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1. Location versus Population

2. Bayes factors, what are they and how to calculate them

3. Marginal likelihoods, what are they and how to calculate them
4. Examples: simulated and real data

5. Resources: replicated runs, cluster computing
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Location = Population
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& Several tests that establish whether two locations belong to the same
population exist. The test by Hudson and Kaplan (1995) seemed particularly
powerful even with a single locus.

€ These days researchers mostly use the program STRUCTURE to establish the
number of populations.

€ A procedure that not only can handle panmixia versus all other gene flow
models would help.



For example we want to compare some of these models
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With a criterium such as likelihood we can compare nested models. Commonly
we use a likelihood ratio test (LRT) or Akaike’s information criterion (AIC) to

establish whether phylogenetic trees are statistically different or mutation models
have an effect on the outcome, etc.

Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative
to the LRT.



In a Bayesian context we could look at the posterior odds ratio or equivalently the
Bayes factors.

_ p(My)p(X|M;y)
p(M;|X) . p(M1)  p(X|My)

X

p(M2|X)  p(Mz) = p(X|My)

The magnitude of BF gives us evidence against hypothesis M,

0 < |z <2 No real difference
2 < |z| <6 Positive

6 < |z| <10 Strong

\|z| > 10 Very strong

LBF =2InBF =2 <«




So why are we not all running BF analyses instead of the AIC, BIC, LRT?

Typically, it is rather difficult to calculate the marginal likelihoods with good
accuracy, because most often we only approximate the posterior distribution using
Markov chain Monte Carlo (MCMC).

In MCMC we need to know only differences and therefore we typically do not need
to calculate the denominator to calculate the Posterior distribution p(©]X):

p(O)P(XI®)  p(O)p(X]O)
SN o p(@)p(X[6)de

p(@‘X,M) —

where p(X|M) is the marginal likelihood.



[Common approximation, used in programs such a MrBayes and Beast]
The harmonic mean estimator applied to our specific problem can be described
using an importance sampling approach

[, p(X|G, M;)p(G)dG
POXIND = Jop(G)dG

which is approximated after some shuffling wth expectations by

1
p(X[M) ~ , G~ p(GIX, M).

= T~ 1
529' p(X|G,M)
g = Inp(X|M)
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(r =Inp(X|M;) = /0 E(In p(X|M;))dt

which we approximate using the trapezoidal rule fortp =0 < t; < ... < t, =1
using

E(In py(X|M;)) Zlnptz (X|Gj, My)
J 1

Path sampling: Gelman and Meng (1998), Friel and Pettitt (2007,2009)
Phylogeny: Lartillot and Phillipe (2006),

Wu et al (2011), Xie et al (2011) [Paul Lewis]

Population genetics: Beerli and Palczewski 2010
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Percent of Models LBF = 21n —2&IM)
o(x1*—@)
Param. 4 3 3 o 1 3 5 5
Model —@ —@ o0 o—0 ‘ —@® o—0 00

XXXX XMmX mxxm mmmm X X0xX mOxm mx0Om

Rejected 100 100 100 100 97 71 46 29
Accepted 0 0 0 0 3 29 o4 71

Total 20 sequences with length of 1000 bp Y 100
1—-2 —

Parameters used to generate data:
0, = AN p; My = ™, 91 = 0.005 .'_’4-—‘ 9, = 0.01
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Humpback whales in the South Atlantic
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Replica ¢, of models M;
ee\ ?@@
- 0 Beel) | el

1(10)

1’ (10)?

2 (10)

3 (30)

Rank

I Number of samples per population in parentheses.

2 Same data as in replicate 1, but different start values of MCMC run.




1

Replica ¢, of models M;

P e e R D
1(10) -1988 | -1958 | -1984 | -2009 | -2054 | -1935 | -2070 | -1793 | -2015
1" (10)?
2 (10)
3 (30)
Rank ) 3 4 6 8 2 9 1 7

I Number of samples per population in parentheses.

2 Same data as in replicate 1, but different start values of MCMC run.




Replica’

¢, of models M;

R RV R B D
1(10) -1988 | -1958 | -1984 | -2009 | -2054 | -1935 | -2070 | -1793 | -2015
17(10)> | -1988 | -1958 | -1984 | -2009 | -2054 | -1936 | -2070 | -1793 | -2002
2 (10)
3 (30)
Rank 5 3 4 6 8 2 9 1 7

I Number of samples per population in parentheses.

2 Same data as in replicate 1, but different start values of MCMC run.




Replica’

¢, of models M;

MR R
1(10) -1988 | -1958 | -1984 | -2009 | -2054 | -1935 | -2070 | -1793 | -2015
1’ (10)? -1988 | -1958 | -1984 | -2009 | -2054 | -1936 | -2070 | -1793 | -2002
2(10) -2034 | -2005 | -2030 | -2056 | -2099 | -1985 | -2134 | -1856 | -207/1
3 (30) -3669 | -3519 | -3630 | -3735 | -3983 | -3454 | -3689 | -2725 | -3028
Rank 7 5 6 8 9 3 4 1 2

I Number of samples per population in parentheses.

2 Same data as in replicate 1, but different start values of MCMC run.







