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Outline and logistics
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9:00 – 12:00 Coalescence theory as a tool for population genetics

Inferences based on the coalescent

Extensions of the basic coalescent

10:30 – 10:55 Break

Problems that need to be solved HEALTH (old and new)
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Problems that need to be solved Questions
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What is the rate of emergence of new diseases?
How many strains of influenza could there be?
Why are some influenza strains deadly and others not?
How fast do new strains adapt to humans (other species)?

How do diseases spread?
Are there recurrent patterns of emergence (old strains
maintenance) ?
What are the most common routes of distributions of diseases?

Problems that need to be solved Conservation
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Problems that need to be solved Questions
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How small can sustainable population of endangered species
be?
How can we maintain the genetic variability within a population?
How do diseases affect rare species?

How are populations connected?
What are the dynamics in a landscape? How many individuals
need to exchange among populations to keep the genetic
variability high?
What was the connectivity among populations in the past? In the
future?

How do we approach problems like these?
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Phylogenetics

Trees
Mutation models
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Coalescence theory as a tool for population genetics
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Dictionary
co•a•lesce |ˌkōəˈles|
verb [ intrans. ]
come together and form one mass or whole : the puddles had

coalesced into shallow streams | the separate details coalesce to
form a single body of scientific thought.
• [ trans. ] combine (elements) in a mass or whole : to help
coalesce the community, they established an office.

DERIVATIVES

co•a•les•cence |-ˈlesəns| noun

co•a•les•cent |-ˈlesənt| adjective

ORIGIN mid 16th cent. (in the sense [bring together, unite] ):
from Latin coalescere, from co- (from cum ‘with’ ) +
alescere ‘grow up’ (from alere ‘nourish’ ).

Thesaurus
coalesce
verb
the puddles had coalesced into shallow streams: MERGE, unite, join

together, combine, fuse, mingle, blend; amalgamate,
consolidate, integrate, homogenize, converge.

Wikipedia
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Species trees

c�2011 Peter Beerli

ridibundus

Tree of individuals of same species

c�2011 Peter Beerli

3.0

rid3

rid8

rid7

rid5

rid2

rid4

epeiroticus

rid1

rid6

Tree of individuals of same species

c�2011 Peter Beerli

3.0

rid3

rid8

rid7

rid5

rid2

rid4

epeiroticus

rid1

rid6
Little resolution

Tree building method should take into
account that lineages are not independent
of each other.

Time-scale expected mutations

Interaction among individuals Life cycle
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Interaction among individuals Life cyle
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Adult TadpoleTadpoleAdult

Wright-Fisher population model

All individuals live one generation and get replaced by their offspring

All have same chance to reproduce, all are equally fit

The number of individuals in the population is constant

As a result the individuals in generation n are a random draw from the previous
generation n� 1.

Population model Wright-Fisher
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Population model Wright .

c�2011 Peter Beerli

Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t� 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in last generation is

1.0⇥ 1

2N

t� 1

t

Population model Wright .
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t� 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in last generation is

1

2N

t� 1

t

t� 1

t

The probability that two randomly picked chromosome do not have a common
ancestor is, of course,

1� 1

2N

Population model Wright .
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If we know the genealogy of the two individuals then we can
calculate the probability as

P(⌧ |N) =

✓
1� 1

2N

◆⌧ ✓
1

2N

◆

where ⌧ is the number of generations with no coalescence.
This formula is the Geometric Distribution and we can calculate
the expectation of the waiting time until two random individuals
coalesce:

E(⌧) = 2N

Population model Wright-Fisher

c�2011 Peter Beerli
Past

Present
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Probability Distribution 2N=20
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P

10000 random draw from a population with size
2N = 20 leads to this distribution of times
until two randomly chosen individuals have a
common ancestor, the observed mean waiting
time of 2N=20.34



Observations Coalescence of two
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For the time of coalescence in a sample of two we wait on average 2N
generations assuming it is a Wright-Fisher population

The geometric distribution used assumes discrete non-overlapping generations

Real populations do not necessarily behave like a Wright-Fisher (the ‘ideal’
population)

We assume that calculation using Wright-Fisher populations can be
extrapolated to real populations.

Other population models
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Wright-Fisher Canning Moran

�2
offspring ' 1 �2

offspring = x �2
offspring =

2
2N

E(⌧) = 2N E(⌧) = 2N/x E(⌧) = 1
2(2N)

2

generation time g = 1 g = 1 g = 2N

⌧relative = 1 ⌧relative = 1/x ⌧relative =

1
2(2N)

Sample larger than TWO Wright-Fisher
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Sample larger than TWO Wright-Fisher
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Samples larger than two

c�2011 Peter Beerli

Sir J. F. C. Kingman described in 1982 the n-coalecent. He
shows the behavior of a sample of size n, and its probability
structure.

