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ABSTRACT
Comparison of the performance and accuracy of different

inference methods, such as maximum likelihood and a Baye-
sian inference, is difficult because the inference methods
are implemented in different programs often written by dif-
ferent authors. I implemented both methods in the program
MIGRATE, that estimates population genetic parameters,
such as population sizes and migration rates using coale-
scence theory. Both inference methods use the same Markov
chain Monte Carlo algorithm and differ from each other in only
two aspects from each other: parameter proposal distribution
and maximization of the likelihood function. Using simulated
data sets, the Bayesian method generally fares better than the
ML approach in accuracy and coverage. Although for some
values the two approaches are equal in performance.
Motivation: The Markov chain Monte Carlo-based maximum
likelihood framework can fail on sparse data and can deli-
ver non-conservative support intervals. A Bayesian framework
with appropriate prior distribution is able to remedy some of
these problems.
Results: The program MIGRATE was extended to allow not
only for maximum likelihood based estimation of population
genetics parameters but also to use a Bayesian framework.
Comparisons between the Bayesian approach and the ML
approach are facilitated because both modes estimate the
same parameters under the same population model and
under the same assumptions.
Availability: The program is available from
http://popgen.csit.fsu.edu.
Contact: beerli@csit.fsu.edu

1 INTRODUCTION
Population genetics changed considerably after Kingman
(1982b,c,a) introduced then-coalescent. The n-coalescent
(coalescent for short) allows us to calculate probabilities of
relationships among a random population sample. This in
turn facilitates calculations of probabilities of whole genea-
logies under a specific population model, for example two
populations exchanging migrants at a constant rate. The first
applications that calculated the likelihood of the popula-
tion size parameter based on DNA samples were described

by Griffiths and Tavaŕe (1994) and Kuhneret al. (1995).
Bahlo and Griffiths (2000) and Beerli and Felsenstein (1999,
2001) extended the basic estimation of a single parameter
to joint estimations of migration rates and population sizes,
whereas Kuhneret al. (2000) allowed for the estimation of
recombination rate. These maximum likelihood approaches
were complemented by several Bayesian approaches (Niel-
sen, 1998, 2000; Hey and Nielsen, 2004; Beaumont, 1999,
and others). All of these approaches try to estimate popula-
tion genetic parameters. They typically treat the genealogy as
a nuisance parameter and summarize over all possible genea-
logiesG; to be precise, they sample over all possible labeled
historiesT and branch lengthsB, taking into account the
genetic data and the population genetic model. The likelihood
of the data given the model parameters is

L(D|π) =
∑
T

∫
B

k(T,B|π)L(D|T,B)dB (1)

wherek(T,B|π) is the Kingman coalescent probability den-
sity andL(D|T,B) is the likelihood of the data given the
genealogy.

Nielsen (pers. comm., 2001) suggested that the maxi-
mum likelihood approach is hampered by several problems.
Maximizing the likelihood functionL(D|π) for compli-
cated scenarios with many parameters is VERY difficult.
The Metropolis-Hastings algorithm (Metropoliset al., 1953;
Hastings, 1970) with static driving valuesπ0, as implemen-
ted in MIGRATE and other programs can take a prohibitively
long run time required to full explore all possible genea-
logies. These problems have been shown by Abdoet al.
(2004), although Abdoet al. apparently failed to recognize
that the problems are far less serious when using biologically
reasonable data sets and when the guidelines about con-
vergence outlined in the MIGRATE-manual (available from
http://popgen.csit.fsu.edu) are followed.

2 APPROACH
The program MIGRATE uses a Metropolis-Hastings algo-
rithm to explore all possible genealogies (Beerli and Felsen-
stein, 1999). The adaptation of the program to a Bayesian
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framework was not difficult because only a module handling
the prior distributions and a minor change in the program flow
needed to be added together with changes in the input and
output user interfaces.

The program MIGRATE calculates the posterior probabi-
lity distribution per locus, treating each locus as comple-
tely unlinked to the others. This assumption is reasonable
because most biologists would prefer to sample such loci rat-
her than partially linked or completely linked loci because
unlinked loci can be treated as independent replicates of the
genealogical history. MIGRATE approximates the posterior
distribution

f(π|D) =
r(π)

∫
G

k(G|π)L(D|G)dG

P(D)
(2)

using a Metropolis-Hastings approach. The integral overG
is a condensed expression of the sum over topologies and
integral over all branch lengths. The denominator is

P(D) =
∫

π∈Ω

r(π)
∫

G

k(G|π)L(D|G)dGdπ

where we integrate over all possible parameter valuesπ.
The updating scheme of the genealogies is the same in the

ML and the Bayesian approach and was described by Beerli
and Felsenstein (1999). The updating scheme of the parame-
ters is based on arbitrary prior distributionsr(π). MIGRATE
allows the user to choose between a small number of prior
distributions

• Uniform prior distribution between a minimum and a
maximum value for each parameter;

• Exponential prior distribution with a minimum, mean,
and maximum value for each parameter;

The incorporation of additional prior distributions, such as a
gamma distribution, are planned.

