@ What is the rate of emergence of new diseases?
How many strains of influenza could there be?
Why are some influenza strains deadly and others not?
How fast do new strains adapt to humans (other species)?

@ How do diseases spread?
Are there recurrent patterns of emergence (old strains
maintenance) ?
What are the most common routes of distributions of diseases?

‘ 9:00 - 12:00 Coalescence theory as a tool for population genetics

Inferences based on the coalescent
Extensions of the basic coalescent

@ 10:30-10:55 Break
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@ How small can sustainable population of endangered species
be?
How can we maintain the genetic variability within a population?
How do diseases affect rare species?

@ How are populations connected?
What are the dynamics in a landscape? How many individuals
need to exchange among populations to keep the genetic
variability high?
What was the connectivity among populations in the past? In the
future?

Population genetics

Allele frequencies
Population models

Population genetics

Allele frequencies
Population models

Population genetics

Coalescence
theory

Allele frequencies
Population models




coesaslesce | koo'les|

verb [ intrans. |

come together and form one mass or whole : the puddles had
coalesced into shallow streams | the separate details coalesce to
Jorm a single body of scientific thought.
o [ trans. | combine (elements) in a mass or whole : o help
coalesce the community, they established an office.

DERIVATIVES
co-a-les.cence |-1esons| noun

co-a-les-cent |-lesont| adjective

ORIGIN mid 16th cent. (in the sense [bring together, unite] ):
from Latin coalescere, from co- (from cum “with’) +
alescere ‘grow up’ (from alere ‘nourish’).
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’ Little resolution

@ Tree building method should take into
account that lineages are not independent
of each other.

’ Time-scale expected mutations
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Interaction among individuals  [SEECTS
7N

Tadpole
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Wright-Fisher population model

Adult

‘ All individuals live one generation and get replaced by their offspring
‘ All have same chance to reproduce, all are equally fit

‘ The number of individuals in the population is constant

As a result the individuals in generation n are a random draw from the previous
generation n — 1.

Sewall Wright evaluated the probability that two randomly chosen
individuals in generation ¢ have a common ancestor in
generation ¢ — 1. If we assume that there are 2NV chromosomes
then the probability of sharing a common ancestor in last generation is
1

trarrsssestesaageaes

If we know the genealogy of the two individuals then we can
calculate the probability as

o= (-4 ()

where 7 is the number of generations with no coalescence.
This formula is the Geometric Distribution and we can calculate
the expectation of the waiting time until two random individuals
coalesce:

E(r) = 2N

last Present

Sewall Wright evaluated the probability that two randomly chosen
individuals in generation ¢ have a common ancestor in

NS S 222

generation ¢ — 1. If we assume that there are 2NV chromosomes
then the probability of sharing a common ancestor in last generation is
2N
(N NNy
The probability that two randomly picked chromosome do not have a common
ancestor is, of course,

1
=35
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‘ For the time of coalescence in a sample of two we wait on average 2N
generations assuming it is a Wright-Fisher population

‘ The geometric distribution used assumes discrete non-overlapping generations

‘ Real populations do not necessarily behave like a Wright-Fisher (the ‘ideal’
population)

‘ We assume that calculation using Wright-Fisher populations can be
extrapolated to real populations.

Present

Present

Wright-Fisher

2 ~
Uoﬂspring ~1

E(r) = 2N

generation time g = 1

Trelative = 1

Ggffspring =z
E(r) =2N/z
g=1

Trelative = 1/1'

>
/I
e

Ugﬁspring = %
E(r) = 1(2N)?
g=2N

Trelative = %(21\7)
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Looking backward in time, the first
coalescence  between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N.

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:

Sir J. F. C. Kingman described in 1982 the n-coalecent. He
shows the behavior of a sample of size n, and its probability
structure.

General findings:

n n(n—1)
coalescence rate = o) =5

Once a coalescence happened n is reduce to n — 1 because

two lineage merged into one. He then imposed a continuous
approximation of the Canning’s exchangeable model to get
results.

Looking backward in
coalescence  between

Looking backward in
coalescence

P(uj|N) = e""A)\

with the scaled coalescence rate

A= <k>L x Prob(others do not coalesce)

2)2N

two
individuals is the result of a waiting
process that depends on the sample n and
the total population size N.

between
individuals is the result of a waiting
process that depends on the sample n and
the total population size N.
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random

time, the first
two

random

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:
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Looking backward in time, the first
coalescence  between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N.