General findings:

coalescence rate =

✓
n

2

◆
=

n(n� 1)

2

Once a coalescence happened n is reduce to n � 1 because
two lineage merged into one. He then imposed a continuous
approximation of the Canning’s exchangeable model to get
results.

Samples larger than two
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Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .
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Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:
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Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:

P(uj|N) = e�uj��

with the scaled coalescence rate

� =

✓
k

2

◆
1

2N
⇥ Prob(others do not coalesce)
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Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:

P(uj|N) = e�uj��

with the scaled coalescence rate

� =

✓
k

2

◆
1

2N
⇥ (1� 1

2N
)⇥ (1� 2

2N
)⇥ ....⇥ (1� k � 2

2N
)
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Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:
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Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:

P(uj|N) = e�uj��

with the scaled coalescence rate

� =

✓
k

2

◆
1

2N
=

k(k � 1)

2(2N)

=

k(k � 1)

4N

Chance of coalescence in a particular generation

Courtesy of Joe Felsenstein c�2011 Peter Beerli

The chance that no lineages coalesce

1�

1⇥ (1� 1

2N
)⇥ (1� 2

2N
)⇥ ...⇥ (1� k � 1

2N
)

�

After some reshuffling

1�

1� k(k � 1)

2(2N)

+O(

1

N2
)

�
' k(k � 1)

4N

Here are the probabilities of 0, 1, or more coalescences with 10 lineages in
populations of different sizes:

N 0 1 >1
100 0.79560747 0.18744678 0.01694575

1000 0.97771632 0.02209806 0.00018562
10000 0.99775217 0.00224595 0.00000187

Note that increasing the population size by a factor of 10 reduces the coalescent
rate for pairs by about 10-fold, but reduces the rate for triples (or more) by about
100-fold.

Samples larger than two
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If we know the relationships among all
individuals we can calculate the probability
for each of the particular coalescence event.

With probability P(uj|N) a coalescent

event happens, but we still do not know

which pair of individuals is involved, we pick

a random pair with probability
1�k
2

�,

Samples larger than two

c�2011 Peter Beerli

u0

u1

u3

u4

If we know the relationships among all
individuals we can calculate the probability
for each of the particular coalescence event.

With probability P(uj|N) a coalescent

event happens, but we still do not know

which pair of individuals is involved, we pick

a random pair with probability
1�k
2
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therefore

P(uj|N, i1, i2) = P(uj|N)

1�k
2
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If we know the relationships among all
individuals we can calculate the probability
for each of the particular coalescence event.

With probability P(uj|N) a coalescent

event happens, but we still do not know

which pair of individuals is involved, we pick

a random pair with probability
1�k
2

�,

therefore

P(uj|N, i1, i2) =


e�uj

k(k�1)
4N

k(k � 1)

4N

�
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If we know the relationships among all
individuals we can calculate the probability
for each of the particular coalescence event.

With probability P(uj|N) a coalescent

event happens, but we still do not know

which pair of individuals is involved, we pick

a random pair with probability
1�k
2
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therefore
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P(uj|N, i1, i2) = e�uj
k(k�1)

4N
2

4N

Samples larger than two the coalescent
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N)
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

⇥

)
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

⇥ P(u1|N, i3, i4)



Samples larger than two the coalescent
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

⇥ P(u1|N, i3, i4)

⇥ P(u3|N, i3,4, i5)
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

⇥ P(u1|N, i3, i4)

⇥ P(u3|N, i3,4, i5)

⇥ P(u4|N, i1,2, i3,4,5)
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

⇥ P(u1|N, i3, i4)

⇥ P(u3|N, i3,4, i5)

⇥ P(u4|N, i1,2, i3,4,5)

P(G|N) =

TY

j=0

e�uj
kj(kj�1)

4N
2

4N
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P(G|N) =

TY

j=0

e�uj
kj(kj�1)

4N
2

4N

The expectations of the probability is the
sum of the expectations for each interval.
Each interval has expectation

E(u) = 4N

k(k � 1)

this leads to expectation for the time of the
most recent common ancestor

E(⌧MRCA) =

JX

j=0

4N

kj(kj � 1)

where J is the number of time intervals uj. In the limit this is

lim

k!1
E(⌧MRCA) = 2N +

2

3

N +

1

3

N +

1

5

N +

2

15

N + ... = 4N lim

k!1
�(⌧MRCA) = 4N

What is it good for? Coalescence
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If we know the genealogy G with certainty then we can can calculate the
population size N . Finding the maximum probability P(G|N, k) is simple, we
evaluate all possible values for N and pick the value with the highest probability.