A key issue in Metropolis-Hastings algorithms is the accep-
tance or not of a change of the current state in the Markov
chain. The algorithm should accept fairly often so that the
chain can explore the solution space more efficiently; poor
algorithms will reject often and force very long runs to
achieve equilibrium and an appropriate sample of the pos-
sible states. Typically, the acceptance or rejection of a move
in the Markov chain is based on a ratio that consists of two
parts: (1) the ratio of probabilities to move from an old state
to a new state using a prior distribution and the effect of the
data (Metropoliset al., 1953), the Metropolis ratiorM ; (2)
the ratio of probabilities to be in the old or new state and go
to the new or old state (Hastings, 1970), the Hastings ratio,
rH . In the Bayesian implementation in MIGRATE the ratio
of accepting a move suggested by the parameter prior is only
dependent on the Kingman coalescent probability density.
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Fig. 1. Population scenario used in the example: Four populations
exchange migrants unidirectionally as follows: from population 1
to 4 (M14), from 4 to 3 (M43), from 3 to 2 (M32) and from 2
to 1 (M21). Parameters are scaled effective population sizesΘi

(4× effective population size× mutation rate per site per genera-
tion), and scaled immigration ratesMji (immigration rate divided
by mutation rate). Migration along routes indicated by solid arrows
was simulated using “true” values ofM = 100; migration along all
eight other migration routes was simulated with a value of M=0.
Migration along the dashed arrows are discussed in the Result
section

The acceptance/rejection ratio is

r =rMrH =
r(π(n)

i )k(G|π(n)
i )L(D|G)

r(π(o)
i )k(G|π(o)

i )L(D|G)

prob(π(o)
i |π(n)

i )

prob(π(o)
i |π(n)

i )
,

(3)

which reduces to

r =
k(G|π(n)

i )

k(G|π(o)
i )

. (4)

If we consider the uniform random prior distribution (URP)
then

r(π(n)
i ) = r(π(o)

i ) (5)

and the Hastings ratiorH will turn into

prob(π(o)
i |π(n)

i )

prob(π(n)
i |π(o)

i )
=

r(π(o)
i )

r(π(n)
i )

= 1. (6)

For the exponential-prior distribution a similar logic applies,
although moving fromπ

(o)
i to π

(n)
i versus fromπ

(n)
i to π

(o)
i

will not have equal probability as with the URP (6). In this
case the prior probabilities in the Hastings-ratio will cancel
with the prior probabilities in the Metropolis ratio (formula
3).

I illustrate the performance of the improvements on a data
set for four populations with a unidirectional migration pat-
tern (Figure 1). Simulated DNA sequence alignments, gene-
rated using the population model described in figure 1, were
analyzed to show the performance of the Bayesian and the
ML approach. One data set with 10 loci, and 4 groups of 100
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Fig. 2. Posterior distributionsf estimated using exponential priors:
expected mode for the scaled migration rateM14 is 100, expected
modes forM41 and forM24 are zero, expected mode for the scaled
effective population sizeΘ4 is 0.01. The posterior distributions of
ten independent loci (thin lines) and the combined posterior distribu-
tion (thick line) are shown. The relationship among the populations
is explained in Figure 1

single locus data sets were analyzed. Each data set contai-
ned 20 individuals from each of the four populations. Using
a coalescence-based simulator (cf. Hudson, 2002) “true”
genealogies using population sizes (ΘT ) for all populations
of 0.1, 0.01, 0.001, and0.0001 andMji referenced in Figure
1 were created. DNA sequences of 10,000 bp length were
then simulated on this true genealogies using an F84 model
with equal base frequencies and transition/transversion ratio
of 2.0. These data sets were then analyzed using either the
maximum likelihood (ML) inference mode (Beerli and Fel-
senstein, 1999, 2001) or the Bayesian the inference mode
in MIGRATE. The ML mode was run for 10 short chains
visiting 100, 000 genealogies and storing 5000, updating the
driving parameter after each chain, and 2 long chains with
10, 000, 000 visited genealogies and sampled50, 000 using
an adaptive heating scheme. The Bayesian inference was
run for 10, 000, 000 updates, approximately half of which
were updates of the 16 parameters and approximately half
(∼ 5, 000, 000 because of random switching between genea-
logy and parameter updates) were genealogy updates. New
parameters were proposed using an exponential prior distri-
bution with population size mean of2ΘT and boundaries of
ΘT /10 and10ΘT , and scaled migration rate meanM of 200
and boundaries of0 and1000. Results for uniform priors with
the same boundaries were very similar, and therefore are not
shown.