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:
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with the scaled coalescence rate
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____________________ Uo If we know the relationships among all
individuals we can calculate the probability
u3 for each of the particular coalescence event.

With probability P(u;|N) a coalescent
.......................... U4 event happens, but we still do not know
which pair of individuals is involved, we pick

a random pair with probability

@7

Looking backward in time, the first
coalescence  between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N.

Using Kingman’s coalescence rate and

imposing a time scale we can approximate

the process with a exponential distribution:
o —UGA

P(U]|N) =e YA

with the scaled coalescence rate

The chance that no lineages coalesce

1 2 k-1
1- [1><(1—2—N)><(1—2—N)><.,.x(I—Z—N)}
After some reshuffling
k(k—1) 1] k(-1
1= {1 ~ 2(2N) +O(ﬁ)] T 4N

Here are the probabilities of 0, 1, or more coalescences with 10 lineages in
populations of different sizes:
N 0 1 >1

100 0.79560747 0.18744678 0.01694575
1000 0.97771632 0.02209806 0.00018562
10000 0.99775217 0.00224595 0.00000187

Note that increasing the population size by a factor of 10 reduces the coalescent
rate for pairs by about 10-fold, but reduces the rate for triples (or more) by about
100-fold.

Uo If we know the relationships among all

Y1 individuals we can calculate the probability

With probability P(u;|N) a coalescent
.......................... U4 event happens, but we still do not know
which pair of individuals is involved, we pick
a random pair with probability

TRy’

(5)
therefore
. 1
P(uj|N, iy, i2) = P(uy|N)—

()
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If we know the relationships among all
individuals we can calculate the probability
for each of the particular coalescence event.

With probability P(u;|N) a coalescent
event happens, but we still do not know
which pair of individuals is involved, we pick
a random pair with probability

1
TRy’
(3)

therefore

k(=) k(k — 1)} 2
k(k —1)
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|IN) = P(ug|N,iy,is

X

If we know the relationships among all
individuals we can calculate the probability
for each of the particular coalescence event.

With probability P(u;|N) a coalescent
event happens, but we still do not know
which pair of individuals is involved, we pick
a random pair with probability

o
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = Plug/N.iy. is)

x P(u1|N, i3, 14)



We are now able to calculate the probability VLT 118 N\ o U0, We are now able to calculate the probability
of a whole relationship tree (Genealogy iy L L Y1 of a whole relationship tree (Genealogy
G). We assume that each coalescence is R RN N U3 (). We assume that each coalescence is
independent from any other: : independent from any other:
P(GIN) = Uy P(G|N) =
x P(u1|N,is,i4) X P(u1|N, ig,14)
X X
X P(uyg|N,i12,4345)

2
P(GIN) e 2
| Hg iTa N

The expectations of the probability is the
sum of the expectations for each interval.
Each interval has expectation

4N
B =5k

this leads to expectation for the time of the
most recent common ancestor

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:
P(GIN) = P(ug|N,i1,i2)
X P(u1| N, i3, i4)

X P(u3| N, i3 4,15)

X P(ua|N,iy2,43,4,5)

-1) 9
P(GIN) = H S 2

AN where J is the number of time intervals v;. In the limit this is

lim E(’MRCA) =2N + N+
k—o0

3 5N+ N+ 1 N+ AN klglolo O'(TMRCA) =4N
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If we know the genealogy G with certainty then we can can calculate the If we know the genealogy G with certainty then we can can calculate the
population size N. Finding the maximum probability P(G|N, k) is simple, we population size N. Finding the maximum probability P(G|N, k) is simple, we
evaluate all possible values for N and pick the value with the highest probability. evaluate all possible values for N and pick the value with the highest probability.




If we know the genealogy G with certainty then we can can calculate the
population size N. Finding the maximum probability P(G|N, k) is simple, we
evaluate all possible values for N and pick the value with the highest probability.
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If an oracle gives us the true relationship tree G then we can calculate the
population size N.
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There are at least two problems with the oracle-approach:

‘ There is no oracle to gives us clear information!
‘ We do not record genealogies, our data is genetic!

‘ What about the variability of the coalescence process?



freq. [106]

All genealogies were simulated with the same population size N, = 10,000 25.
20.