What is it good for? Using an oracle
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If we know the genealogy G with certainty then we can can calculate the
population size N . Finding the maximum probability P(G|N, k) is simple, we
evaluate all possible values for N and pick the value with the highest probability.



What is it good for? Using an oracle
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If we know the genealogy G with certainty then we can can calculate the
population size N . Finding the maximum probability P(G|N, k) is simple, we
evaluate all possible values for N and pick the value with the highest probability.

Population size estimation using an oracle
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N, n) =
nY

k=2

exp

✓
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4N

◆
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N, n) =
nY

k=2

exp

✓
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k(k� 1)
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◆
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Population size estimation
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There are at least two problems with the oracle-approach:

There is no oracle to gives us clear information!

We do not record genealogies, our data is genetic!

What about the variability of the coalescence process?



Variability of the coalescent process Coalescence
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All genealogies were simulated with the same population size Ne = 10, 000

Variability of the coalescent process Coalescence
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[10-6]

[103 generations]
Time to MRCA 

freq.

MRCA = most recent common ancestor (last node in the genealogy)

Kingman’s n-coalescent is an approximation Sample size
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All individuals have the same fitness (no selection).

All individuals have the same chance to be in the sample (random sampling).

The coalescent allows only merging two lineages per generation. This
restricts us to to have a much smaller sample size than the population size.

n << N

Yun-Xin Fu (2005) described the exact coalescent for the Wright-Fisher model
and derived a maximal sample size n <

p
4N for a diploid population.

Although this may look like a severe restriction for the use of the coalescence
in small populations, it turned out that the coalescence is rather robust and
that even sample sizes close to the effective population size are not biasing
immensely.

Kingman’s n-coalescent is an approximation Sample size
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Kingman’s n-coalescent is an approximation Sample size
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Kingman’s n-coalescent is an approximation Sample size
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Kingman’s n-coalescent is an approximation Sample size
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Observations Coalescence
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Large samples coalesce on average in 4N generations.

The time to the most recent common ancestor (TMRCA) has a large variance

Even a sample with few individuals can most often recover the same TMRCA
as a large sample.

The sample size should be much smaller than the population size, although
severe problems appear only with sample sizes of the same magnitude
as the population size, or with non-random samples because Kingman’s
coalescence process assumes that maximally two sample lineages coalesce
in any generation.

With a known genealogy we can estimate the population size. Unfortunately
the true genealogy of a sample is rarely known.

Genealogy and data our data looks like this:
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Finding the best genealogy from such data is difficult

Genealogy and data our data looks like this:
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Genetic data and the coalescent
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Finite populations loose alleles due to genetic drift

Mutation introduces new alleles into a population at rate µ

With 2N chromosomes we can expect to see every generation 2Nµ new
mutations. The population size N is positively correlated with the the mutation
rate µ.

With genetic data sampled from several individuals we can use the mutational
variability to estimate the population size.

Population size

c�2011 Peter Beerli

The observed genetic variability

S = f(N,µ, n).

Different N and appropriate µ can give the same number of mutations. For
example for 100 loci sampled from 20 individuals with 1000bp each and the
following settings we get :

N µ 4Nµ ˆS �2
S

1250 10

�5
0.05 153.95 16.25

12500 10

�6
0.05 152.89 16.05

Using genetic variability alone therefore does not allow to disentangle N and µ.

With multiple dated samples and known generation time we can estimate N and
µ independently.



Mutation-scaled population size
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By convention we express most results as the compound Nµ and an inheritance
scalar x, for simplicity we call this the mutation-scaled population size

⇥ = xNµ,

where µ is the mutation rate per generation and per site. With a mutation rate
per locus we use ✓.

for diploids: ⇥ = 4Nµ.

for haploids: ⇥ = 2Nµ.

For mtDNA in diploids with strictly maternal inheritance this leads to ⇥ =

2Nfµ, and if the sex ratio is 1 : 1 then ⇥ = Nµ

Most real populations do not behave exactly like Wright-Fisher populations,
therefore our N should be marked and we call it the effective population size
Ne, and consider ⇥ the mutation-scaled effective population size.

Historical humpback whale population size

c�2011 Peter Beerli

Humpback whales in the North Atlantic: Census population size around 12,000.

Historical humpback whale population size

c�2011 Peter Beerli

using the data by Joe Roman and Stephen R. Palumbi (Science 2003 301: 508-
510)

⇥ = 2N~µ 0.01529 Population size of the North
Atlantic population, estimated
using migrate

N~ =

⇥
2µ 31,854 with µ = 2.0⇥10

�8
bp

�1year�1 and
a generation time of 12 years

Ne = N~ +N| 63,708 Sex ratio is 1:1

NB = 2Ne 127,417 ratio NB/Ne assumed, using other
data

NT = NB
Njuveniles+Nadults

Nadults
203,867 from catch and survey data (used

a ratio of 1.6)

Genetic data and the coalescent Watterson’s ✓
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Using the infinite sites model we use the number of variable sites S to calculate
the mutation-scaled population size:

✓W =

S
n�1P
k=1

1
k

from a sample of n individuals. For a single population the Watterson’s estimator
works marvelously well, but it is vulnerable to population structure.

