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An Introduction to 
Bayesian Phylogenetics

• Bayesian inference in general
• Markov chain Monte Carlo (MCMC)
• Bayesian phylogenetics
• Prior distributions
• Bayesian model selection
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I. Bayesian inference in general
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Joint probabilities B = Black   S = Solid
W = White  D = Dotted
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Conditional probabilities
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Bayes’ rule
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Probability of "Dotted"
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Bayes' rule (cont.)

Pr(D) is the marginal probability of being dotted
To compute it, we marginalize over colors
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Joint probabilities

B W

Pr(D,B)D

S Pr(S,B) Pr(S,W)

Pr(D,W)



Copyright © 2011 Paul O. Lewis 10

Marginalizing over colors

B

W

Pr(D,B)

D

S

Pr(S,B)Pr(S,W)

Pr(D,W)

Marginal probability of 
begin a dotted marble is 

the sum of all joint 
probabilities involving

dotted marbles
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Marginal probabilities

B W

Pr(D,B) + Pr(D,W)D

S Pr(S,B) + Pr(S,W)

Marginal probability
of being solid

Marginal probability
of being dotted
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Marginalizing over "dottedness"

B W

Pr(D,B)

D

S

Pr(S,B) Pr(S,W)

Pr(D,W) Marginal 
probability of 
being a white 

marble
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Bayes' rule (cont.)
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Bayes' rule in Statistics

D refers to the "observables" (i.e. the Data)
θ  refers to one or more "unobservables" 

(i.e. parameters of a model, or the model itself):
– tree model (i.e. tree topology)
– substitution model (e.g. JC, F84, GTR, etc.)
– parameter of a substitution model (e.g. a branch length, 

a base frequency, transition/transversion rate ratio, etc.)
– hypothesis (i.e. a special case of a model)
– a latent variable (e.g. ancestral state)



Pr(θ|D) =
Pr(D|θ) Pr(θ)�
θ Pr(D|θ) Pr(θ)
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Bayes’ rule in statistics

Likelihood of hypothesis θ Prior probability of hypothesis θ

Posterior probability
of hypothesis θ

Marginal probability
of the data (marginalizing 

over hypotheses)
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Simple (albeit silly) paternity example

Possibilities θ1 θ2 Row sum

Genotypes AA Aa ---

Prior 1/2 1/2 1

Likelihood 1 1/2 ---

Prior X 
Likelihood 1/2 1/4 3/4

Posterior 2/3 1/3 1

θ1 and θ2 are assumed to be the only possible fathers, child has genotype Aa, 
mother has genotype aa, so child must have received allele A from the true 
father. Note: the data in this case is the child’s genotype (Aa)
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The prior can be your friend

17

Suppose the test for a rare disease is 99% accurate. 

Pr(+|disease) = 0.99
Pr(+|healthy) = 0.01

datum hypothesis

(Note that we do not need to 
consider the case of a 
negative test result.)

It is very tempting to (mis)interpret the likelihood as a 
posterior probability and conclude “There is a 99% chance 
that I have the disease.” 

Suppose further I test positive for the disease. 
How worried should I be?



Pr(disease|+) =
Pr(+|disease)

�
1
2

�

Pr(+|disease)
�

1
2

�
+ Pr(+|healthy)

�
1
2

�

=
(0.99)

�
1
2

�

(0.99)
�

1
2

�
+ (0.01)

�
1
2

� = 0.99
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The prior can be your friend

18

The posterior probability is 0.99 only if the prior 
probability of having the disease is 0.5:

Pr(disease|+) =
(0.99)

�
1

1000000

�

(0.99)
�

1
1000000

�
+ (0.01)

�
999999
1000000

�

≈ 0.0001

If, however, the prior odds against having the disease are a 
million to 1, then the posterior probability is much more 
reassuring:
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An important caveat

19

This (rare disease) example involves a tiny amount of 
data (one observation) and an extremely informative 
prior, and gives the impression that maximum likelihood 
(ML) inference is not very reliable.

