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ABSTRACT

For many biological investigations, groups of individuals are genetically sampled from several

geographic locations. These sampling locations often do not reflect the genetical population

structure. We describe a framework using marginal likelihoods to compare and order

structured population models, such as testing whether the sampling locations belong to the

same randomly mating population or comparing unidirectional and multidirectional gene

flow models. In the context of inferences employing Markov chain Monte Carlo methods,

the accuracy of the marginal likelihoods depends heavily on the approximation method used

to calculate the marginal likelihood. Two methods, modified thermodynamic integration

and a stabilized harmonic mean estimator, are compared. With finite Markov chain Monte

Carlo run lengths, the harmonic mean estimator may not be consistent. Thermodynamic

integration, in contrast, delivers considerably better estimates of the marginal likelihood.

The choice of prior distributions does not influence the order and choice of the better models

when the marginal likelihood is estimated using thermodynamic integration, whereas with

the harmonic mean estimator the influence of the prior is pronounced and the order of the

models changes. The approximation of marginal likelihood using thermodynamic integration

in Migrate allows the evaluation of complex population genetic models; not only of whether

sampling locations belong to a single panmictic population, but also of competing complex

structured population models.
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INTRODUCTION

Investigations using genetic samples from individuals taken across a geographic or biological

range, for example, water frogs caught at several ponds, blood samples of humans collected

in several villages, or viruses collected from different host species that have the same disease,

are common. Whether the individuals studied belong to a single population that is long-

term randomly mating or to two or more populations that have varying degrees of genetic

isolation from each other is an important concern. Because the geographic information about

the locations often does not give a clear indication about the degree of genetic isolation

of the individuals, we often use the genetic data themselves to calculate test statistics

to suggest whether or not the locations belong to the same population. Many programs

(Michalakis and Excoffier, 1996; Hudson et al., 1992b; Neigel, 2002; Weir and

Hill, 2002; Rousset, 1996; Holsinger et al., 2002) use allele frequencies to calculate FST

for pairs of locations or use Fisher’s exact test to reject panmixia for the whole or subsets

of the data (Raymond and Rousset, 1995; Rousset, 2008).

Several methods test explicitly whether two populations are or are not panmictic (for example

Hudson et al., 1992a; Rousset, 1996). These methods are often applied to all pairs of a

multiple population data set. This is problematic, because both Beerli (2004) and Slatkin

(2005) have shown that pairwise analyses can inflate the effective population size estimates,

thereby confounding estimators of migration that use the effective number of migrants.

Alternatives to tests based on allele-frequencies have been implemented, for example in

the programs Structure (Pritchard et al., 2000), Baps (Corander et al., 2008),
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and Structurama (Huelsenbeck and Andolfatto, 2007). These methods allow the

assignment of individuals to groups using the compatibility of their multi-locus genotypes.

They can thus be used to group locations into panmictic units based on allele profiles and ge-

ography, this capability led to many advancements in landscape genetics and phylogeography.

If we are interested in directionality of migration, however, this framework is often insufficient

because the assignment methods offer only limited insight into population processes, such

as migration, mutation, or fluctuation of population size, that underlie and account for the

present genetic structure (Palsbøll et al., 2007).

We describe here another alternative, using Bayesian inference, that calculates probabilities

of explicit population models using coalescence theory (a historical review is given by King-

man, 2000). An extension of the original n-coalescent of Kingman to multiple populations

with migration (Strobeck, 1987; Hudson, 1991) leads to probabilistic inference programs

that consider potentially complex migration patterns among sampling locations (for example

Beerli and Felsenstein, 2001; Beerli, 2006; Kuhner, 2006). The program Migrate

(Beerli and Felsenstein, 2001; Beerli, 2006) allows the calculation of a likelihood ratio

test (LRT) for nested population models, but these calculations only approximate the LRT

(Beerli, 2008), need a moderately complicated approach with several independent runs

(Beerli, 2009), or require time-consuming large-scale simulations (Carstens et al., 2005).

In our approach, a Bayes factor (BF) takes the role of an LRT. BFs and LRTs are not

equivalent, however: the BF is the ratio of the marginal likelihoods of two hypotheses M1

and M2, whereas the LRT measures support for one hypothesis over another at the maximum

likelihood. BFs are better suited for model selection than LRTs because one can compare
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non-nested as well as nested models. In addition, the programming and the successful

application of Bayesian inference programs is often simpler than ML (Beerli, 2006).

Here, we report on the effect of two different approximations of the marginal likelihood on BF

and therefore on the support for specific population models. We provide examples of the use

of these methods to extend our tool set for investigating whether sampling locations are part

of a panmictic population or are parts of a more complex population structure. Our approach

unifies the analysis of population models and allows a wide spectrum of comparisons, from

simple tests of whether locations sampled are part of a single population to more complex

questions, such as whether there are unambiguous migration directions among populations;

it also calculates posterior distributions of parameters of these models.

MATERIALS AND METHODS

Our approach to population model selection uses a framework that allows inferring param-

eters using coalescence theory. The population models are simple structured coalescence

models with possibly many parameters (Beerli and Felsenstein, 2001).

Bayes Factor estimation: In a typical Bayesian inference using Markov chain Monte

Carlo (MCMC) methods we do not need to calculate the marginal likelihood to estimate the

posterior probability distribution of the parameters of a specific model because the MCMC-

analysis depends only on likelihood ratios, and not absolute likelihoods. Because BF is a

ratio of marginal likelihoods of two models, however, calculation of these absolute likelihoods

is essential. Because we use absolute likelihoods, we can now easily compare more than two
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models with the BF framework by choosing a reference model and comparing or ranking

other candidate model with that.