Watterson’s ✓W uses a mutation rate per locus! To compare with other work use
mutation rate per site

Construction of a versatile estimator Modern inference
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For a Bayesian inference we want to calculate the probability of the model
parameters given the data p(model|D).

Coalescent to describe the population genetic processes.

Mutation model to describe the change of genetic material over time.

We calculate the Posterior distribution p(⇥|D) using Bayes’ rule

p(⇥|D) =

p(⇥)p(D|⇥)

p(D)

where p(D|⇥) is the likelihood of the parameters.

(almost) Felsenstein equation aka Likelihood calculation

c�2011 Peter Beerli

p(D|⇥, G) = p(G|⇥)p(D|G)

p(G|⇥) The probability of a genealogy given parameters.

p(D|G)

The probability of the data for a given genealogy.

Phylogeneticists know this as the tree-likelihood.
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p(D|⇥) =

R
G p(G|⇥)p(D|G)dG

p(G|⇥) The probability of a genealogy given parameters.

p(D|G)

The probability of the data for a given genealogy.

Phylogeneticists know this as the tree-likelihood.

Felsenstein equation aka Likelihood calculation
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p(D|⇥) =

P
G p(G|⇥)p(D|G)dG

p(G|⇥) The probability of a genealogy given parameters.

p(D|G)

The probability of the data for a given genealogy.

Phylogeneticists know this as the tree-likelihood.

Tips Labeled histories

3 3

4 18

5 180

6 2700

7 56700

8 1587600

9 57153600

10 2571912000

15 6958057668962400000

20 564480989588730591336960000000

30 4368466613103069512464680198620763891440640000000000000

40 30273338299480073565463033645514572000429394320538625017078...

50 3.28632 ⇥ 10112

100 1.37416 ⇥ 10284

p(D|⇥) =

Z

G
p(G|⇥)p(D|G)dG

The number of possible genealogies is very
large and for realistic data sets, programs
need to use Markov chain Monte Carlo
methods.

For reference: Florida Lotto
6 out of 53: 22957480

Problem with integration formula
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Naive integration approach MCMC
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Naive integration approach MCMC
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Markov chain Monte Carlo MCMC
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Metropolis recipe

0. first state

1. perturb old state and
calculate probability of new
state
2. test if new state is better than
old state: accept if ratio of new
and old is larger than a random
number between 0 and 1.

3. move to new state if accepted
otherwise stay at old state

4. go to 1
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Metropolis-Hastings algorithm MCMC

c�2011 Peter Beerli

Metropolis-Hastings algorithm MCMC

c�2011 Peter Beerli

Metropolis-Hastings algorithm MCMC

c�2011 Peter Beerli

Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Irreducibility : the Markov chain must be able to reach all interesting parts of
the distribution.

Recurrence: all interesting parts must be reached (in principle) infinitely often
if the chain is run infinitely long.

Convergence: the sample mean must converge to the expectation.

A closer look at the MCMC approximation ML

c�2011 Peter Beerli

We want to approximate the likelihood

L(⇥) = p(D|⇥) =

Z

G
p(G|⇥)p(D|G)dG

by

L0
(⇥) ' 1

`

X̀

i=1

p(Gi|⇥)

p(Gi|⇥0)
Gi ⇠ p(G|⇥0)p(D|G)

where ` is the length of the run and

L0
(⇥) =

L(⇥)

L(⇥0)

but L(⇥0) is not known ! we calculate a scaled likelihood. With a Bayesian
framework or a maximum likelihood framework this still leads to the same
parameter estimates.

argmax

⇥
L(⇥) = argmax

⇥

L(⇥)

L(⇥0)

Because L0 is scaled, do not be alarmed to see positive lnL0.