However, in phylogenetics, we often have lots of data and 
use much less informative priors, so in phylogenetics 
ML inference is generally very reliable.
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Discrete vs. Continuous

• So far, we've been dealing with discrete hypotheses 
(e.g. either this father or that father, have disease or 
don’t have disease)

• In phylogenetics, substitution models represent an 
infinite number of hypotheses (each combination of 
parameter values is in some sense a separate 
hypothesis)

• How do we use Bayes' rule when our hypotheses 
form a continuum?



f(θ|D) =
f(D|θ)f(θ)�
f(D|θ)f(θ)dθ
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Bayes’ rule: continuous case

Likelihood

Marginal probability
of the data

Posterior probability
density

Prior probability
density
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If you had to guess...

0.0 ∞

1 meter 

Not knowing anything 
about my archery abilities,
draw a curve representing
your view of the chances of 
my arrow landing a distance
d from the center of the target
(if it helps, I'm standing 50
meters away from the target)

d
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Case 1: assume I have talent

0.0

1 meter

20.0 40.0 60.0 80.0
distance in centimeters from target center

An informative prior
(low variance) that
says most of my 
arrows will fall within
10 cm of the center
(thanks for your
confidence!)
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Case 2: assume I have a talent for missing the target! 

0.0

1 meter

20.0 40.0 60.0

distance in cm from target center

Also an informative prior,
but one that says most of 
my arrows will fall within
a narrow range just
outside the entire target!
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Case 3: assume I have no talent

0.0

1 meter

20.0 40.0 60.0 80.0
distance in cm from target center

This is a vague prior:
its high variance reflects
nearly total ignorance
of my abilities, saying 
that my arrows could 
land nearly anywhere!
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A matter of scale

∞

Notice that I haven't provided a scale for
the vertical axis.

What exactly does the height of this
curve mean?

For example, does the height of the dotted
line represent the probability that my 
arrow lands 60 cm from the center 
of the target?

0.0 20.0 40.0 60.0
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Probabilities apply to intervals

Probabilities are attached to intervals
(i.e. ranges of values), not individual values

The probability of any given point (e.g. 
d = 60.0) is zero!

However, we can ask about the probability 
that d falls in a particular range 
e.g. 50.0 < d < 65.0

0.0 20.0 40.0 60.0
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Probabilities vs. probability densities

Probability density function
Note: the height of this curve does not represent a 
probability (if it did, it would not exceed 1.0)

density.ai example_density.xls
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Densities of various substances

Substance Density (g/cm3)
Cork 0.24

Aluminum 2.70
Gold 19.30

Density does not equal mass
mass = density × volume

Note: volume is appropriate for 3-dimensional objects or materials.
For 2-dimensions, area takes the place of volume
For 1-dimension, linear distance replaces volume.
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density.ai

Integration of densities

The density curve is scaled so 
that the value of this integral
(i.e. the total area) equals 1.0

θ 
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density.ai

Integration of a probability density 
yields a probability

Area under the density
curve from 0 to 2 is the
probability that θ is less

than 2
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mean=60
var=3
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mean=200
var=40000

mean=2.5
var=3.125 Archery Priors Revisited

These density curves are
all variations of a gamma
probability distribution.

We could have used a
gamma distribution to

specify each of the prior
probability distributions

for the archery example.
Note that higher variance
means less informative



Pr(y|p) =
�

n

y

�
py(1− p)n−y = L(p|y)
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Coin-flipping

y = observed number of heads
n = number of flips (sample size)
p = (unobserved) proportion of heads

Note that the same formula serves as both the: 
- probability of y (if p is fixed)
- likelihood of p (if y is fixed)



Outcome Fair coin model Two-heads 
model

H 0.5 1.0

T 0.5 0.0

1.0 1.0
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Likelihood vs. Probability

• Symbol Pr(D|M) often used to represent the likelihood
        (I will be following convention in this regard)

Pr(D | M)
Probabilities 

are functions of 
the data (the 

model is fixed)

L(M | D)

Likelihoods 
are functions of 

models (the 
data is fixed)
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The posterior is generally more informative than the 
prior (data contains information)

p

uniform prior density

posterior density

= posterior probability (mass)



Copyright © 2011 Paul O. Lewis 36

Beta prior gives more flexibility

Beta(2,2) prior density

posterior density

Posterior probability of p between 0.45 and 0.55 is 0.223

Note:
• prior is vague
  but not flat
• posterior has 
  smaller variance
  (i.e. it is more 
  informative) than 
  the prior
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Usually there are many parameters...

Likelihood

Marginal probability of dataPosterior
probability

density

Prior probability
densityA 2-parameter example

An analysis of 100 sequences under the simplest
model (JC69) requires 197 branch length parameters.
The denominator is a 197-fold integral in this case!

