
Writing on page 562 of this issue,
Rohde, Olson and Chang1 address
a simple but fascinating question:

how far back in time must we go to find 
an individual who was the ancestor of all 
present-day humans? After a little considera-
tion, the existence of such an individual (the
‘universal ancestor’ or, as the authors put it,
our ‘most recent common ancestor’) should
not surprise: I have two parents, four grand-
parents, and the growth in the population of
my ancestors is close to exponential as I trace
them back in time. This is true for anybody’s
ancestors, and there must soon be an overlap
between the ancestors of two or more ran-
domly chosen individuals (Fig.1).

In simplified models, which assume ran-
dom mating, the average number of genera-
tions back to a universal common ancestor
has been estimated2–4 to be around log2n,
where n is the population size. So if, for
instance, the present-day population were to
consist of 1,000 people, the average number
of generations back to the universal ancestor
would be log2(1,000) — about 10 genera-
tions. For populations of size 106, or the 
present human population of size 6�109, it
would be 20 or 33 generations, correspon-
ding to 500 or a bit more than 800 years,
respectively (assuming a generation time of
25 years).This is surprisingly recent.

And an even more surprising conclusion
from such models is that, only a little farther
back in time, a large fraction of the popula-
tion will be the ancestors of everybody alive
today. The remaining individuals back then
will be the ancestors of no one. As Rohde et
al.1 describe it, “When genealogical ancestry
is traced back beyond the [universal ances-
tor],more and more people in earlier genera-
tions become ancestors of the [whole] pre-
sent-day population”. At a certain point in
history (the ‘identical ancestors’ point),
people can be divided into two groups: either
they are common ancestors of all present-
day humans, or their lineages have died 
out. Being the ancestor of only some living
humans is not an option. At this point,
Rohde et al. say, “everyone alive now had
exactly the same ancestors”. In the simplest
model, the fraction of ‘ancestors-of-all’ is
about 80%, and in most estimates so far, the
time back to the ‘identical ancestors’ point is
a bit less than twice the number of genera-
tions back to the first universal ancestor.

These estimates are not only astonishing,
however; they are also unrealistically low,

because of the simplicity of the underlying
models. Key missing factors are geography
(which influences population structure) and
history (which affects population growth),
and these are the ingredients that Rohde et al.
have taken seriously to arrive at more credi-
ble estimates of the time back to the universal
and identical ancestors.

The authors carried out simulations
based on several scenarios, incorporating dif-
ferent degrees of population growth and dif-
ferent degrees of isolation of subpopulations,
with occasional migration linking these sub-
populations. The authors’ first model is rela-
tively simple and includes up to ten large sub-
populations, which exchange just one pair of
migrants per generation. In one set of esti-
mates based on this model, the mean time
back to the universal ancestor is 2,300 years
(76 generations, assuming a generation time
of a bit less than 30 years) and to the identical
ancestors it is 5,000 years (169 generations)
— the time of Aristotle and the first pyra-
mids,respectively.The latter date is especially
startling:had you entered any village on Earth

in around 3,000 BC, the first person you
would have met would probably have been
your ancestor! A considerably more detailed
model, which describes population density
within continents, the opening of ports and
more,does not change these estimates much.

The main weakness in the models comes
from migration. As the authors point out, if
one region is totally isolated (something that
they do not simulate),with no migrants con-
necting it to other subpopulations, then the
universal ancestor must logically have lived
before the period of isolation began. Only
after that period ends would the dates for 
the universal ancestor become less distant.
Because of the effects of isolation, had we
been living in 1700,say,and tried to work out
when our universal and identical ancestors
lived, the answers would have been further
back in time than the answers we obtain now.
Tasmania, for instance, was conceivably
completely isolated at the time,and probably
had been for millennia; this would therefore
have pushed back the dates for universal and
identical ancestry. So uncertainties about
population structure introduce uncertainty
into the proposed dates.

The genealogical questions addressed by
Rohde et al. are distinct from questions
about the history of our genetic material. In
models that trace genetic material back in
time, any given nucleotide position in our
genomes can eventually be found in a single
individual and on a single chromosome.
Thus,being in the pedigree of all of humanity
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Figure 1 Searching for our universal common ancestor. The figure shows how the number of
ancestors of two people alive today builds up in a manner that is close to exponential. Because the
human population has a finite size, however, we do not need to go back many generations before we
find an ancestor that is common to both people. The same applies in searching for the ancestor of all
living humans (universal ancestors are represented as grey balls). In simplified models, the expected
time back to this universal ancestor is log2n, where n is the population size. If we were to trace not
both parents of each individual, but only one random parent for each (thick lines), we would in 
effect be tracing the history of gene variants (alleles). In standard models, the number of generations
back to the common ancestor of a particular allele will be of the order 2n, which is much longer ago.
If we trace the history of genomes, not genes, recombination would complicate matters; this genetic
‘shuffling’ ensures that each child does not inherit exactly the same genomic information as its
siblings, and means that the genealogical relationship of different genome segments can be different.

1

2

3

4

5

6

7

8

9

10

11

N
um

b
er

 o
f g

en
er

at
io

ns

Now 0

Human evolution

Pedigrees for all humanity
Jotun Hein

Simulations based on a model of human population history and
geography find that an individual that is the genealogical ancestor 
of all living humans existed just a few thousand years ago.
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does not imply that an individual makes 
a significant genetic contribution to the 
present population. In fact, that individual
might have contributed nothing. This dis-
tinction is also illustrated by ‘mitochondrial
Eve’ — the woman who purportedly lived
hundreds of thousands of years ago and 
carried mitochondrial genes that are ances-
tral to all present mitochondrial genes. In
Fig. 1 you would reach this Eve by tracing
only female lineages backwards (rather than
both lineages).