Around 1930 – Friendly Cove, Vancouver Island

Inference of population size Nuu-Chah-Nulth

Proc. Nati. Acad. Sci. USA
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Extensive mitochondrial diversity within a single Amerindian tribe
(population genetics/molecular anthrpolog/Pacific Northwest/human evolution)

R. H. WARD*, BARBARA L. FRAZIER*, KERRY DEW-JAGER*, AND SVANTE PAABOt
*Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84132; and tDepartment of Zoology, University of Munich,
Luisenstrasse 14, D-8000 Munich 2, Federal Republic of Germany

Communicated by Michael T. Clegg, June 24, 1991 (received for review February 28, 1991)

ABSTRACT Sequencing ofa 360-nucleotide segment ofthe
mitochondrial control region for 63 individuals from an Am-
erindian tribe, the Nuu-Chah-Nulth of the Pacific Northwest,
revealed the existence of 28 lineages defined by 26 variable
positions. This represents a substantial level of mitochondrial
diversity for a small local population. Furthermore, the se-
quence diversity among these Nuu-Chah-Nulth lineages is
>60% of the mitochondrial sequence diversity observed in
major ethnic groups such as Japanese or sub-Saharan Afri-
cans. It was also observed that the majority of the mitochon-
drial lineages of the Nuu-Chah-Nulth fell into phylogenetic
clusters. The magnitude of the sequence difference between the
lineage clusters suggests that their origin predates the entry of
humans into the Americas. Since a single Amerindian tribe can
contain such extensive molecular diversity, it is unnecessary to
presume that substantial genetic bottlenecks occurred during
the formation of contemporary ethnic groups. In particular,
these data do not support the concept of a dramatic founder
effect during the peopling of the Americas.

Genetic and archeological data support the hypothesis that,
after initially evolving in Africa, modern humans rapidly
expanded into Eurasia and subsequently into Australasia and
the Americas (1-4). Thus, during this last major phase in
human evolution, large geographic areas were rapidly colo-
nized by migrating tribal groups. Analysis of molecular data
has suggested that both the initial and subsequent migratory
expansions of early human populations may have been ac-
companied by substantial reductions in genetic diversity (2,
5). In particular, the distribution of mitochondrial DNA
variants in Amerindians has been interpreted as evidence for
a dramatic bottleneck, which occurred during the peopling of
the Americas (6, 7). These interpretations imply that small
tribal groups-the primary demographic units ofearly human
populations-contain only limited amounts of molecular di-
versity. However, such a conclusion runs counter to the
observation that, for standard genetic markers, the amount of
genetic differentiation within tribes represents an appreciable
fraction of the genetic variability contained within continen-
tal populations (8).
To evaluate how much molecular diversity can be main-

tained within tribal populations, we have carried out a
detailed study of mitochondrial diversity within a single tribe
by determining the distribution of mitochondrial DNA se-
quences within the Nuu-Chah-Nulth (Nootka), a Wakashan-
speaking group of the Pacific Northwest. The rapid rate of
sequence divergence ofmitochondrial DNA makes it suitable
for the analysis of short-term evolutionary phenomena, while
the maternal mode of inheritance allows the evolutionary
relationships between lineages to be defined in terms of their
phylogenetic divergence, without the ambiguities caused by
recombination (9). Since the mitochondrial control region

accumulates substitutions at a much faster rate than other
regions of the molecule (10, 11), we increased the resolution
of the study by enzymatically amplifying and directly se-
quencing the first 360 nucleotides ofthis DNA segment.t This
region has been shown to be informative in detecting se-
quence divergence within other human populations (12, 13).
DNA for the study was extracted from frozen serum samples
selected to represent the geographic subdivisions within the
Nuu-Chah-Nulth. The results were contrasted with the avail-
able data on sequence diversity in much larger regional
populations (Japanese) and continental populations (sub-
Saharan Africans). A phylogenetic analysis defined a molec-
ular genealogy, in which the presence of lineage clusters
suggests considerable heterogeneity in lineage ancestry, in-
dicating that a considerable amount of mitochondrial diver-
sity was introduced into the New World at the time of initial
colonization.

MATERIALS AND METHODS
Population Sample. The Nuu-Chah-Nulth (Nootka) are a

group of Wakashan speakers that comprise 14 bands located
on the western coast ofVancouver Island, plus 1 band on the
Olympic Peninsula of Washington state. The archaeological
record indicates cultural continuity in this area over the past
4000 years (14). Analysis of genetic markers (ABO, MNS,
and Rh blood groups) indicated that individuals born before
1940 had <5% Caucasian admixture. As part of a biomedical
study, the traditional band communities, numbering some
2000-2400 people, were surveyed between 1984 and 1986.
Serum samples were collected from a large proportion (45%)
of the population, and detailed genealogical information was
collected for each band, along with basic demographic data.
To determine the amount of mitochondrial variability, we
selected 63 maternally unrelated individuals whose geneal-
ogy indicated Nuu-Chah-Nulth descent at least as far back as
the late nineteenth century. These individuals were selected
from 13 of the 14 contemporary bands. An additional 5
individuals, each known to be maternally related to 1 of the
63 independent individuals, were also included in the study as
positive controls. This allowed an assessment of the reliabil-
ity of DNA sequences determined from frozen serum sam-
ples, which represents an unusual source of material for
sequence determination.