Now consider summing over all possible tree topologies!
It would thus be nice to avoid having to calculate the

marginal probability of the data...
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II. Markov chain Monte Carlo
(MCMC)
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Markov chain Monte Carlo (MCMC)

For more complex problems, we might settle for a 

good approximation
to the posterior distribution
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MCMC robot’s rules

Uphill steps are 
always accepted

Slightly downhill steps
are usually accepted

Drastic “off the cliff”
downhill steps are almost
never accepted

With these rules, it 
is easy to see why the

robot tends to stay near 
the tops of hills
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(Actual) MCMC robot rules

Uphill steps are 
always accepted
because R > 1

Slightly downhill steps
are usually accepted
because R is near 1

Drastic “off the cliff”
downhill steps are almost
never accepted because
     R is near 0

Currently at 1.0 m
Proposed at 2.3 m
R = 2.3/1.0 = 2.3

Currently at 6.2 m
Proposed at 5.7 m
R = 5.7/6.2 =0.92 Currently at 6.2 m

Proposed at 0.2 m
R = 0.2/6.2 = 0.03

6

8

4

2

0

10

The robot takes a step if it draws 
a Uniform(0,1) random deviate
that is less than or equal to R



=
f(D|θ∗)f(θ∗)

f(D)

f(D|θ)f(θ)
f(D)
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Cancellation of marginal likelihood

When calculating the ratio R of posterior densities, the marginal 
probability of the data cancels.

f(θ∗|D)
f(θ|D)

Posterior 
odds

=
f(D|θ∗)f(θ∗)
f(D|θ)f(θ)

Likelihood 
ratio Prior odds
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Target vs. proposal distributions
• The target distribution is the posterior 

distribution of interest
• The proposal distribution is used to decide 

which point to try next
– you have much flexibility here, and the choice affects only the 

efficiency of the MCMC algorithm
– MCMC using a symmetric proposal distribution is the 

Metropolis algorithm (Metropolis et al. 1953)
– Use of an asymmetric proposal distribution requires a 

modification proposed by Hastings (1970), and is known as the 
Metropolis-Hastings algorithm

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of state calculations
by fast computing machines. J. Chem. Phys. 21:1087-1092.
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Target vs. Proposal Distributions

Pretend this proposal distribution 
allows good mixing. What does 

good mixing mean?
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Trace plots

“White noise” 
appearance is a sign of 
good mixing

I used the program Tracer to create this plot:
http://tree.bio.ed.ac.uk/software/tracer/

AWTY (Are We There Yet?) is useful for 
investigating convergence:

http://king2.scs.fsu.edu/CEBProjects/awty/
awty_start.php

lo
g(

po
st

er
io

r)
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Target vs. Proposal Distributions

Proposal distributions
with smaller variance...

Disadvantage: robot takes 
smaller steps, more time 
required to explore the
same area

Advantage: robot seldom
refuses to take proposed
steps
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If step size is too 
small, large-scale 
trends will be 
apparentlo

g(
po

st
er

io
r)
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Target vs. Proposal Distributions

Proposal distributions
with larger variance...

Disadvantage: robot 
often proposes a step
that would take it off
a cliff, and refuses to
move

Advantage: robot can
potentially cover a lot of 
ground quickly
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Chain is spending long periods of time
“stuck” in one place

“Stuck” robot is indicative of  step sizes that 
are too large (most proposed steps would 
take the robot “off the cliff”)

slowmix.ai

lo
g(

po
st

er
io

r)
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MCRobot
Windows program download from:

http://www.eeb.uconn.edu/people/plewis/software.php
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Tradeoff

• Taking big steps helps in jumping from one “island” 
in the posterior density to another

• Taking small steps often results in better mixing
• How can we overcome this tradeoff? MCMCMC
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Metropolis-coupled Markov chain Monte Carlo 
(MCMCMC)

• MCMCMC involves running several chains 
simultaneously

• The cold chain is the one that counts, the rest are 
heated chains

• Chain is heated by raising densities to a power 
less than 1.0 (values closer to 0.0 are warmer)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 in Computing Science and Statistics (E. 
Keramidas, ed.).
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Heated chains act as scouts for the cold 
chain
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Cold and hot chains swapped
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Back to MCRobot...