60

X [103 generations]
Time to MRCA

’ All individuals have the same fitness (no selection).
’ All individuals have the same chance to be in the sample (random sampling).
‘ The coalescent allows only merging two lineages per generation. This
restricts us to to have a much smaller sample size than the population size.
n << N
‘ Yun-Xin Fu (2005) described the exact coalescent for the Wright-Fisher model \5
and derived a maximal sample size n < V4N for a diploid population. 3
Although this may look like a severe restriction for the use of the coalescence
in small populations, it turned out that the coalescence is rather robust and
that even sample sizes close to the effective population size are not biasing
immensely.
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’ Large samples coalesce on average in 4N generations.
’ The time to the most recent common ancestor (TMRCA) has a large variance

‘ Even a sample with few individuals can most often recover the same TMRCA
as a large sample.

’ The sample size should be much smaller than the population size, although
severe problems appear only with sample sizes of the same magnitude
as the population size, or with non-random samples because Kingman’s
coalescence process assumes that maximally two sample lineages coalesce
in any generation.

’ With a known genealogy we can estimate the population size. Unfortunately
the true genealogy of a sample is rarely known.
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’ Finite populations loose alleles due to genetic drift

’ Mutation introduces new alleles into a population at rate x

‘ With 2N chromosomes we can expect to see every generation 2Ny new
mutations. The population size N is positively correlated with the the mutation

rate .

‘ With genetic data sampled from several individuals we can use the mutational
variability to estimate the population size.

The observed genetic variability

S = f(N,p,n).
Different N and appropriate 1 can give the same number of mutations. For
example for 100 loci sampled from 20 individuals with 1000bp each and the
following settings we get :

Using genetic variability alone therefore does not allow to disentangle N and p.

With multiple dated samples and known generation time we can estimate N and
1 independently.



By convention we express most results as the compound Ny and an inheritance
scalar z, for simplicity we call this the mutation-scaled population size

O =aNypy,
where p is the mutation rate per generation and per site. With a mutation rate
per locus we use 6.

@ for diploids: © = 4N p.

‘ for haploids: © = 2N p.

’ For mtDNA in diploids with strictly maternal inheritance this leads to © =
2Ny, and if the sex ratiois 1 : 1 then © = Ny

Most real populations do not behave exactly like Wright-Fisher populations,
therefore our N should be marked and we call it the effective population size
N., and consider © the mutation-scaled effective population size.

using the data by Joe Roman and Stephen R. Palumbi (Science 2003 3
3 0))

0.01529 Population size of. “the . North

with 2 = 2.0x10~8bp~'year—! and
a generation time of 12 years

63,708 Se>_< rati

127,417
data

from catch and survey data (used
a ratio of 1.6)

203,867,

For a Bayesian inference we want to calculate the probability of the model
parameters given the data p(model|D).

Coalescent to describe the population genetic processes.

Mutation model to describe the change of genetic material over time.

We calculate the Posterior distribution p(©|D) using Bayes’ rule

p(©)p(D|O)

p(6ID) = P2

where p(D|O) is the likelihood of the parameters.

Humpback whales in the North Atlantic

Using the infinite sites model we use the number of variable sites S to calculate
the mutation-scaled population size:

S

1

Ow =

n

=

k=1
from a sample of n individuals. For a single population the Watterson’s estimator

works marvelously well, but it is vulnerable to population structure.

Watterson’s 0y uses a mutation rate per locus! To compare with other work use
mutation rate per site

p(D|®,G) = p(G|©)p(D|G)

p(G|O®)

The probability of a genealogy given parameters.

y b The probability of the data for a given genealogy.
})(D\G) 1 p y 9 [¢] gy

Phylogeneticists know this as the tree-likelihood.




p(D|®) = [;p(G|®)p(D|G)dG p(D[®) =3 ;p(G|O®)p(D|G)dG

The probability of a genealogy given parameters. The probability of a genealogy given parameters.

The probability of the data for a given genealogy. )(D\(r‘ ) The probability of the data for a given genealogy.
Phylogeneticists know this as the tree-likelihood. ! ! Phylogeneticists know this as the tree-likelihood.

p(D|G)
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Metropolis recipe

0. first state /\
v
1. perturb old state and

calculate probability of new /\.S

state
2. test if new state is better than /\

old state: accept if ratio of new O
and old is larger than a random (\\/
number between 0 and 1.

