
Python Classes and Objects

G A Vignaux

July 2008

Python is an object-oriented language and its constructs are
usually classes and objects. This introduces Python Classes and
their objects. An object can have its own data and methods for
manipulating them.

c© G A Vignaux 2007-8 Revision : 1.23

Outline

What is a Class?

A Very Simple Class: Things
The init () method
The str () method
The docstring

The Ship Class

Summary on Methods and Fields

Importing a Class from a module

What is a Class?

I “A class is a user-defined type which you can instantiate
to obtain instances, meaning objects of that type.”

I For example you could have a class of StudentRecords in a
program. You can instantiate many instances of student
records to keep data on the students in the University.

A Class is..

I a blueprint or plan that

I describes objects of the class.

I Each object can have its own data.

I Each object can have its own methods.

I But, defining a Class does not itself define any objects



Defining a Class

Use the Class statement:

class ClassName:
<statement-1>
.
<statement-N>

A Class definition

class Ship:
"""A class of ships"""
def __init__(self,nm=’’):

self.name = nm
self.load = 0
self.location = (0.0,0.0)

def setload(self,ld):
self.load = ld

def setlocation(self,loc=(0.0, 0.0)):
self.location = loc

Inside the Class statement

I the Class name starts with a capital letter

I The statements define data and methods

I methods are like functions

Creating a new Ship object

I Once we have defined a class we can construct (i.e,
instantiate) any number of objects (instances) of that
class

I The class name is used like a function and returns an object:

arahura = Ship(’Arahura’)
ship2 = Ship()
ship3 = Ship()



A class with no data and no methods

I A very simple class. The objects hold no data and have no
methods.

class Thing:
pass

I The definition must have some sort of statement so for this
simplest class I just use the Python statement that does
nothing: pass.

Creating an object

Create an object of class Thing by using the Class name as a
function:

thing1 = Thing()

Create two Things

thing1 = Thing()
thing2 = Thing()

and put them into a box:

box = [thing1,thing2]

Adding data attributes to an object

I An object can hold its own data in its fields or attributes.

I The fields are referred to by a dot notation (object.attribute).

I We can provide existing objects with attributes:

thing1.name = ’Thing1’
thing1.colour = ’red’

thing2.name = ’Thing2’
thing2.colour = ’blue’

Things with actions: Methods

I Objects of a class can have methods (behaviour attributes).

I These look very much like functions.

I In the definition the first argument of a method must be self.

I Here the Thing class is extended by a method called
setColour.

I For clarity, I have left out the docstrings.

class Thing:
def setColour(self,col):

self.colour = col



Using setColour

I The setColour method shows that it is defined just like a
function.

I BUT the first argument is self which refers to the particular
object that is using the method.

I There may be many Things running about and we may wish
to call the method on each one separately.

I To use the setColour() method for a particular object we
execute it using the dot notation but without the self
argument:

thing1.setColour(’red’)
thing2.setColour(’blue’)

The init () Method

I We often need to initialise data when an object is created.

I The init method does this.

I If one has been defined for a class it is called automatically
whenever a new object is created.

I Arguments of the Class can be passed to the object.

Thing with init ()

I Here we give our Thing class such a method.

I We initialise the name and colour attributes.

I Since we are assigning them inside the object we must prefix
them with self.

class Thing:
def __init__(self,nm,col):

self.name = nm
self.colour = col

thing1=Thing(’Thing1’,’Red’)
thing2=Thing(’Thing2’,’Blue’)

The str () method

I It is good practice also to define a special method called
str .

I This should return a string that displays data for the object in
a clear format.

I str is recognised by Python. When you print the object
you get the data printed out nicely.



Add a str ()

Add a str method to the definition.

class Thing:
def __init__(self,nm,col):

self.name = nm
self.colour = col

def __str__(self):
return self.name+’ is ’+self.colour

thing1=Thing(’Thing1’,’Red’)
print thing1

This gives

Thing1 is Red

A docstring

I It is good practice to give every class a documentation string.

I Called a docstring

I This is placed first in the class definition.

I There really should be a docstring for every method as well
(left out here for space reasons)

class Thing:
’’’ Objects of this class do not do much
’’’

def __init__(self,nm,col):
self.name = nm
self.colour = col

def __str__(self):
return self.name+’ is ’+self.colour

The Ship class

class Ship:

"""A class of ships"""

def __init__(self,nm=’’):

self.name = nm

self.load = 0

self.location = (0.0,0.0)

def setload(self,ld):

self.load = ld

def setlocation(self,loc=(0.0, 0.0)):

self.location = loc

def __str__(self):

return self.name+’ is at ’+str(self.location)+

’ with ’+str(self.load)+ ’ tonnes’

Creating a Ship object

arahura = Ship(’Arahura’)
arahura.setload(1000)
arahura.setlocation((120.0, 99.0))
print arahura

This gives

Arahura is at (120.0, 99.0) with 1000 tonnes



Summary of Methods and Fields

I A method is defined using the def.

I All methods have self as their first argument. This is
required for methods. But the self is not used when the
methods are called (see below).

I The init method will be executed when the classname
Ship is used to construct a new ship. It lets you initialise the
fields of the new ship instance.

I Within the object, these data fields are referred to using the
self as a prefix. So the ship’s load will be referred to as
self.load in any of the methods of the ship.

I Outside the object the fields are referred to with the object as
a prefix. For example, outside the ship hermes its load is
hermes.load

Importing a Class from a module

I made a file shipmodule.py to hold the Ship definition above (a
module) and then imported the class definition from that.

>>> from shipmodule import Ship
>>> hermes = Ship(’Hermes’)
>>> pinafore = Ship(’Pinafore’)
>>> hermes.setload(1000.0)
>>> hermes.setlocation((100, 130))
>>> print hermes.location