55
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The Hastings ratio
If robot has a greater tendency 
to propose steps to the right as 
opposed to the left when choosing 
its next step, then the 
acceptance ratio must 
counteract this 
tendency.

Suppose the probability of
proposing a spot to the right 
is 2/3 (making the probability

of choosing left 1/3)

In this case, the Hastings ratio 
decreases the chance of accepting moves to the right by half, and

increases the chance of accepting moves to the left (by a factor of 2),
thus exactly compensating for the asymmetry in the proposal distribution.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.
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Hastings Ratio

Note that if q(θ|θ*) = q(θ*|θ), the Hastings ratio is 1

Acceptance 
ratio Posterior ratio Hastings ratio
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III. Bayesian phylogenetics
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So, what’s all this got to do with 
phylogenetics?

Imagine pulling out trees at random from a barrel. In the barrel, some 
trees are represented numerous times, while other possible trees are not 
present. Count 1 each time you see the split separating just A and C 
from the other taxa, and count 0 otherwise. Dividing by the total trees 
sampled approximates the true proportion of that split in the barrel.
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Moving through treespace
The Larget-Simon* move

*Larget, B., and D. L. 
Simon. 1999. Markov 
chain monte carlo 
algorithms for the 
Bayesian analysis of 
phylogenetic trees. 
Molecular Biology and 
Evolution 16: 750-759.

See also: Holder et al. 
2005. Syst. Biol. 54: 
961-965.

lsmove.ai
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Moving through parameter space
Using κ (ratio of the transition rate to 
the transversion rate) as an example 
of a model parameter.

Proposal distribution is the uniform
distribution on the interval (κ-d, κ+d)

The “step size” of the MCMC robot
is defined by d: a larger d means 
that the robot will attempt to make
larger jumps on average.
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Putting it all together
• Start with random tree and arbitrary initial

values for branch lengths and model parameters
• Each generation consists of one of these (chosen at 

random):
– Propose a new tree (e.g. Larget-Simon move) and either accept 

or reject the move
– Propose (and either accept or reject) a new model parameter 

value

• Every k generations, save tree topology, branch lengths 
and all model parameters (i.e. sample the chain)

• After n generations, summarize sample using
histograms, means, credible intervals, etc.
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Marginal Posterior Distribution of κ

95% credible interval

Histogram created
from a sample of 
1000 kappa values.

upper = 3.604

mean = 3.234

lower = 2.907

Data from Lewis, L., and Flechtner, V. 2002. Taxon 51: 443-451.
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IV. Prior distributions
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Common Priors
• Discrete uniform for topologies

– exceptions becoming more common
• Beta for proportions
• Gamma or Log-normal for branch lengths 

and other parameters with support [0,∞)
– Exponential is common special case of the 

gamma distribution
• Dirichlet for state frequencies and GTR 

relative rates

65
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Discrete Uniform distribution for topologies
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Yule model provides joint prior for both topology and 
branch lengths

67

The rate of speciation under the Yule model (λ) is constant and applies equally 
and independently to each lineage. Thus, speciation events get closer together 
in time as the tree grows because more lineages are available to speciate.
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Gamma(a,b) distributions

Exponential(1) 
= Gamma(1,1)

Gamma(0.1, 10)
Gamma(400, 0.01)

peak > 0 if a > 1

shoots off to infinity 
if a < 1

hits y-axis at b 
if a = 1

Gamma distributions are 
ideal for parameters that 
range from 0 to infinity 
(e.g. branch lengths)

a = shape
b = scale
mean* = ab
variance* = ab2

*Note: be aware that in many papers the Gamma distribution is defined such that the second 
(scale) parameter is the inverse of the value b used in this slide! In this case, the mean and 
variance would be a/b and a/b2, respectively. 



µ = log(m2)− log(m)− log(v + m2)− log(m2)
2
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Log-normal distribution

69

If X is log-normal with parameters 
µ and σ...

µ

σ

...then log(X) is normal with mean µ 
and standard deviation σ.

Important: µ and σ do not represent the mean and variance of X: they are the 
mean and variance of log(X)!