3. move to new state if accepted /\.
otherwise stay at old state \/

4.goto1







We want to approximate the likelihood
1(6) =1(DI®) = [ p(GIe)p(DIG)G

by

(o) = Ly P(GilO)
HOE zg ey CinpGleopDIG)

where ¢ is the length of the run and
_ L®)
L(©o)
but L(©y) is not known — we calculate a scaled likelihood. With a Bayesian
framework or a maximum likelihood framework this still leads to the same
parameter estimates.
(©)

L
argmax L(©) = argmax ——~
5 © 6" L(6y)

Because L’ is scaled, do not be alarmed to see positive In L.

L)

0.0000
0.00 0.02 0.04 0.06 0.08

)
Bayesian inference: (—)1: 0.036
Ward et al calculated © gyens = 0.043
With a mutation rate of 0.32/site/million year

[The Nuu-Cha-Nulth are organized

in

(Nuuchahnulth tribal council Indian

— and a generation time of 27 years we get
Ntemales = 2082. Assuming same numbers
of men and women and on average 2

14 nations totaling 8147 .
children we get V = 8328.

registry from February 2006)]

’ Irreducibility: the Markov chain must be able to reach all interesting parts of
the distribution.

‘ Recurrence: all interesting parts must be reached (in principle) infinitely often
if the chain is run infinitely long.

‘ Convergence: the sample mean must converge to the expectation.

1)

0.1 0.2 0.3 0.4




Freq

0.134
0.101
0.067

0.034

0.000T T T T
0.00 0.0036 0.0067 0.0098 0.013
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth
could be modeled

d—N =rN

dt

Nt = N(]E_M

‘ In a small population lineages coalesce quickly

‘ In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ©.

Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth
could be modeled

d—N =rN

dt

Nt = N(]E_M

‘ In a small population lineages coalesce quickly

‘ In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size 6.

’ Population growth (2 parameters) or fluctuations

’ Selection (2 parameters)

‘ Migration among populations (2 to many, potentially thousands, parameters)
‘ Population splitting (2 to many parameters)

‘ Recombination (2 parameters)

N = 2270

N = 12286

R

m

Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more

S5

general approaches. For example exponential growth L

L.

{0

could be modeled g
d—N =7rN
dt
Nt = N(]E_M

Ny =80

Past Present




For constant population size we found
H LS k(k—1) 2

Using the exponential growth formula we get

p(G|©) =

O=4Nu

Ny = Noe™"" ——=F 5 @, = Qe /1!

Relaxing the constant size to exponential
growth and using g = /. leads to

k(k—1)
He 4t Dgeat 2
Ope—8t

p(G[©o, g)

1000 1000

—

500 500
100 100
-10000 -5000 -2000 1 -10000 -5000 -2000 1
Generations Generations

|

@ 0011

Problems with the exponential model: Even
with moderately shrinking, it is possible that
the sample lineages do not coalesce. With
growing populations this problem does not
occur. This discrepancy leads to an upwards
biased estimate of the growth rate for a single
locus. Multiple locus estimates improve the
results.

Expansion of Pelophylax lessonae in Europe

10.F

0.0001 -

0.00001 -, ) ) ) ) ]
~2000. -250. 917, 2083, 3250, 4416,

Growth rate g

Random fluctuations of the population size are most often ignored. BEAST
(and to some extent MIGRATE) can handle such scenarios. BEAST is using
a full parametric approach (skyride, skyline) whereas MIGRATE uses a non-
parametric approach for its skyline plots that has the tendency to smooth the
fluctuations too much, compared to beast.

Past

BN
{ A5 ‘é\. h\.

Present

Comparison of the skyline
_ plots of simulated influenza
", dynamics analyzed by
MIGRATE and BEAST. The
x-axis is the time in years
,and the y-axis is effective

population size. The data
. are sequences from 250
* individuals sampled at regular
intervals over 5 years. The
dashed curve is the actual

[ BEAST constant prior

: population  size  deduced
_ from the true genealogy;
7\ black lines are the mean
“results  of MIGRATE  or
BEAST; gray area is the 95%

[ BEASTskyline

‘I BEASTskyride

, credibility interval. BEAST
skyline matches the actual
~, population size better than all
“ other methods.  Simulation
and graphs courtesy of
Trevor Bedford, University of

> Michigan (unpublished).
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A total of 53 complete mtDNA sequences (~ 16 kb):
Africa: 22, Asia: 17, Australia: 3, America: 4, Europe: 7.
Assumed mutation model: F84+T Full model: 5 population sizes + 20 migration rates



