

	Results	
Model	Likelihood	Surprise level
Fair Dice	1 3,656,158,440,062,976	Very, <i>very</i> , <i>very</i> surprised
Trick Dice	1.0	Not surprised at all
1 Paul O. Lewis	0	l maximizes likelih mizes surprise)

Likelihood and model comparison

- Analyses using likelihoods ultimately involve model comparison
- The models compared can be **discrete** (as in the fair vs. trick dice example)
- More often the models compared differ continuously:
 Rather than
 - Model 1: branch length is 0.05
 - Model 2: branch length is 0.06

Model	Expected no. substitutions: $v = \{r\}t$
JC69	$v = \{3\alpha\} t$
F81	$v = \{2\mu(\pi_R\pi_Y + \pi_A\pi_G + \pi_C\pi_T)\}t$
K80	$v = \{\beta(\kappa + 2)\}t$
HKY85	$v = \{2\mu \left[\pi_R \pi_Y + \kappa (\pi_A \pi_G + \pi_C \pi_T)\right]\} t$

Evolutionary distances for several common

models

One of the parameters of the substitution model can always be determined from the branch length (using our convention that v = t).

25

Site specific rates

JC69 transition probabilities that would be used for sites in gene 1:

$$P_{ii}(t) = \frac{1}{4} + \frac{3}{4}e^{-4r_1\alpha i}$$
$$P_{ij}(t) = \frac{1}{4} - \frac{1}{4}e^{-4r_1\alpha i}$$

JC69 transition probabilities that would be used for sites in gene 2:

$$P_{ii}(t) = \frac{1}{4} + \frac{3}{4}e^{-4r_2\alpha t}$$
$$P_{ij}(t) = \frac{1}{4} - \frac{1}{4}e^{-4r_2\alpha t}$$

55

Codon before substitution	Codon after substitution (the 'to' state)							
the 'from' state)	TTT (Phe)	TTC (Phe)	TTA (Leu)	TTG (Leu)	CTT (Leu)	CTC (Leu)		GGG (Gly)
FTT (Phe)		απ _c	βπ	βπ _G	βπ _c	0		0
FTC (Phe)	$\alpha \pi_{T}$		βπ _Α	βπ _G	0	βπ _c		0
FTA (Leu)	βπ	$\beta \pi_{c}$		$\alpha \pi_{G}$	0	0		0
FTG (Leu)	$\beta \pi_T$	$\beta \pi_{c}$	$\alpha \pi_A$		0	0		0
CTT (Leu)	$\beta \pi_T$	0	0	0		$\alpha \pi_{c}$		0
CTC (Leu)	0	βπ _τ	0	0	$\alpha \pi_{T}$			0
1 - E	1.0	÷	:		1	:	N	1
GGG (Gly)	0	0	0		0	0		
Note that it i change CTT it just requir instant of tin	\rightarrow TTA es more	to occu	r,	mor	e nucle	s rate is otides n e codon	nust ch	ange

Interpreting codon model results

$\omega = \beta/\alpha$ is the nonsynonymous/synonymous rate ratio

omega	mode of selection	example(s)		
ω < 1	stabilizing selection (nucleotide substitutions rarely change the amino acid)	functional protein coding genes		
ω = 1	neutral evolution (synonymous and nonsynonymous substitutions occur at the same rate)	pseudogenes		
$\omega > 1$	positive selection (nucleotide substitutions often change the amino acid)	envelope proteins in viruses under active positive selection		