X
log(X)

mode = eµ−σ2 mode = µ

median = µmedian = eµ

mean = eµ+σ2/2 mean = µ

variance = σ2variance = e2µ+σ2
(eσ2

− 1)

To choose µ and σ to yield a particular mean (m) and variance (v) for X, use these 
formulas: 

σ2 = log(v + m2)− log(m2)
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Beta(a,b) gallery

Beta(10,10)

Beta(1,1)

B
et

a(
1.

2,
2)

Beta(0.8,2)
leans left if a < b
mean = a/(a+b) = 

0.286 symmetric if a = b
mean = a/(a+b) = 0.5

flat if a = b = 1

Beta distributions are 
appropriate for 
proportions, which 
are constrained to 
the interval [0,1].

mean = a/(a+b)
variance =
  ab/[(a+b)2(a+b+1)]
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Flat prior:
a = b = c = d = 1

Informative prior:
a = b = c = d = 300

(stereo pairs)

 Dirichlet(a,b,c,d) distribution

a→πA, b→πC, c→πG, d→πT

Used for nucleotide relative frequencies:

(equal frequencies strongly encouraged)

(no scenario discouraged)

Dirichlet(a,b,c,d,e,f) used for 
GTR relative rates
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Prior Miscellany
- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes
- dirichlet process priors



0 2 4 6 8 10
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This Gamma(4,1) prior ties down its parameter 
at the mode, which is at 3, and discourages it 

from venturing too far in either direction. For 
example, a parameter value of 10 would be 

stretching the rubber band fairly tightly

10

The mode of a Gamma
(a,b) distribution is (a-1)b

(assuming a > 1)



0 2 4 6 8 10
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This Gamma prior also has a mode at 3, but 
has a variance 40 times smaller. Decreasing 
the variance is tantamount to increasing the 

strength of the metaphorical rubber band.

Now you would have to tug on the parameter 
fairly hard for it to have a value as large as 4.

4

This gamma distribution 
has shape 91.989 and 

scale 0.032971
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Internal branch length prior is 
exponential with mean 0.1
This is a reasonably vague
internal branch length prior

Example: Internal Branch Length Priors
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Internal branch length prior mean 0.01
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Internal branch length prior mean 0.001



Internal branch length prior mean 0.0001
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Internal branch length prior mean 0.00001
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Internal branch length prior mean 0.000001

The internal branch
length prior is calling
the shots now.
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Prior Miscellany
- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes
- dirichlet process priors
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#NEXUS

begin data;
  Dimensions ntax=4 nchar=1;
  Format datatype=dna missing=?;
  matrix
    taxon1 ?
    taxon2 ?
    taxon3 ?
    taxon4 ?
  ;
end;

begin mrbayes;
  set autoclose=yes;
  lset rates=gamma;
  prset shapepr=exponential(10.0);
  mcmcp nruns=1 nchains=1 printfreq=1000;
  mcmc ngen=10000000 samplefreq=1000;
end;

Running on empty

You can use the program Tracer to show the estimated density:
http://tree.bio.ed.ac.uk/software/tracer/

Solid line: prior density 
estimated from MrBayes output

Dotted line: exponential(10)
density for comparison
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Prior Miscellany
- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes
- dirichlet process priors
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A

A

A T

C

C

Prior: Exponential, mean=0.1

In a non-hierarchical model, all parameters
are present in the likelihood function
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µ is a hyperparameter
governing the mean of
the edge length prior

Prior: Exponential, mean µ

Hierarchical models add hyperparameters
not present in the likelihood function

For example, see Suchard, Weiss and Sinsheimer. 2001. MBE 18(6): 
1001-1013.

hyperprior

During an MCMC analysis, µ will hover around a reasonable 
value, sparing you from having to decide what value is 

appropriate. You still have to specify a hyperprior, however.
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Prior Miscellany
- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes
- dirichlet process priors
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Empirical Bayes

Prior: Exponential, mean=MLE

An empirical Bayesian 
would use the maximum 
likelihood estimate (MLE) of 
the length of an average 
branch here 

Empirical Bayes uses the data to 
determine some aspects of the 
prior, such as the prior mean. 

This uses the data twice, which is 
not acceptable to Bayesian 

purists



Copyright © 2011 Paul O. Lewis 88

Prior Miscellany
- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes
- dirichlet process priors
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The problem that DP models help solve

89

gene

Red depicts sites with, for example:
- an unusually high or low rate
- unusual equilibrium base (or amino acid) frequencies
- an unusually high or low nonsynon./synon. rate ratio
- some other unusual model feature

Desired: a model that:
- classifies sites into meaningful categories
- discourages large numbers of categories (with the strength of 

discouragement determined by some value α)
- assigns reasonable parameter values to each of the categories
- does all this automatically
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AB

A B

A

Imagine you have a collection of objects (e.g. sites, 
codons) labeled A, B, C, ...