Since mitochondrial DNA is maternally inherited, the
effective gene number is defined in terms of the number of
breeding females, Nf, and fluctuations in this demographic
parameter will influence the amount of mitochondrial diver-
sity maintained in the population (15, 16). We determined that
approximately two-thirds of the 963 Nuu-Chah-Nulth fe-
males in our survey were of child-bearing age (between 15
and 45 years old), giving an Nf of 600 for the contemporary
population. Unfortunately, it is not clear how accurately this

tThe sequences reported in this paper have been deposited in the
GenBank data base (accession nos. M75991-M76018).
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Migrate debug 3.2.16: (http://popgen.sc.fsu.edu) [program run on 11:36:30]

Bayesian Analysis: Posterior distribution over all loci
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0.0030
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Bayesian inference: ⇥ = 0.036

Ward et al calculated ⇥Ewens = 0.043

With a mutation rate of 0.32/site/million year
and a generation time of 27 years we get
Nfemales = 2082. Assuming same numbers
of men and women and on average 2
children we get N = 8328.

[The Nuu-Cha-Nulth are organized
in 14 nations totaling 8147

(Nuuchahnulth tribal council Indian
registry from February 2006)]

Inference of population size Nuu-Chah-Nulth
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Multilocus locus inference Fairy wren
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Freq

1

0.000

0.034

0.067
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0.134

0.00 0.0036 0.0067 0.0098 0.013

Extensions of the basic coalescence
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Population growth (2 parameters) or fluctuations

Selection (2 parameters)

Migration among populations (2 to many, potentially thousands, parameters)

Population splitting (2 to many parameters)

Recombination (2 parameters)

Extensions of the basic coalescent Growth
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth
could be modeled

dN

dt
= rN

Nt = N0e
�rt

In a small population lineages coalesce quickly

In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ⇥.

Extensions of the basic coalescent Growth
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N = 2270

N = 12286

Extensions of the basic coalescent Growth
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth
could be modeled

dN

dt
= rN

Nt = N0e
�rt

In a small population lineages coalesce quickly

In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ⇥.

Extensions of the basic coalescent Growth
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth
could be modeled

dN

dt
= rN

Nt = N0e
�rt

N0 = 80

r = 0.02

Past Present
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For constant population size we found

p(G|⇥) =

Y

j

e

�uj
k(k�1)

⇥
2

⇥

Using the exponential growth formula we get

Nt = N0e
�rt ⇥=4Nµ���������! ⇥t = ⇥0e

�(r/µ)t

Relaxing the constant size to exponential
growth and using g = r/µ leads to

p(G|⇥0, g) =
Y

j

e

�(tj�tj�1)
k(k�1)

⇥0e
�gt 2

⇥0e
�gt

Past

Present

Extensions of the basic coalescent Growth
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Problems with the exponential model: Even
with moderately shrinking, it is possible that
the sample lineages do not coalesce. With
growing populations this problem does not
occur. This discrepancy leads to an upwards
biased estimate of the growth rate for a single
locus. Multiple locus estimates improve the
results.

Past

Present

Extensions of the basic coalescent Growth
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Grow-A-Frog
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Expansion of Pelophylax lessonae in Europe

-2000. -250. 917. 2083. 3250. 4416.
0.00001

0.0001

0.001

0.01

0.1

1.

10.

Growth rate g

⇥

Extensions of the basic coalescent Fluctuations
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Past Present

Random fluctuations of the population size are most often ignored. BEAST
(and to some extent MIGRATE) can handle such scenarios. BEAST is using
a full parametric approach (skyride, skyline) whereas MIGRATE uses a non-
parametric approach for its skyline plots that has the tendency to smooth the
fluctuations too much, compared to beast.

Extensions of the basic coalescent
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MIGRATE constant prior

BEAST constant prior

BEASTskyline

BEASTskyride

Comparison of the skyline
plots of simulated influenza
dynamics analyzed by
MIGRATE and BEAST. The
x-axis is the time in years
and the y-axis is effective
population size. The data
are sequences from 250
individuals sampled at regular
intervals over 5 years. The
dashed curve is the actual
population size deduced
from the true genealogy;
black lines are the mean
results of MIGRATE or
BEAST; gray area is the 95%
credibility interval. BEAST
skyline matches the actual
population size better than all
other methods. Simulation
and graphs courtesy of
Trevor Bedford, University of
Michigan (unpublished).



Extensions of the basic coalescent Migration

c�2011 Peter Beerli

Time

N
1

N
2

!m
21

!

m
12

Extensions of the basic coalescent Migration

c�2011 Peter Beerli

k1 k2

2 2
1 3
1 2

1 3
2 0

Ti
m

e 
t

Dt
u1
u2
u3

u4

u5
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Point probability

Waiting time
p(G|N,m) =
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Structured populations Migration

c�2011 Peter Beerli

B

A

C D

Structured populations Migration
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A total of 53 complete mtDNA sequences (⇠ 16 kb):
Africa: 22, Asia: 17, Australia: 3, America: 4, Europe: 7.