Model order and probability using Bayes factors

N

10729 1072 1071 1.0

Nearest neighbor model: 5
population sizes + 10 migration
rates

central western
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sizes and migration rates.
Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.
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Example using LAMARC
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FiG. 3. Melanesian B-globin tree. Time in units of 100,000 years.
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The evil reviewer says: “You shall not use method/program X because your data
does not fit the assumptions for...” sizes

’ Required samples

‘ Recombination

0.1

‘ Population size fluctuation § 0.08
’ Divergence q—é 0.06
£ 0.04

@ Selection 0.02

’ The time to the most recent common ancestor is robust to different sample

‘ Simulated sequence data from a single population have shown that after 8
individuals you should better add another locus than more individuals.

samplesize=50

samplesize=10 Felsenstein (2005)
Pluzhnikov and Donnelly
(1996)

0.01

0.02 0.03 0.04 0.05
Depth of tree

‘ Currently little is known whether this is true for inference migration
rates, although we know that even with highly variable markers, such as
microsatellites, we will not need huge numbers of individuals.
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Effect of unrecognized recombination on estimates of mutation-scaled effective population size © and mutation-scaled immigration rates M. Data
for two populations was simulated using equal populations sizes of © = 0.01 and symmetric M = 100 using the software Netrecodon (Arenas
and Posada 2010). A range of recombination rates were used to simulate 1000 sites for a total of 40 individuals so that the ratio of recombination
rate to mutation rates, R, covers the range of 0.01 to 1.0, these settings resulted in sequences that had between 0 to more than 200 countable
recombination events; the average number of recombination events is #rec/1000bp. For each R 100 datasets were simulated and analyzed with
MIGRATE 3.2.13. The thick black lines are averages of the posterior modes (gray dots), the dark dashed line is the 50% support interval around
the average and the fine dashed line is the 95% support interval.

Researchers from the frequency-based camp claim that the coalescence-based
methods are working on an evolutionary time-scale and therefore are not really
usable in a conservation genetics or management context.

There is some truth to this claim because the time scale for the genealogies is in
generations and with large populations such genealogies are deep, but ...
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Effect of unrecognized recombination on estimates of mutation-scaled effective population size © and mutation-scaled immigration rates M. Data
for two populations was simulated using equal populations sizes of © = 0.01 and symmetric M = 100 using the software Netrecodon (Arenas
and Posada 2010). A range of recombination rates were used to simulate 1000 sites for a total of 40 individuals so that the ratio of recombination
rate to mutation rates, R, covers the range of 0.01 to 1.0, these settings resulted in sequences that had between 0 to more than 200 countable
recombination events; the average number of recombination events is #rec/1000bp. For each R 100 datasets were simulated and analyzed with
MIGRATE 3.2.13. The thick black lines are averages of the posterior modes (gray dots), the dark dashed line is the 50% support interval around
the average and the fine dashed line is the 95% support interval.
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Coalescent:

Nuu-Cha-Nulth population size: J. Felsenstein. 1971. Inbreeding and variance
effective numbers in populations with overlapping generations. Genetics
68:581-597; R. H. Ward, B. L. Frazier, Kerry Dew-Jager, and S. Paabo.
1991. Extensive mitochondrial diversity within a single Amerindian tribe.
PNAS 88:8780-8724; Sigurgardottir S, Helgason A, Gulcher JR, Stefansson K,
Donnelly P. 2000. The mutation rate in the human mtDNA control region. Am J
Hum Genet. 66:1599-609; S. Matsumura and P. Forster. 2008. Generation time
and effective population size in Polar Eskimos. Proc. R. Soc. B 275:1501-1508.

Sample size: Felsenstein, J.2005. Accuracy of coalescent likelihood estimates:
Do we need more sites, more sequences, or more loci? MBE 23: 691-700.
Pluzhnikov A, Donnelly P. 1996. Optimal sequencing strategies for surveying
molecular genetic diversity. Genetics 144: 1247-1262.

Inference:

The standard coalescent assumes neutral mutations and also exchangeable
number of offspring, loci under selection will violate both tenets.

‘ A new mutation that has a positive effect will replace some of the variability
present in the population. All linked sites will suffer a drop in effective
population size.

‘ A new mutation that has a negative effect and will be most likely removed ,
also resulting in a reduction of variability (and population size)

This is used in genome-wide selection scans, but influence of population growth,
population structure on such estimates are not studied.

’ Monday: MIGRATE; use to compare different migration hypotheses using
Bayes factors. Date set size and speed.

‘ Tuesday: LAMARC; general use and recombination estimation
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