We augmented the program Migrate (Beerli, 2006) with a module to calculate the

marginal likelihood

LMi
= P(D|Mi) =

∫
Ψi

P(Ψi|Mi) P(D|Ψi,Mi)dΨi. (1)

which is the probability density of the data where the parameters, for example population

sizes and migration rates, and nuisance parameters, for example genealogies Ψi, of the model

Mi are integrated out using the prior distribution P(Ψi|Mi). The marginal likelihood is

difficult to estimate with sufficient accuracy because not only the region around the mode,

but also the tails of the distribution need to be explored. This is not straightforward in

an MCMC context where we bias towards more likely solutions and so have a tendency to

sample the tails of the distribution less frequently. The marginal likelihood is calculated in a

Bayesian context and needs proper prior distributions to exist. Improper priors would lead

to infinitely large tails that do not allow a consistent estimate of the marginal likelihood.

We contrast two different methods to estimate the marginal likelihood: harmonic mean

(Newton and Raftery, 1994; Kass and Raftery, 1995) and path sampling (Gelman

and Meng, 1998). Studies of path sampling have recently led to an alternative method of

estimating marginal likelihoods (thermodynamic integration: Gelman and Meng, 1998;

Friel and Pettitt, 2008; Lartillot and Philippe, 2006).

Harmonic mean estimator: Newton and Raftery (Newton and Raftery, 1994)
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described an approximation of formula 1 using a harmonic mean estimator. Our stabilized

harmonic mean estimator is a natural adaptation of Newton and Rafterty’s harmonic mean

estimator to problems that treat genealogies as nuisance parameters and summarize over all

possible genealogies G using the Metropolis-Hastings algorithm (Our MCMC sampler was

described in detail by Beerli, 1998; Beerli and Felsenstein, 1999, 2001; Beerli, 2006).

We approximate the marginal likelihood as

LHM = P(D|Mi) ≈

(
1

m

m∑
j=1

1

P(D|Gj)

)−1

. (2)

The extension from single-locus to multi-locus data is not straightforward even with unlinked

loci. We developed a method for combining independently inferred marginal likelihoods that

allows fast parallel computation of unlinked loci. The combined marginal likelihoods is the

product of the independent marginal likelihoods for each locus and a scaling factor K for

loci,

L
(all)
HM = K

Z∏
z=1

P(Dz|Mi) (3)

The scaling factor

K =

∫
P

Z∏
z

P (D|P ,Mi)P (P|Mi)
1−ZdP (4)

where Z is the number of loci. We describe the scaling factor K in detail in the appendix. K

can be approximated using prior, likelihood, and posterior values reported during the MCMC
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run (Appendix). Our program Migrate version 3.1 calculates K and reports locus-specific

and combined marginal likelihood values when multiple loci are used.

Path sampling or thermodynamic integration estimator:

MCMC sampling spends more time in areas of the search space proportional to the likelihood;

as a result little attention is paid to regions with low likelihoods despite the fact that

they may be large. Marginal likelihood is the integral over the whole search space and

therefore may depend on accurate representation of these low likelihood areas. Path sampling

allows exploring these low likelihood areas by distorting the acceptance ratio of the MCMC

procedure with scaling factor τ ranging from zero to 1.0, where at τ = 0.0 the process samples

from the prior distribution and at τ = 1.0 it samples from the distribution of interest. Thus,

we calculate the log marginal likelihood using the expectation of the distribution of all

coalescent genealogies G given the data D evaluated at scaling factor τ

`TI = ln P(D|Mi) =

∫ 1

0

EG|D,τ ln P (D|G,Mi) dτ, (5)

We approximate this integral using the trapezoidal rule for the scaling factor τ , using a

small number of scaling values τ0 = 0 < τ1 < ... < τk < ... < τn = 1 and the corresponding

marginal likelihoods y0...yn as

`TI =
n∑
k=2

(τk − τk−1)
yk + yk−1

2
(6)
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with the average of log likelihoods , ln P(D|Gj,Mi), at a given scaling value τk

yz =
1

m

m∑
j=1

ln Pτk(D|Gj,Mi). (7)

For multiple unlinked loci we then use

`all
TI = lnK

Z∑
z=1

`zTI. (8)

The K is the same as the one in formula (4). Migrate already used a scheme to run parallel

MCMC chains to improve the exploration of search space using discrete scaling values τk

that is based on the scheme proposed by Geyer and Thompson (1995; MCMCMC –

Metropolis coupled Markov chain Monte Carlo). They formulated their method in terms of

thermodynamic properties in which a chain that accepts always, with τ = 0.0 is the hottest

chain with a temperature of 1/τ =∞ because the chain bounces randomly in many different

areas of the search space, and a chain with τ = 1.0 is cold because its movement are smaller.

After each chain attempts a change of the genealogy, the system allows for swapping trees

among neighboring MCMC chains with scaling factors τi and τi+1 to improve the parameter

estimates. The swap-ratio depends on the relative likelihood ratios of randomly chosen pairs

of chains with different τ and is

r <
P(D|Gi)

τi−1 P(D|Gi−1)τi

P(D|Gi)τi P(D|Gi−1)τi−1
, 1 < i < n (9)

where r is a uniform random number between 0 and 1, and n is the number of chains with
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different scaling factors τ . We use the term scaling classes to express the different discrete

classes with different values of τ . One could express the same classes as temperature classes

where the temperature Ti is 1/τi.

For the thermodynamic integration we record the likelihood values for each chain; these

values are then used to calculate the averages yk, which are used to calculate the marginal

likelihoods. This is a static variant of the Step-Stone method proposed by Wangang Xie,

Ming-Hiu Chen, Y Fan, Lynn Kuo, and Paul Lewis (Lynn Kuo and Paul Lewis, pers. comm.

2008).

Using discrete classes τk may be too simple for phylogenetic applications (cf. Lartillot

and Philippe, 2006), but results in consistent estimates even for few scaling classes (Fig.

