Outline

Python Classes and Objects
What is a Class?

G A Vignaux A Very Simple Class: Things
The __init__() method
The __str_() method
July 2008 The docstring

The Ship Class

Python is an object-oriented language and its constructs are
usually classes and objects. This introduces Python Classes and
their objects. An object can have its own data and methods for

Summary on Methods and Fields

manipulating them. Importing a Class from a module
© G A Vignaux 2007-8 Revision : 1.23
What is a Class? A Class is..

» “A class is a user-defined type which you can instantiate a blueprint or plan that

to obtain instances, meaning objects of that type.” describes objects of the class.

» For example you could have a class of StudentRecords in a
program. You can instantiate many instances of student
records to keep data on the students in the University.

Each object can have its own data.

Each object can have its own methods.

vV v.v. v Y

But, defining a Class does not itself define any objects




Defining a Class

Use the Class statement:

class ClassName:
<statement-1>

<statement-N>

A Class definition

class Ship:
"""A class of ships"""
def __init__(self,nm="’):
self.name = nm
self.load = 0
self.location = (0.0,0.0)

def setload(self,1d):
self.load = 1d

def setlocation(self,loc=(0.0, 0.0)):
self.location = loc

Inside the Class statement

» the Class name starts with a capital letter
» The statements define data and methods

» methods are like functions

Creating a new Ship object

» Once we have defined a class we can construct (i.e,
instantiate) any number of objects (instances) of that
class

» The class name is used like a function and returns an object:
arahura = Ship(’Arahura’)
ship2 = Ship()
ship3 = Ship()




A class with no data and no methods Creating an object

Create an object of class Thing by using the Class name as a

function:
» A very simple class. The objects hold no data and have no

methods. thingl = Thing()

class Thing: )
Create two Things

pass
» The definition must have some sort of statement so for this thingl = Thing()
simplest class | just use the Python statement that does thing2 = Thing()

nothing: pass. and put them into a box:

box = [thingl,thing?2]

Adding data attributes to an object Things with actions: Methods

. . L . . » Objects of a class can have methods (behaviour attributes).
» An object can hold its own data in its fields or attributes. . i

) ] ] ] » These look very much like functions.
» The fields are referred to by a dot notation (object.attribute). o )

) o i ) ] » In the definition the first argument of a method must be self.
» We can provide existing objects with attributes: )
> Here the Thing class is extended by a method called

thingl.name = ’Thingl’
thingl.colour = ’red’

setColour.

» For clarity, | have left out the docstrings.
thing2.name = ’Thing2’ class Thing:
thing2.colour = ’blue’ def setColour(self,col):

self.colour = col




Using setColour

» The setColour method shows that it is defined just like a
function.

» BUT the first argument is self which refers to the particular
object that is using the method.

» There may be many Things running about and we may wish
to call the method on each one separately.

> To use the setColour () method for a particular object we
execute it using the dot notation but without the self
argument:

thingl.setColour(’red’)
thing2.setColour(’blue’)

The _init_() Method

» We often need to initialise data when an object is created.
» The __init__ method does this.

» If one has been defined for a class it is called automatically
whenever a new object is created.

» Arguments of the Class can be passed to the object.

Thing with __init_()

> Here we give our Thing class such a method.
» We initialise the name and colour attributes.

> Since we are assigning them inside the object we must prefix
them with self.

class Thing:
def __init__(self,nm,col):
self.name = nm
self.colour = col

thing1=Thing(’Thingl’,’Red’)
thing2=Thing (’Thing2’, *Blue’)

The __str__() method

> It is good practice also to define a special method called
_.str__.

» This should return a string that displays data for the object in
a clear format.

> __str__is recognised by Python. When you print the object
you get the data printed out nicely.




Add a _str_()

Add a __str__ method to the definition.

class Thing:
def __init__(self,nm,col):
self .name = nm
self.colour = col

def __str__(self):
return self.name+’ is ’+self.colour

thing1=Thing(’Thingl’,’Red’)
print thingl

This gives

Thingl is Red

A docstring

It is good practice to give every class a documentation string.
Called a docstring

This is placed first in the class definition.

vV v v VY

There really should be a docstring for every method as well
(left out here for space reasons)

class Thing:

>?7 (Objects of this class do not do much
)

def __init__(self,nm,col):
self.name = nm
self.colour = col

def __str__(self):
return self.name+’ is ’+self.colour

The Ship class

class Ship:
"""A class of ships"""
def __init__(self,nm=’’):
self.name = nm
self.load = 0
self.location = (0.0,0.0)

def setload(self,1d):
self.load = 1d

def setlocation(self,loc=(0.0, 0.0)):
self.location = loc

def __str__(self):
return self.name+’ is at ’+str(self.location)+
> with ’+str(self.load)+ ’ tonnes’

Creating a Ship object

arahura = Ship(’Arahura’)
arahura.setload(1000)
arahura.setlocation((120.0, 99.0))
print arahura

This gives

Arahura is at (120.0, 99.0) with 1000 tonnes




Summary of Methods and Fields

v

A method is defined using the def.

» All methods have self as their first argument. This is

required for methods. But the self is not used when the
methods are called (see below).

The __init__ method will be executed when the classname
Ship is used to construct a new ship. It lets you initialise the
fields of the new ship instance.

Within the object, these data fields are referred to using the
self as a prefix. So the ship's 1oad will be referred to as
self.load in any of the methods of the ship.

Outside the object the fields are referred to with the object as
a prefix. For example, outside the ship hermes its load is
hermes.load

Importing a Class from a module

| made a file shipmodule.py to hold the Ship definition above (a
module) and then imported the class definition from that.

>>> from shipmodule import Ship
>>> hermes = Ship(’Hermes’)

>>> pinafore = Ship(’Pinafore’)
>>> hermes.setload(1000.0)

>>> hermes.setlocation((100, 130))
>>> print hermes.location