Assumed mutation model: F84+�

Human migration
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Full model: 5 population sizes + 20 migration rates



Structured populations Migration
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Nearest neighbor model: 5
population sizes + 10 migration
rates

Structured populations Migration

c�2011 Peter Beerli

Model order and probability using Bayes factors

10

�29
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�29
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�15
1.0

Extensions of the basic coalescent Population splitting
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Population splitting IM
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However, a four-population IM model with 73 loci has a
total of 101 parameters (i.e., 7 population size parameters,
18 migration rate parameters, 3 splitting times, and 73 mu-
tation rate scalars), and only the density for the population
size and migration parameters can be estimated jointly
(Hey and Nielsen 2007). We cannot know for sure what
the effect will be of basing simulations on parameter esti-
mates from the marginal posterior densities; however,
because of the lack of variance in parameter values used,
the variance among simulated data sets will probably be
lower than would be observed under a full posterior
predictive check.

Results

Two-Population Analyses
The chimpanzee analysis was begun by first examining all
six pairs of species in a two-population IM model. In order
to summarize results in a visually accessible way, a com-
puter program was written to scan the output files of
the IM analyses and to generate a diagram of the estimates

and CIs of the model parameters. Figure 2 shows the results
in graphical form for all six pairs of populations, with the
pairs of common chimpanzee subspecies in the top row
(A–C) and comparisons involving the bonobo on the
bottom row (D–F). These figures show parameter estimates
and CIs (95% highest posterior density estimates) for pop-
ulation sizes and splitting times. For population migration
rates (i.e., 2NM), an arrow is depicted if a rate of zero is
rejected at the level of P , 0.05 or less. These are likeli-
hood-ratio tests proposed by Nielsen and Wakeley
(2001) and that were shown to be useful, albeit fairly
conservative, for 2NM (Hey, 2010). Summarizing some of
the main points that emerge:

! The divergence time estimates are fairly consistent with
each other and with the reported phylogenetic tree for
these four populations (((eastern, central), western),
bonobo) (Becquet et al. 2007; Caswell et al. 2008).

! The divergence times between the central and western,
and between these and the bonobo, are quite similar to
estimates previously obtained under the IM model with
a data set of 48 of the loci used here. Won and Hey (2005)
estimated splitting times between the bonobo and the

A

0.12 MYR

eastern central

 Ancestral Ne (thousands): 14.0

B

0.38 MYR

eastern western

 Ancestral Ne (thousands): 11.0

C

0.41 MYR

central western

 Ancestral Ne (thousands): 8.4

0.41***

0.092**

D

0.73 MYR

bonobo eastern

 Ancestral Ne (thousands): 18.0

E

0.93 MYR

bonobo central

 Ancestral Ne (thousands): 14.0

F

0.84 MYR

bonobo western

 Ancestral Ne (thousands): 16.0

FIG. 2. Histories for all six population pairs are represented as boxes (for sampled and ancestral populations), horizontal lines (for splitting
times) and curved arrows (for migration). Time is represented on the vertical axis in each figure, with the sampled species and subspecies
names given at the top of each figure at the most recent time point. (A–C) Comparisons among common chimpanzee subspecies, with
a common scaling of the vertical axis for splitting time comparisons. (D–F) Comparisons between the bonobo and common chimpanzee
populations with a common scaling of the vertical axis for splitting time comparisons. For all figures, the 95% highest posterior density intervals
are shown with arrows in gray for population sizes (i.e., box widths) and splitting times (dotted lines). Migration arrows represent the
population migration rate (i.e., 2NM) from the source population to the receiving population (i.e., forward in time). Only those population
migration rates that were found to be statistically significant using a likelihood-ratio test are shown in which case the estimated value of 2NM is
given as well as the significance level. Asterisks identify curves that are statistically significant by the test of Nielsen and Wakeley (2001): *P ,
0.05; **P , 0.01, and ***P , 0.001.
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IM: isolation with migration;
co-estimation of divergence
parameters, population
sizes and migration rates.
Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.

Extensions of the basic coalescent Recombination

c�2011 Peter Beerli

Extensions of the basic coalescent Recombination
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Example using LAMARC
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AGE OF MUTATIONS 573

of types are all random variables. Recall that in describing a gene tree such
as that in Table 2 and Figure 1, we have chosen a particular ordering of
equivalent sites. For example, in the Melanesian data sites 5, 6, 7 and 8 are
ordered in such a way that site 5 is the youngest and site 8 the oldest. In what
follows a given fixed labeling is assumed.