1), except that the magnitudes of the estimates of the marginal likelihood (the area under

the curve) are correlated with the number of scaling classes. The calculation time for each

scaling class is about the same, so a run with 4 scaling classes will be about 8 times faster

than a run with 32 scaling classes. In principle, the different chains can be run in parallel,

but the gain in speed is limited because the chains run in lockstep and need to wait on the

slowest chain. Because many simulations (not shown) revealed that the shape of the path

sampling function (Fig. 1) is very similar with different migration models, we propose a

different treatment of the first (the hottest) interval, defined by the scaling factors τ0 and τ1

with log likelihood value y0 and y0, respectively. We calculate the area of this first interval

analytically using a cubic Bézier spline with two additional control points c(0) and c(1) that

are calculated using the first three points. A point is a pair of τi and log likelihood yi and is
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defined as pi = (τi, yi). The additional control points are

c(0) =

(
τ0,

1

5
y0 +

4

5
y1

)
(10)

c(1) =

(
τ0,

τ1y2 − τ2y1

τ1 − τ2

)
(11)

so that we have four control points

pτ,y =
(

(τ0, y0), c(0), c(1), (τ1, y1)
)
. (12)

The values of the y-axis of the additional control points were chosen so that the Bézier curve

mimics the path sampling function estimated with many scaling classes. We calculate a

point p(w) on the Bézier function using

p(w)
τ,y (t) =

3∑
i=0

(
3

i

)
p(i)
τ,yt

i(1−t)3−1

. (13)

The partial marginal likelihood by integrating the parametric function over the hottest

interval is then

`(τ0,τ1) =

∫ 1

0

p(w)
y (τ)

dp
(w)
τ

dτ
dτ (14)

=
1

20

(
(τ1 − τ0)

(
y0 + 3c(0)

y + 6c(1)
y + 10y1

) )
(15)

This Bézier quadrature allows shorter run times than approaches with more scaling classes,

an important fact because the estimation of large problems with many parameters can take
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a long time to run.

[Figure 1 about here.]

Simulation studies to test the approximations to the marginal likelihood: The

quality of the two estimators ˆ̀
TI and ˆ̀

HM was tested using simulated data. These data sets

were generated using a coalescence-based simulator

(distributed from http://people.sc.fsu.edu/∼beerli/programs).

One- and two-population simulations: The HM and TI approximations were compared with

a standard test statistics based on allele frequencies (Hudson et al., 1992a) using two groups

of simulated 2-population data. (1) One hundred artificial DNA data sets containing 1000

sites for 10 individuals in each of two populations using a model with no immigration into

population 2 with parameters Θ1 = 0.005, Θ2 = 0.01, M2→1 = 100, M1→2 = 0 were analyzed

with 9 different models. The marginal likelihoods of eight alternative models were then

compared with the marginal likelihood of the model used to simulate the data, the “true”

model. This comparison of marginal likelihood ratios is equivalent to Bayes factors. (2)

Simulations of four sets of 100 single-locus data sets with different degrees of isolation from

each other were used to compare the Bayes factor method against a traditional test based

on frequencies. These four sets were simulated with (a) Θ = 0.01 and the 20 individuals

randomly split into two groups; (b) Θ1 = Θ2 = 0.005, M2→1 = M1→2 = 500, 000; this is

equivalent to a total Nm = 1250; (c) Θ1 = Θ2 = 0.005, M2→1 = M1→2 = 100; this is

equivalent to a total Nm = 0.25; and (d) Θ1 = Θ2 = 0.005,M2→1 = M1→2 = 1; this is

equivalent to a total Nm = 0.0025. The analyses of these four sets was done for two models,
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a single population model, and a full two-population model.

Large scale population simulations: Many real problems include many sampling locations

for which the association of sampling locations and panmictic populations is unkown. We

simulated data for 50 loci from 3 populations using a scenario as outlined in Figure 2A. This

stepping stone model has five parameters and for each locus 300 base pairs were simulated

using these values: Θ1 = 0.003, Θ2 = 0.003, Θ3 = 0.004, M1→2 = 100, M2→3 = 100.

The individuals (120, 120, 160) in the three populations were then randomly grouped into

6, 6, and 8 sampling locations, respectively. The full dataset contained 20 locations with

20 individuals each. These particular settings were chosen because they mimic potential

datasets that use anonymous loci from the nuclear genome. A naive application of these

data would ask for a 20-population analysis. With a default Migrate run we would need

to estimate 20 population sizes and 380 migration parameters, a daunting task with few

loci. A total of 6 potential migration models using different numbers of populations and

different migration models were explored. The 6 cases presented use models with 1, 2, 3,

and 20 populations with several candidate models (Table 1, Figure 2). Specific Migrate

run conditions are described in the supplement.

[Figure 2 about here.]

[Table 1 about here.]

Effect of prior choice and prior range: We explored the effect of the choice of the prior

distribution on the marginal likelihood by using simulated multi-location single locus data.
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We compared two exponential and two uniform prior distributions: Narrow uniform prior

distribution for Θ and M with a minimum of 0.00001, 0.0 and a maximum of 0.1, 5000,

respectively; a wide uniform distribution with a maximum for Θ and M of 0.5 and 50000;

a narrow exponential distribution with the same minimum and maximum as the narrow

uniform but a mean of 0.01 and 100 for Θ and M , respectively; and a wide exponential

distribution with minimum and maximum of the wide uniform, but with a mean of 0.1 and

1000, respectively. Specific Migrate run conditions are described in the supplement.

