermodynamic integration
Marginal

likelihood
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Harmonic versus Thermodynamic Bayes Factor
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Model comparison
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With a criterium such as likelihood we can compare nested models. Commonly

we use a likelihood ratio test (LRT) or Akaike’s information criterion (AIC) to

establish whether phylogenetic trees are statistically different or mutation models

have an effect on the outcome, etc.

Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative

to the LRT.



Approximative Likelihood ratio test
Model

comparison

c©2009 Peter Beerli

==============================================================================
Likelihood ratio tests
==============================================================================
Over all loci
Legend for the LRT tables
-------------------------------------------------------------------------------
Null-Hypothesis: your test model | Log(likelihood) of test model
=same= | Log(likelihood) of full model
full model (the model under which the | Likelihood ratio test value
genealogies were sampled) | Degrees of freedom of test
[Theta values are on the diagonal of the | Probability*
Migration matrix, migration rates are | Probability**
specified as M] | Akaike’s Information Criterion***

| Number of parameters used
-------------------------------------------------------------------------------
*) Probability under the assumption that parameters have range -Inf to Inf
**) Probability under the assumption that parameters have range 0 to Inf
***) AIC: the smaller the value the better the model

[the full model has AIC=-10.504683, num(param)=4]
-------------------------------------------------------------------------------
H0: 0.5471 61.081 0.0000 0.0417 | LnL(test) = -93.070073
= 0.5471 61.081 23.517 0.0417 | LnL(full) = 9.252341
[ *, *, 0, *,] | LRT = 204.644829

| df = 1
| Prob = 0.000000
| Probc = 0.000001
| AIC = 192.140146
| num(param)= 3

-------------------------------------------------------------------------------
H0: 0.5471 0.0000 23.517 0.0417 | LnL(test) = -930.914874
= 0.5471 61.081 23.517 0.0417 | LnL(full) = 9.252341
[ *, 0, *, *,] | LRT = 1880.334431

| df = 1
| Prob = 0.000000
| Probc = 0.000001
| AIC = 1867.829748
| num(param)= 3

-------------------------------------------------------------------------------



Bayes factor
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In a Bayesian context we could look at the posterior odds ratio or equivalently the
Bayes factors.

p(M1|X) =
p(M1)p(X|M1)

p(X)

p(M1|X)

p(M2|X)
=

p(M1)

p(M2)
× p(X|M1)

p(X|M2)

BF =
p(X|M1)

p(X|M2)
LBF = 2 ln BF = 2 ln

(
p(X|M1)

p(X|M2)

)

The magnitude of BF gives us evidence against hypothesis M2

LBF = 2 ln BF = z


0 < |z| < 2 No real difference
2 < |z| < 6 Positive
6 < |z| < 10 Strong
|z| > 10 Very strong



Bayes factor versus Likelihood ratio test
obligatory coin
tossing example
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Likelihood ratio test compares the maximum likelihoods of two models
(hypotheses), whereas the BF compares the marginal likelihoods (=integrated
over all parameter values) of two models.

Example: Coin tossing experiment with two identically looking coins thrown
simultaneously. (Data: coin 1: 9 heads out of 20, coin2 10 heads out of 20)

Model 1 assumes that both coins are similar (both loaded or not): p = p1 = p2

Model 2 assumes that the coins are independent of each other: p1 6= p2

Model 1 Model 2

L

p

L

p1

p2



Bayes factor versus Likelihood ratio test
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BF integrates over all values for each model

LBF = 2 ln
(
L(M1)
L(M2)

)
= 2 ln

(
0.0058
0.0023

)
= 1.87

In contrast LRT compares the maximum values.

LRT = −2 ln
(

0.0300
0.0312

)
= 0.10



Bayes factor versus Likelihood ratio test
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Data set 1: 9 and 10 heads Data set 2: 16 and 10 heads

LBF = 2 ln
(

0.0058
0.0023

)
= 1.87

Prob(M1) = 0.87; Prob(M2) = 0.13

LBF = 2 ln
(

0.0009
0.0023

)
= −1.76

Prob(M1) = 0.15; Prob(M2) = 0.85

LRT = −2 ln
(

0.0300
0.0312

)
= 0.10 LRT = −2 ln

(
0.0051
0.0384

)
= 4.053

AIC(M1) = −2 ln (0.0300) + 2× 1 = 9.01

AIC(M2) = −2 ln (0.0312) + 2× 2 = 10.93

AIC(M1) = −2 ln (0.0051) + 2 = 12.6

AIC(M2) = −2 ln (0.0384) + 4 = 10.5