A gene tree with age information is illustrated in Figure 3, with the time
axis to the right of the vertical line. The tree is drawn to scale with the ex-
pected age of mutations and the expected TMRCA conditional on the gene
tree structure !T!n". Numbers to the left of the vertical line are the expected
number of ancestors conditional on the gene tree structure.

It is easy to work out the distribution of ages of mutations in a sample of
n = 2 sequences. If there are two sequences with a and b mutations on them,
then the conditional distribution of W, the time to the ancestor, is Gamma
with power parameter a + b + 1 and scale parameter 1 + θ [Tajima (1983)],
and ages are uniformly distributed as order statistics along respective edges
of the tree in !0!W". For example, the age of the kth mutation on the edge
with a sites has mean k!1 + a + b"/!1 + θ"!1 + a". For larger sample sizes,
a computational approach is required to find these distributions. We develop
this method in the next sections.

Fig. 3. Melanesian β-globin tree. Time in units of 100,000 years.

MIGRATE versus GENETREE Comparison
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Robustness of the coalescence Population model
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Violating assumptions
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The evil reviewer says: “You shall not use method/program X because your data

does not fit the assumptions for...”

Required samples

Recombination

Population size fluctuation

Divergence

Selection

Required samples is small
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Depth of tree

samplesize=50
samplesize=10 Felsenstein (2005)

Pluzhnikov and Donnelly
(1996)

The time to the most recent common ancestor is robust to different sample
sizes.

Simulated sequence data from a single population have shown that after 8
individuals you should better add another locus than more individuals.

Currently little is known whether this is true for inference migration
rates, although we know that even with highly variable markers, such as
microsatellites, we will not need huge numbers of individuals.
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Recombinations per 1000bp

Effect of unrecognized recombination on estimates of mutation-scaled effective population size ⇥ and mutation-scaled immigration rates M. Data
for two populations was simulated using equal populations sizes of ⇥ = 0.01 and symmetric M = 100 using the software Netrecodon (Arenas
and Posada 2010). A range of recombination rates were used to simulate 1000 sites for a total of 40 individuals so that the ratio of recombination
rate to mutation rates, R, covers the range of 0.01 to 1.0, these settings resulted in sequences that had between 0 to more than 200 countable
recombination events; the average number of recombination events is #rec/1000bp. For each R 100 datasets were simulated and analyzed with
MIGRATE 3.2.13. The thick black lines are averages of the posterior modes (gray dots), the dark dashed line is the 50% support interval around
the average and the fine dashed line is the 95% support interval.
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Effect of unrecognized recombination on estimates of mutation-scaled effective population size ⇥ and mutation-scaled immigration rates M. Data
for two populations was simulated using equal populations sizes of ⇥ = 0.01 and symmetric M = 100 using the software Netrecodon (Arenas
and Posada 2010). A range of recombination rates were used to simulate 1000 sites for a total of 40 individuals so that the ratio of recombination
rate to mutation rates, R, covers the range of 0.01 to 1.0, these settings resulted in sequences that had between 0 to more than 200 countable
recombination events; the average number of recombination events is #rec/1000bp. For each R 100 datasets were simulated and analyzed with
MIGRATE 3.2.13. The thick black lines are averages of the posterior modes (gray dots), the dark dashed line is the 50% support interval around
the average and the fine dashed line is the 95% support interval.

Average of parameters over long time
Coalescent-
based methods
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Researchers from the frequency-based camp claim that the coalescence-based
methods are working on an evolutionary time-scale and therefore are not really
usable in a conservation genetics or management context.

There is some truth to this claim because the time scale for the genealogies is in
generations and with large populations such genealogies are deep, but ...

Average of parameters over long time
Coalescent-
based methods

c�2011 Peter Beerli
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Ignored selection
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The standard coalescent assumes neutral mutations and also exchangeable
number of offspring, loci under selection will violate both tenets.

A new mutation that has a positive effect will replace some of the variability
present in the population. All linked sites will suffer a drop in effective
population size.

A new mutation that has a negative effect and will be most likely removed ,
also resulting in a reduction of variability (and population size)

This is used in genome-wide selection scans, but influence of population growth,
population structure on such estimates are not studied.

Software
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MIGRATE >20 - -
LAMARC >20 - -
IM >10 - -
BEAST 1 - -
GENETREE >10 - ? -

Outlook
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Monday: MIGRATE; use to compare different migration hypotheses using
Bayes factors. Date set size and speed.

Tuesday: LAMARC; general use and recombination estimation
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Inference:

Learn a computer scripting language today to

be ready for tomorrow, the parallel genome

sequencing revolution has begun.