Model selection: Model choice probabilities si were calculated as suggested by Kass and

Raftery (1995) by

si =
BFi∑n
j BFj

(16)

Example data set: Our example problem reanalyzes part of a dataset of humpback whales

from 4 sampling locations in the Southern Atlantic collected by Engel et al. (2008): near

Brazil, Antarctica 1 (west of the Antarctic peninsula), Antarctica 2 (east of the Antarctic

peninsula), and Colombia (Figure 1 in Engel et al. (2008)). The data were analyzed using

several different migration models (Table 6). We used three subsamples of the original data,

two with 10 and one with 30 randomly selected individuals from each location. We also ran

one of the data sets twice for all example models to assess the effect of the Markov chain

Monte Carlo error. We established a most likely mutation model within the constraints for

Migrate by using PAUP* (Swofford 2003) to estimate parameters for site rate variation

and transition/transversion ratio.
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RESULTS

Comparison of approximations of the marginal likelihood: In all but trivial situations

we cannot calculate LM or its log value, `M , analytically. Using simulated data, we compared

the two different methods for approximating LM : the thermodynamically estimated ˆ̀(TIi)

using coupled scaling classes TIi, and the harmonic mean HM estimated ˆ̀(HM). In the context

of coalescent simulations the artificial data Di simulated from a set of “true” parameter

values still include considerable variability, so we do not expect a particular ˆ̀
M (for short:

ˆ̀) from all data sets. Nevertheless, we expect that the different approximations will result

in the same ˆ̀ for a specific data set. Figure 3 shows a comparison of the two different

approximations of `M . The relative magnitude of ˆ̀ among the different data sets is the

same: a data set that shows low ˆ̀ with the HM estimator also shows low values for the

different TI schemes. ˆ̀(HM) is little affected by the number of scaling classes, whereas the

number of scaling classes affects the absolute value of the ˆ̀(TI). When the results of a specific

data set are compared, the TI4 method delivers lower ˆ̀ than the HM4, HM16, HM32, TI16,

and TI32 methods. The thermodynamically estimated ˆ̀(TIc) using independent scaling classes

is identical to the coupled scaling classes (data not shown).

[Figure 3 about here.]

Bayes factor estimation: Instead of reporting BF, we report its log-equivalent LBF, which

is ln(LM2/LM1) or (`M2 − `M1). The log marginal likelihood values ˆ̀ are dependent on the

approximation, and the LBF depends on the difference of the log marginal likelihoods ˆ̀ and

therefore the relative difference among models is more important than the unbiased recovery
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of ˆ̀ (Figure 3). Figure 4 compares the dependency of the approximations on the length

of the run. The shortest run took only 5 seconds with 4 chains, visiting 30,000 states and

discarding the first 10,000; the longest 4-chain run took 5 minutes 21 seconds, visiting and

discarding 256×more states. The thermodynamic integration approximation results in LBFs

with high repeatability and little variance even with only short runs, whereas the LBFs using

the HM estimator are unstable even for long runs, and it appears that MCMCMC-searches

with many chains result in reduced reliability of the HM estimators.

[Figure 4 about here.]

Numerous artificial single-locus data sets from a model with two populations of unequal

size, in which only one population receives migrants from the other, were generated; this

model has three parameters that are free to vary: population sizes 1 and 2, and immigration

rate from population 2 to population 1, this is M0 = � ← �. Populations are indicated

by squares. Two open squares indicate populations constrained to have the same size; one

open and one filled square indicates population sizes are not constrained. Arrows indicate

allowed migration direction (from population 1 to 2, from 2 to 1, or in both directions;

arrows with two heads indicate symmetric migration rate parameters (M = m/µ). These

data sets were analyzed with all nine possible simple models (1 parameter: �; 2 parameters:

� ↔ �,� → �,� ← �; 3 parameters: � → �,� ← �,� ↔ �,� � �; 4 parameters:

� � �); models that exclude gene flow among the populations were omitted. We calculated

log Bayes factors, LBF = (ˆ̀
Mi
− ˆ̀

M0). These report the chance of accepting Mi over M0.

In Table 2 LBF using TI16 rejects models that have more parameters than the the true

model or that disregard unidirectional migration with high frequency. Very simple models
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and asymmetric models are often accepted as plausible models. LBF using HM is indecisive,

even with models that do not fit the true model, such as � ↔ �. Overall, the estimates

from TI deliver a clearer guide about which models to prefer than the highly variable HM

estimates (see supplement), which, on average, are less decisive.

A comparison with different strengths of migration rate among two populations (Table 3)

shows that the LBFTI4 is more variable than the LBFTI16 but the number of acceptances or

rejections of a hypothesis (Table 3, Supplement table 2S) are very similar between the TI16

and TI4. In contrast, the LBFHM has a higher variability of outcomes.

[Table 2 about here.]

Comparison with a panmixia test method: Currently, coalescence-based inference

programs do not test whether the sampling locations are in separate populations or not.

Therefore, summary statistics such as FST, Fisher’s exact test, or population genetic

clustering programs (Pritchard et al., 2000; Evanno et al., 2005; Huelsenbeck and

Andolfatto, 2007; Manel et al., 2007; Guillot, 2008) are being used to establish groups

of individuals or sampling locations that most likely form panmictic populations. Waples and

Gaggiotti (2006) showed that contingency table permutation methods work well. Hudson,

Boos, and Kaplan (HBK; Hudson et al., 1992a) developed a permutation test that has

great potential but seems to be little used despite its power to establish panmixia. For our

comparison we used four scenarios: (1a) a single population was sampled and then the sample

was randomly partitioned into two “populations”; (1b) two populations exchanging 1250

migrants per generation; (2a) two populations exchanging 1 migrant every 4 generations; and
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(2b) two populations exchanging 1 migrant every 400 generations. Table 3 reveals that for a

real panmictic population (1a), LBFTI16 , LBFTI4 , and LBFHM detect panmixia in 100, 94, and

73 of the data sets, respectively, whereas HBK finds that all 100 data sets are panmictic.