I show results and problematic issues only for population
4, but the pattern is identical for the three other populati-
ons. The scenario chosen for an example is difficult for any
gene flow estimator because it requires the estimation of 12
migration rates and 4 population sizes. With high migration
rates, haplotypes are distributed evenly over all populations,
so that establishing the directionality of gene flow from esti-
mated migration rates is difficult. With low migration rates,
however, the difference from zero, and thus the directiona-
lity, is difficult to establish. The number of variable sites
or the number of alleles in the data set is crucial for accu-
rate estimation of population size and migration rates of any
magnitude. Single locus data sets with low variability do not
allow estimating migration rates with great precision.

Despite these difficulties, with sufficient data, estimates are
expected to be useful for inferring direction and magnitude
of gene flow and magnitude of population size. Using the
16-parameter model analyzed here will produce very varia-
ble parameter estimates from single locus data, however, and
such analyses are not advisable for real biological data.

2.1 Multilocus analysis:
Figure 2 shows that the variability of individual loci resulting
from the coalescent and difficulties in reaching convergence
can be large, but the combined estimate over all loci gives a
rather accurate picture. The variability for migration rate esti-
mates is much larger than for the population size estimates.
It is difficult to establish the gene flow direction (M41 ver-
susM14) for the single locus estimates. The estimate over all
loci clearly allows the distinction between the two directions:
M14 is much bigger thanM41. The estimation of migra-
tion parameter values between populations with no direct
connections, for example migration rate rateM24 between
population 2 and 4, is consistently low (Figure 2).

2.2 Comparison of Bayesian and maximum
likelihood inference

MIGRATE allows direct comparison of the success of para-
meter inference using the Bayesian approach and the maxi-
mum likelihood approach. In theory the results should be
very similar. Table 1 shows medians and quartiles of 100 sin-
gle locus runs. I chose medians and quartiles because they are
a better indicator of the distribution of the results than mean
and standard deviation because these are heavily influenced
by large outliers. The median of the maximum posterior
probabilities is similar to the median of the maximum like-
lihood estimates for moderate values of the population size
(Θ = 0.01). The results for the low variability data sets are
mixed; the medians of the two methods are still compara-
ble but the range of the quartiles of MLM estimates are
very large, standard deviations (not shown) were even lar-
ger because of outliers in the ML analysis. Several of the
100 runs reported values that were very different from the
true value. The data sets with the smallest trueΘ(0.0001)
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Table 1. Medians and quartiles of 100 single-locus data sets for the two
inference methods (I): maximum likelihood (M) and Bayesian (B). Simula-
ted data sets that were generated with 4 different values of “true” population
sizes (Θ(t)). Θ is 4× effective population size× mutation rate per site per
generation, andM is immigration rate over mutation rate. The range of
number of migrants per generationNem = ΘM/4 covers a wide range
from 0.0025 (corresponding to aΘ = 0.0001) to 2.5 (corresponding to
a Θ = 0.1) migrants per generation. Run conditions for ML and Bayes
inferences are specified in the text.

Θ(t)
4 M

(t)
14 I Θ4 M14

25% Med 75% 25% Med 75%

0.0001 100 M 0.0004 0.00092 0.0028 0.0 0.2 643.6
B 0.00006 0.00009 0.00013 7.0 9.0 41.0

0.001 100 M 0.0010 0.0017 0.0036 0.0 46.3 171.5
B 0.0013 0.0015 0.0017 65.0 79.0 117.0

0.01 100 M 0.0089 0.0104 0.0128 20.0 53.7 108.1
B 0.0085 0.0101 0.0012 63.0 90.0 125.0

0.1 100 M 0.0295 0.0573 0.0825 36.1 66.5 100.5
B 0.0698 0.0891 0.1143 45.5 69.0 116.5

shows even more problems with the ML approach because
the medians forΘ is strongly overestimated and the range
of the quartiles forM is huge. In contrast to ML the Baye-
sian runs recover the population size, but report very low
values for the migration rate. Figure 3 shows a comparison
of posterior distributions of the scaled migration rateM of
the first data sets of each population size category (Table 1).
The power to make inferences about the magnitude of the
migration rate is directly correlated with the magnitude of the
population size. For very small population sizes there is no
power to estimate such low migration rates in the chosen 16
parameter problem with a single locus data set of 10,000 bp
for each of the 100 individuals. The posterior distribution is
similar to the exponential prior distribution used. In contrast
to the problems encountered in the migration rate estimati-
ons, the posterior distributions forΘ are strongly peaked near
0.0001 (results not shown).