B can either be added to A’s group or form its own group

The parameter α determines the propensity for forming a 
new group
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ABC

AB C

AC B

BCA

A B C
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α + 2

The third object C can either be 
added to an existing group...

...or form its own group
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After all objects have been
considered, you can follow
paths to determine
the probability of
different final
configurations

Remember that
this is a prior, so 
the data have a
(usually big) say in how
many clusters there are and
what parameter values are assigned to
                              each cluster.
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Small values 
favor few, 

large groups
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Dirichlet Process Priors
• To encourage few, large groups, use a small alpha value
• To encourage lots of small groups, use a large alpha value
• In practice, hierarchical models are used (i.e. alpha is a 

hyperparameter that can be estimated, so you need not worry 
about choosing the appropriate value for alpha)

• Bottom line: DP models are very nice for automatically 
grouping sites into clusters that have some property in 
common

95



Molecular Biology and Evolution (2004) vol. 21 (6) pp. 1095-1109
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Where to find DP models

96

Proceedings of the National Academy of Sciences (2006) vol. 103 (16) pp. 6263-6268

Molecular Biology and Evolution (2007) vol. 24 (2) pp. 412-426

PhyloBayes
http://www.atgc-montpellier.fr/phylobayes

BUCKy
http://www.stat.wisc.edu/~ane/bucky/
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Systematic Biology (2007) vol. 56 (6) pp. 975-987
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V. Bayesian model selection
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Marginal likelihoods of models

Marginal probability of the data (denominator in Bayes' rule).
This is a weighted average of the likelihood, where the weights

are provided by the prior distribution.

Often left out is the fact that we are also conditioning on M, the model used.
Pr(D|M1) is comparable to Pr(D|M2) and thus the marginal probability of the
data can be used to compare the average fit of different models as long as 
the data D is the same. Pr(D | M) is also known as the marginal likelihood 

of the model M.
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Average likelihood =

Marginal likelihood (1-param. model)
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Average likelihood =

Marginal likelihood (2-param. model)
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BF01 is the Bayes Factor in favor of model M0 against model M1:
     if BF01 > 1, model M0 wins
     if BF01 < 1, model M1 wins

BF01 =
(1/2)L0

(1/4)L1
=

2L0

L1
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The Bayes Factor is a ratio of 
marginal (model) likelihoods

Recent work on Bayes factors with respect to phylogenetics: 
   Huelsenbeck, Larget & Alfaro. 2004. MBE 21(6):1123-1133.
   Lartillot & Phillippe. 2005. Syst. Biol. 55(2):195-207.
   Fan, Wu, Chen, Guo & Lewis. 2011. MBE 28(1):523–532

1-parameter model M0: (½) L0

2-parameter model M1: (¼) L1

In this case, L1 would need to be twice as great as L0 in order for model 
M1 to win. 

Notes about BF:
• automatically penalizes model for extra dimensions (parameters)
• severity of penalty depends on priors (under control of investigator, unlike 
AIC, BIC,  LRT, etc., which assess a constant penalty for each additional 
parameter)
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Something closer to reality

• Example:
– Compare JC69 vs. K80 models
– Parameters:

•  ν is edge length (expected no. substitutions/site)
– free in both JC69 and K80 models

•  κ is transition/transversion rate ratio
– free in K80, set to 1.0 in JC69

X Y
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Likelihood Surface when K80 true

JC69 model (just this 1d line)

K80 model (entire 2d space)sequence length = 500 sites
true branch length = 0.15
true kappa = 5.0

K80 wins

Based on simulated data:

κ
(branch length)(trs/trv rate ratio)

ν

Assume joint prior is 
flat over the area 

shown.
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Likelihood Surface when JC true

sequence length = 500 sites
true branch length = 0.15
true kappa = 1.0

JC69 model (just this 1d line)

K80 model (entire 2d space)

JC69 wins

Based on simulated data:

κ
(branch length)(trs/trv rate ratio)

ν

Assume joint prior is 
flat over the area 

shown.