Recognition of panmixia in scenario 1b was 100, 92, and 71 for LBFTI16 ,LBFTI4 ,LBFHM,

respectively, whereas the HBK method marks all data sets panmictic. With LBFTI, all data

sets from Scenario 2b fit a two-population model; with 2a the acceptance of a two-population

model shrank to 70, 49, and 53 out 100, signaling considerable uncertainty about finding

the correct population model. HBK declares all data sets under scenario 2 to contain two

populations. LBFHM shows, for all scenarios, much larger variability in acceptance and

rejection of panmixia (see supplement), resulting in a lower total acceptance of the correct

model.

[Table 3 about here.]

Effect of loci and model complexity: Table 4 shows the LBFs for 6 migration models

(Table 1). The thermodynamic integration method consistently chooses the “true” model

as the best model. Differences for the other models depend on the haphazard choice of

the order of the loci. Because only 50 loci were simulated for all runs, the first locus is

shared among all runs, the second locus is shared among all runs except the 1-locus runs

etc. We expect that with many loci a clear order of models is achieved. The model order

for the 50-locus run is 1, 2, 3, 6, 5, and 4. Runs with many loci (> 10) suggest that the

1-population model (5) is superior to the 2-population model that combines the locations in

an intermixed pattern (4), and also suggest that the 400-parameter (6) analysis is preferable

over analyses with wrongly combined locations. Runs with only few loci may suffer because
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there are not enough data to correctly rank incorrect models 3, 4, 5, and 6. The reported

Bayes factor values suggest that model 1 should be picked with probability 1.0 over the five

alternatives; more loci increase this certainty considerably: the difference between the first

and the second best model is already very large for a single locus. The number of loci and

the BF differences are positively correlated. The results for the harmonic mean estimator

suggest that the preferred model is the 9-parameter model (2) and not the model that was

used to simulate the data (1).

[Table 4 about here.]

Effects of prior distribution on the marginal likelihood: Table 5 reveals that the

marginal likelihoods depend on the prior distribution: the LBF values are different for

different prior distributions. For the thermodynamic integration method, however, the order

of the models is identical among the narrow and wide prior distributions, respectively,

suggesting that most likely the runs were rather short for the wide-prior models. The

harmonic mean estimator of the marginal likelihood is similarly affected by the choice of

prior distributions. Using the harmonic mean estimator, the models are ranked differently

for each of the different priors.

[Table 5 about here.]

Example analysis of migration patterns among humpback whales sampling

locations in the South seas: Engel et al. (2008) and Olavarŕıa et al. (2007) described

the interaction of several humpback whale “populations” (sampling locations). We use

20



parts of their data to showcase how BF can inform the discussion of whether whales from

these sampling locations belong to the same genetic population or not, and whether some

population models provide more appropriate descriptions than others. Our analysis does not

completely resolve the complex population interactions of humpback whales, but it shows

ways in which our method is more useful than current methods for model comparisons. Engel

et al., using pairwise FST estimates, suggested that Antarctic locations A1 and A2 appear

panmictic; they used additional sighting data to suggest that the individuals sampled near

the Brazilian coast probably do not move to the presumed feeding grounds in the Antarctic

but instead aggregate at some unknown location. We chose a subset of models to investigate

(1) whether the regions Antarctica 1 and 2 belong to a single “population” and (2) whether

the Brazilian individuals and Antarctic individuals belong to the same population. Table 6

shows the ˆ̀ for each model tested for 3 subsets of the full data set. Model 6, which allows

for structure between A1 and A2 and reduced gene flow between Antarctica and Brazil, has

the highest marginal likelihood. This model was used as the reference in LBF to compare all

models. Our analysis confirms the conclusion of Engel et al. that the connectivity between

the Brazilian and Antarctic locations is reduced (model 6), but, unlike models 7, 8, and 9,

does not suggest complete isolation of the Brazilian individuals from the other locations.

Model 2 is the second best model; it shares almost all features of model 6 except that the

migration rates between Antarctica and Brazil are bi-directional. Models that suggest A1

and A2 are part of a panmictic population (models 3, 4, 5) have lower LBF values than

models 2 and 6, but model 3 is superior to model 1. This suggests that A1 and A2 are

probably not part of a panmictic population, but the data do not support a complex model

with many parameters (model 1). Our current understanding of the population structuring
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is based on a single locus (mtDNA). These data are insufficient to resolve the complex

interactions among Southern Atlantic humpback whales.

The data sets were analyzed using TI with 32 chains and 4 chains. The Bézier-corrected

4-chain marginal likelihoods result in LBF of the same magnitude as the 32 chain runs,

despite the greatly reduced run time.

[Table 6 about here.]

DISCUSSION

The approximation of `M using the harmonic mean estimator is concordant with the

thermodynamic integration method, although the HM estimate is always higher than the TI

estimator. Paul Lewis (pers. comm. 2009) has shown that this is an artifact of MCMC runs

in which the HM estimator is biased towards the high probability regions of the parameter

space. TI, in contrast, estimates very similar magnitudes of ˆ̀ over replicated runs of the

same data and run parameters. Nevertheless, the magnitude of ˆ̀ using the thermodynamic

method is correlated with the number of classes, although the relative difference among

models persist independently of the absolute magnitude. Using the Bézier quadrature with

a low number of chains at different scalers removes this difference. The runtime is dependent

on the number of chains, so the use of the Bézier quadrature may be preferable for large

data sets and large population models because running many MCMC chains requires more

time that is usually available in computer time budgets.
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Analyses with different run lengths showed that the Bayes factor based on the harmonic mean

estimator is more variable than that based on the thermodynamic integration estimator.