The ML method has difficulty recovering the expected
values when the data set is very variable, whereas the Baye-
sian inference is closer to the “true” values for all scenarios.
The range of the quartiles of the ML approach is often much
larger than the range of the Bayesian approach.

The coverage of the Bayesian approach is rather conser-
vative and includes the “true” values in the 95% credibility
interval with frequencies of 0.85 to 1.00 for the migra-
tion and population size parameters (Table 2), whereas the
ML approach has difficulty with convergence, especially on
low variability data sets, and so has a rather low coverage
(frequencies between 0.06 and 0.94).
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Fig. 3. Posterior distribution of the scaled migration rateM14 for
four different values ofΘ4 of a single locus data set. The population
model is explained in Figure 1. Graphs are results from the first
replicate of the four replicate groups shown in Table 1. Data was
simulated withM14 = 100.

Table 2. Coverage of maximum likelihood and Bayesian inferences using
simulated data sets that were generated with 4 different values of “true”
population sizes (Θ(t)). Θ is 4× effective population size× mutation rate
per site per generation, andM is immigration rate over mutation rate. Cover-
age is measured as the percentage of times the true value is within the
estimated 95% support interval. Run conditions for ML and Bayes inferences
are specified in the text.

Θ(t)
4 M

(t)
14 Coverage [%]

Θ4 M14

ML Bayes ML Bayes

0.0001 100 6 98 33 100
0.001 100 47 100 55 99
0.01 100 94 96 62 96
0.1 100 51 91 49 85

3 DISCUSSION
The scenario chosen for an example is difficult for any gene
flow estimation program that uses only a single sample in
time. The problem stems from the fact that the only infor-
mation about the directionality are the mutations in the data
set. If the migration rate is high, all mutations, even the
rare ones, are distributed over all populations and any direc-
tionality estimation based on a single locus will fail. With
low migration rates among the populations, each population
will acquire unique mutations and in principle the magnitude
and directionality can be estimated even for single locus data
sets, if there is enough variability in the data set. In reality,
however, such an estimation has proven difficult because the
difference between the migration rates between two popu-
lations is small and often close to zero. Estimate based on
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single locus data sets thus often cannot recover the directio-
nality, but multilocus estimates will allow the inference of the
migration direction (Figure 2.

The power to estimate migration rate is crucially dependent
on the number of variable sites or number of alleles in the
data set. Too little variation leads to haphazard results in the
ML method because the MCMC process has no strong gui-
dance whether to insert or remove migration events during
the course of the analysis; the process is more dependent
on the static driving parameters. Comparison of several
runs will deliver very different results and therefore show
non-convergence. The only remedy is to run these analy-
ses much longer to get a better estimate of the uncertainty
of the estimate. Bayesian analysis is straightforward in such
cases because when the posterior distribution is similar to
the prior distribution, we can conclude that the data set does
not contain enough information for the inference. The ML
method also has difficulties exploring the distribution around
the maximum likelihood estimate with highly variable data
because the genealogy is very well defined by the large num-
ber of variable sites: the static driving value and the updating
scheme (Beerli and Felsenstein, 1999) will not explore many
different migration scenarios and therefore the tails of the dis-
tribution are not visited. This results in too narrow support
intervals with small coverage values. In contrast, Bayesian
inference manipulates the parameters using a diffuse prior.
This forces more changes of the genealogy, therefore explo-
ring more different migration scenarios and visiting the tails
of the posterior distribution more efficiently.

The coverage shown for the Bayesian runs might be con-
servative but this is preferable to the coverage reported for
ML, especially in the low variability data sets (Θ ≤ 0.001,
Table 2). Some ML-runs did not really converge and were
estimating either very large or zero migration rates.

4 CONCLUSION
Many users of MIGRATE have reported in numerous email
queries that achieving convergence with the ML approach
with low-information data, such as single locus data sets or
data with a low mutation rate, is difficult and needs special
attention. Bayesian inference seems to allow such users to
achieve reliable results with less effort than the ML approach.
It seems appropriate that if only the parameters and their
support interval are of interest, then biologists should pre-
fer the Bayesian approach, although it will be interesting to
see whether this will hold for all biological data sets.
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