Most disconcerting are the results with many chains because multiple LBF estimates based

on the HM estimates show a wide range for the same data set, suggesting that an appropriate

MCMC search results in unreliable HM estimates. The path of the MCMC chain influences

the HM-based BF considerably because, for a good estimate of ˆ̀, the chain needs to explore

areas of the solution space that have low probability. Once a low value is recorded, it affects

the harmonic mean disproportionately. Runs that rarely visit such low values will report an

ˆ̀ that is inflated. Using such values in the LBFHM leads to high variance because the low

values are not visited in the correct proportions. Our results corroborate the work of other

authors (for example Lartillot and Philippe, 2006) who consider the HM inferior to the

TI method.

The LBF usually support the correct model independent of the number of chains used in

the thermodynamic approximation method. In the comparison in Table 2, several models

were weakly supported. This is interesting because these alternative models (� → �,� ←

�,�→ �), which are models with strong unidirectional gene flow, are viable competitors for

the real model (�← �) given the small sample size (20 individuals) and the large variance

in coalescent simulations. Without multiple loci it is particularly difficult to estimate the

migration direction from genetic data that often only differ in the frequency of alleles. The

multi-locus runs show the same general pattern as the analyses with few loci, but in the

larger analyses the certainty of the order of models increases. The HM estimator is less

certain for all scenarios than the TI estimator, corroborating the problems visible in Fig. 4,
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suggesting again that the HM estimator should not be used.

LBF is relatively powerful for identifying appropriate models for samples from panmictic

populations and well isolated populations, but showed a high variance for structured pop-

ulations with moderate immigration rates (Table 3). In contrast, the Hudson-Boos-Kaplan

estimator, using a permutation test, clearly suggested two populations for all analyzed data

sets that were generated from models with reduced immigration rates. Because this test

does not incorporate the uncertainty of the mutation model and the coalescence, however,

it may overconfidently reject simpler (panmictic) interpretations.

It has been known for a while now (recent examples: Beerli and Felsenstein, 1999;

Felsenstein, 2005; Heled and Drummond, 2008) that the number of unlinked loci

increases the accuracy of the coalescent estimators considerably; our comparison of the

effect of multiple loci is no exception. Rejection of incorrect models became stronger with

more loci when the marginal likelihood was approximated with thermodynamic integration.

The harmonic mean estimator preferred a more complicated model with increased certainty,

corroborating our findings with the two-population models (Tables 3 and 4) that the

harmonic mean estimator should be avoided for finite MCMC runs.

The Bayes factor framework demands proper priors, formally, priors that integrate to one. In

our framework all priors are proper, although some may not be optimal: for example uniform

prior distributions over a very large range are wasteful because the posterior distribution

only covers a small range of values and force very long runs for accurate estimates. Our

experimentation with different prior distributions shows that suboptimal priors can often
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result in long run times before convergence. The effect on the marginal likelihoods, however,

seems small and the effect of such suboptimal priors on model choice seems negligible. In

contrast, mis-specification of the prior distribution, for example choosing too narrow a prior

distribution range, has detrimental effect on the estimation of the posterior distribution of

the parameters of the model and results in incorrect marginal likelihoods.

Our example (Table 6) confirms that, in a coalescence-framework, a small sample per location

has almost as much power as a large sample (cf. Felsenstein, 2005) because not only is the

LBF of a replicated run the same with the same sample, but different randomly sampled sets

of the same and larger size return the same ranking among the models. The Bézier-spline

approximation of 4 chains gives LBF values that are equivalent to runs using 32 chains, but

the runtime is about 1/8th as long. This suggests that we are able to estimate LBF values of

very large data sets in reasonable time with good accuracy without the need to use a large

number of chains or the reversible-jump MCMC (Green, 1995) method that has recently

been proposed by Lartillot (Lartillot and Philippe, 2006) in a phylogenetic context.

Our approach asks for independent runs for each model, in contrast to a model selection

approaches that use reversible-jump MCMC. This may look inelegant, but we believe that

our method is preferable both because each run pays full attention to a single model and

because the effort does not depend on the particular model-sampling algorithm and therefore

is independent of the geometry of the complex solution space. In any study, the number of

models depends on the number of populations and increases at a super-exponential rate, so

it is unlikely to evaluate all possible models, in contrast to mutation models, all of which we

are able to evaluate (Huelsenbeck and Ronquist, 2005). In addition, our scheme can be
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run in parallel without problems and without further programming.

The simulation study clearly shows that BFs are capable of distinguishing between different

models and allow us to retrieve the model that was used to simulate the test data with high

certainty when the true parameters produced a clear scenario. Single locus data will often

not be sufficient to retrieve a fairly complex model unambiguously, so that when available

data are few, we should prefer simple models. Of course, multi-locus data sets increase

the certainty about the models considerably (Beerli and Felsenstein, 1999; Heled and

Drummond, 2008).

We do not believe that our method should replace assignment or allele-frequency based

methods, because for large problems the demand for large computer resources may make the

analysis difficult or very time consuming. Our method does, however, add another tool for

the researcher interested in natural population structures.

Our methods are available in the program Migrate from our website http://popgen.sc.fsu.edu.

Simulated data sets and humpback whale example data sets are available at

(http://people.sc.fsu.edu/∼beerli/data) or upon request.
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APPENDIX

Independent calculation of marginal likelihoods: Maximum likelihood inference for a

multi-locus dataset can be be run concurrently because, assuming the loci are independent,

the calculation for each locus can be easily parallelized, and the final result is a simple
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combination of the individual results. In Bayesian inference, the independent calculation of

the posterior distribution for each locus is simple. In contrast to the combination of maximum

likelihood estimates over loci, however, the product of these posterior distributions leads to

an overuse of the prior. Correction for this overuse allows us to calculate the posterior

distributions independently on different computers or CPU cores, therefore improving the

speed of analysis considerably. The calculation of marginal likelihoods of a multi-locus

dataset with independent calculations for each locus is difficult because the individual

marginal likelihoods cannot be simply combined as in the maximum likelihood analysis: there

are interdependencies among prior and the posterior distributions. Therefore, a scaling factor

is needed for the combination of the locus-specific marginal likelihoods. Here we show how

to correct for the overuse of priors and how to evaluate the multi-locus marginal likelihoods

that are generated from these independent posterior evaluations.

The combination of posteriors over multiple loci was done naively in our program Migrate

(Beerli 2006); we overused the priors. This resulted in biases when the priors are highly

skewed and do not match the posterior distribution. Analyses with uniform priors or single

locus analysis with any prior were not biased towards the prior mode.

Theorem 1. The posterior

P (θ|D1, D2, ..., Dn) =
P (θ)

∏n
i P (Di|θ)∫

θ
P (θ)

∏n
i P (Di|θ)dθ

(17)

32



with independent locus data D1, D2, .., , Dn, and a set of parameters θ can be calculated by

P (θ|D1, D2, ..., Dn) =
P (θ)1−n∏n

i P (θ|Di)∫
θ
P (θ)1−n

∏n
i P (θ|Di)dθ

(18)

Proof. Expanding P (θ|Di) in (18) leads to

P (θ|D1, D2, ..., Dn) =
P (θ)1−n∏n

i
P (θ)P (Di|θ)∫

φ P (φ)P (Di|φ)dφ∫
θ
P (θ)1−n

∏n
i

P (θ)P (Di|θ)∫
φ P (φ)P (Di|φ)dφ

dθ
. (19)

The integrals over φ cancel, so that

P (θ|D1, D2, ..., Dn) =
P (θ)1−n∏n

i P (θ)P (Di|θ)∫
θ
P (θ)1−n

∏n
i P (θ)P (Di|θ)dθ

. (20)

Moving the P (θ) in (20) out of the products results in equivalence of (17) and (18).

The denominator in (18) can be built up during the MCMC run. The main difference

between (17) and (18) is that the latter allows completely independent calculation for the

unlinked loci and therefore allows easy distribution of the inference on a computer cluster

or even computer grids, facilitating the analysis of datasets with many unlinked loci.

The Bayesian inference offers a convenient tool for comparing different population models

without requiring that models be nested. The marginal likelihoods are normally not

computed during an MCMC run because these normalizing weights cancel in comparisons

during the run. They need to be computed and recorded, however, when the combined

marginal likelihoods need to be calculated; to do that we must evaluate the denominator of
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(17)

P (D1, D2, ..., Dn|Mi) =

∫
θ

P (θ|Mi)
n∏
i

P (Di|θ,Mi)dθ. (21)

Theorem 2. The combined marginal likelihoods over all independent data blocks can be

calculated as a product of independently calculated marginal likelihoods for each data block

and a constant.

Proof. The combined estimator of the posterior distribution is

P (θ|D1, ..., Dn,M1) =
P (θ|M1)

∏n
i P (Di|θ,M1)

P (D1, ..., Dn|M1)
. (22)

Converting the likelihoods using posteriors on the right:

P (θ|D1, ..., Dn,M1) =
P (θ|M1)

∏n
i P (θ|Di,M1)P (Di|M1)

P (θ|M1)nP (D1, ..., Dn|M1)

=

∏n
i P (θ|Di,M1)P (Di|M1)

P (θ|M1)n−1P (D1, ..., Dn|M1)
, (23)

moving P (D1, ..., Dn|M1) to the left and P (θ|D1, ..., Dn,M1) to the right results in

P (D1, ..., Dn|M1) =
n∏
i

P (Di|M1)

∏n
i P (θ|Di,M1)

P (θ|M1)n−1P (θ|D1, ..., Dn,M1)
. (24)
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The fraction has to be a constant with respect to θ because both the product of the individual

marginal likelihoods and the combined marginal likelihood on the left are also constants with

respect to θ:

K =

∏n
i P (θ|Di,M1)

P (θ|M1)n−1P (θ|D1, ..., Dn,M1)
(25)

Moving the combined posterior and integrating both sides with θ leads to a re-expression of

K:

P (θ|D1, ..., Dn,M1)K =
n∏
i

P (θ|Di,M1)P (θ|M1)1−n (26)

∫
θ

P (θ|D1, ..., Dn,M1)Kdθ =

∫
θ

n∏
i

P (θ|Di,M1)P (θ|M1)1−ndθ (27)

and because

∫
θ

P (θ|D1, ..., Dn,M1)dθ = 1 (28)

K =

∫
θ

n∏
i

P (θ|Di,M1)P (θ|M1)1−ndθ. (29)

This allows the calculation of the combined marginal likelihood using independent inferences

P (D1, ..., Dn|M1) = K
n∏
i

P (Di|M1) (30)
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The denominator in (18) is equivalent to K and has already been calculated during the

MCMC run; it can be reused to calculate the combined marginal likelihoods.

Calculation of the scaling factor K in MIGRATE: In a Bayesian inference run of

MIGRATE, K is calculated from the recorded posterior probabilities P (θ|Di) and the prior

P (θ) for a particular model M where θ are all the parameters of the model and Di is the

data for each unlinked locus. For example, in a simple one-parameter scenario, θ = α,

we record α and its prior during the MCMC run. Then we construct a histogram of the

α values that represents the posterior distribution P (α|D). The prior distribution is also

calculated at the values of the histogram columns. Summing over the histogram corrected

for the overuse of the prior approximates the integral and calculates K. With a single locus,

K = 1 and the ”combined” marginal likelihood is the same as the single locus marginal

likelihood. With multiple parameters the integral will be multidimensional. If we assume

that the parameters are independent of each other the integration can be simplified. If we

believe that the parameters are correlated then we would need to calculate a multidimensional

histogram, this is more tedious but certainly doable. MIGRATE uses the assumptions that

parameters are independent because in our experience mutation-scaled migration rates and

mutation-scaled population sizes are almost uncorrelated.

Specification of population models when some populations are isolated: Migrate

uses two options to specify particular population models. The connection matrix allows

the specification of directionality of gene flow, such as symmetric numbers of immigrants,

symmetric immigration rates, average immigration rates, and immigration rates fixed to

particular constants, for example zero. If constants other than zero are used then the start
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parameter settings need to be used in addition to the connection matrix to specify the values.

This system allows approximating models where the populations are isolated from each other

(Table 6) by inserting immigration rates that are very close to zero. For the humpback whale

example we fixed all immigration rates to an isolated population as 100× smaller than the

mutation rate.

Run time considerations: The runtime of MCMC programs is often difficult to predict

because little automatic control can be given to users to check whether the MCMC chain

has converged and enough samples from the desired distribution have been taken. Almost

all applications have a tendency to sample too few steps along the MCMC chain. The faster

a single step in the chain can be evaluated the more steps can be sampled in the same time.

The runs in this work all used similar run-parameter options (data sets and parameters

are available in the supplement). The runtime values in Fig. 3 for data set 10 were 18

minutes using 4 different scaling classes, 70 minutes using 16 scalers, and 152 minutes using

32 scalers. In Migrate a deliberate decision was made not to farm out the Metropolis-

coupled Markov chain sampling that is used for the thermodynamic integration; the runtime

increases proportionally with the number of chains. The expected runtimes based on the

shortest run with 4 concurrent chains took 18 minutes (4×4.5 minutes), for 16 concurrent

chains ×4.5 = 72 minutes, and for 32×4.5 = 144 minutes; the actual runtimes (18, 72, 152

minutes) fit these values well. The runtime is dependent on the number of sampling locations

and the number of individuals in each location. For large data sets these values change to

hours or days. Except for the 20-location example, we deliberately ran only small data sets

for which we could easily establish convergence of the MCMC chain. Different Bayes Factor
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runs are independent of each other and therefore one can run many models at the same time

on a cluster. Many analyses in this work were run, in fact, on the high-performance cluster

at Florida State University.
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Table 3: Comparison of the influence of the approximation on the power of LBF for simple

models with different migration schemes. LBF compared a full model (Model M1 = � � �)

with a panmictic population (Model M0 = �). Models used to simulate the data were:

(1a) a single population; the sampled individuals were split randomly into two sets (Nm→

∞); (1b) two populations exchanging many migrants (Nm = 1250); (2a) two populations

exchanging a moderate number of migrants (Nm = 0.25); and (2b) two populations with

very low migration rate (Nm = 0.0025). The marginal likelihoods used in the LBF were

approximated with thermodynamic integration (TI) with 16 and 4 scaler bins and with the

harmonic mean (HM4).

Evidence

(M0 = x) Counts [based on LBFTI16 ,LBFTI4 , LBFHM ]

Model (1a) (1b) (2a) (2b)

Nm ∞ 1250 0.25 0.0025

Approximation 16 4 H 16 4 H 16 4 H 16 4 H

against M0 0 5 26 0 8 29 70 49 53 100 100 78

against M1 100 94 73 100 92 71 30 51 47 0 0 22
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Table 4: Comparison of log Bayes factors (marginal log likelihood differences) approximated

by thermodynamic integration [T] and harmonic mean estimator [H], for different models

and different number of loci. Model 1 was used to simulate the data and is the reference

model.

T Loci LBF for model 1 Rank of model

1 2 3 4 5 6 1st 2nd 3rd 4th 5th 6th

1 0 -10 -86 -583 -594 -253 1 2 3 6 4 5

2 0 -552 -1946 -3167 -3338 -467 1 6 2 3 4 5

5 0 -697 -2432 -4757 -4826 -542 1 6 2 3 4 5

10 0 -1136 -4266 -8566 -8352 -2328 1 2 6 3 5 4

20 0 -2072 -5914 -12913 -12379 -4835 1 2 6 3 5 4

50 0 -4829 -14683 -30147 -28439 -15245 1 2 3 6 5 4

H Loci LBF for model 1 Rank of model

1 2 3 4 5 6 1st 2nd 3rd 4th 5th 6th

1 0 -7 -20 -29 -28 -35 1 2 3 5 4 6

2 0 -76 -83 -123 -70 -168 1 5 2 3 4 6

5 0 -124 -133 -215 -160 -308 1 2 3 5 4 6

10 0 -236 -201 -430 -161 -420 1 5 3 2 6 4

20 0 -438 -565 -1085 -453 -943 1 2 5 3 6 4

50 0 -819 -1266 -2613 -1266 -2723 1 2 5 3 4 6

1 Model numbers are specified in Table 1
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Table 5: Log Bayes factors (LBF) estimated by thermodynamic integration [T] and by the

harmonic mean [H] using different prior distributions. Model 1 was used to simulate the

data and is also the reference model.

T LBF for model 1 Rank of model

Prior 1 2 3 4 5 6 1st 2nd 3rd 4th 5th 6th

Uniform narrow 0 -77 -108 -487 -540 -254 1 2 3 6 4 5

Uniform wide 0 -232 -165 -409 -277 -364 1 3 2 5 6 4

Exponential narrow 0 -17 -84 -531 -542 -255 1 2 3 6 4 5

Exponential wide 0 -170 -158 -461 -270 -394 1 3 2 5 6 4

H LBF for model 1 Rank of model

Prior 1 2 3 4 5 6 1st 2nd 3rd 4th 5th 6th

Uniform narrow 0 -3 -29 -23 -4 -55 1 2 5 4 3 6

Uniform wide 0 -2 -18 -25 -25 -29 1 2 3 52 42 6

Exponential narrow 0 -8 -30 -23 -8 -37 1 52 22 4 3 6

Exponential wide 0 -8 -23 -36 -18 -55 1 2 5 3 4 6

1 Model numbers are specified in the Table 1.

1 Tied.
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