Universal common ancestry (in the pedi-
gree sense) and genetic common ancestry
thus occur on different timescales. The for-
mer is proportional to log2n, and if you were
to double the current population size, the
expected time back to the universal ancestor
would move back by only one generation in
the simple model. But the time back to the
genetic common ancestor is typically pro-
portional to the population size, and so dou-
bling the population size would double the
time back to that kind of ancestor. The fact
that the number of ancestors in a pedigree
increases exponentially,whereas the number
of genetic ancestors increases much more
slowly, has the consequence that not many
generations ago (about six), members of our
pedigree existed that did not contribute to 
us genetically. So being somebody’s great-
great-great-great grandparent is no guaran-
tee of genetic relatedness.To properly under-
stand genetic ancestry, we need the concept
of the ancestral recombination graph5,6 — a
generalization of traditional phylogeny that
traces genetic material back in time in the
presence of genetic recombination.

The increased ease of obtaining genome-
sequence data from individuals, and the
number of large-scale projects cataloguing
variation in the human population, will
increase our ability to test hypotheses about
human history. Combining pedigree and
genetic ancestry will become more and more
important, both for data analysis and in

Cosmology

What is dark energy?
Lawrence M. Krauss

It seems that the rate of expansion of the Universe is accelerating,
driven by the so-called dark energy. Is Einstein’s cosmological constant
behind it? There might be a way to find out. 

The nature of the ‘dark energy’ that is
causing the apparent accelerated
expansion of the Universe is, without

doubt, the biggest mystery in physics and
astronomy. Although it was astrophysical
observations of the acceleration that led to
the discovery of dark energy, there are pre-
cious few tests that can be performed to work
out what dark energy is — whether it is sim-
ply the rebirth of Einstein’s cosmological
constant, or whether it might stem from
something even weirder. All the evidence 
so far is consistent with the existence of a 
cosmological constant, which, in modern
language, is understood to be the quantum-
mechanical energy associated with other-
wise empty space.In Physical Review D,Kunz
et al.1 suggest, however, that by comparing
data on a range of astrophysical phenomena,
it might be possible to rule out a cosmologi-
cal constant as the origin of dark energy.

Dark energy is perplexing.Physical theory

currently has no explanation of why the 
energy of empty space should be precisely
zero (quantum-mechanical effects com-
bined with relativity in fact predict quite the
opposite). But it also gives no explanation 
of why that energy should not instead be 
so huge that it would dwarf all of the energy
in anything else (making galaxy formation
impossible). Yet arguments based on a host
of different cosmological observations —
even before the direct observation of the
accelerated expansion — implied that the
energy in empty space could not be more
than three to four times greater than the
energy contained in the matter and radiation
of the Universe. To decide on what physics
might be associated with dark energy, we
have to rely on experiments and observa-
tions. No laboratory experiment we can
imagine would be sensitive enough to do the
job, so we are left with astrophysical probes.
Which is where Kunz et al.1 come in.

exploring properties of population models7.
Many interesting questions lie ahead. For
instance, how much genetic material (if any)
did the universal ancestor pass on to the 
present population? What about that for a
non-universal ancestor from the same time?
In the idealized models, how far back would
one have to go to find a single couple 
who are the lone ancestors of everybody? 
And how much could be known about
humanity’s pedigree if we knew the genome
of everybody? ■
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When a huge chunk of Antarctic ice
shelf broke up in 2002, it provided
dramatic pictures (see right) for the
world’s press and a control experiment
for researchers. The ice shelf,
Larsen B, is a floating extension 
of the ice of the Antarctic peninsula.
The collapse of a substantial part of
it — more than 3,000 km2 — was
attributed to increasing temperatures
and released shoals of icebergs into
the Weddell Sea. But a southerly
remnant remained in place, enabling
ideas to be tested about how ice

shelves might affect glacier flow
from the continental interior.

Two groups now report their
results of satellite-tracking glacier
behaviour in the region (E. Rignot et
al. and T. A. Scambos et al. Geophys.
Res. Lett. 10.1029/2004GL020697;
10.1029/2004GL020670). They
found that five glaciers flowing into
the area formerly buttressed by the
ice shelf all accelerated at various
times, whereas two farther south,
which ran into the remnant ice shelf,
did not. Speed of glacier flow is also

reflected in their thickness: higher
flow rates stretch and thin the ice, in
these cases yielding estimated rates
of thinning of tens of metres per year.

The main implication is that ice
shelves act as a restraint on glacier
flow. This conclusion was by no
means obvious. Earlier, theoretical
studies gave conflicting results; and
there are also possible confounding
factors, such as water, produced by
seasonal melting of surface ice, acting
as a lubricant at the glacier base.

A prospect for the future — and

a worrying one as far as larger ice
shelves and glaciers are concerned
— is that a feedback system could
kick in, accelerating glacier melting
and producing significant rises in
sea level. Tim Lincoln

Global change

Glacial pace picks up
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The ages for MJG-I, MJG-II and MJG-III are considerably older
than previous age estimates of Palaeolithic sites in northern China1

and indicate that humans might have reached northeast Asia earlier
than previously thought. Along with estimated ages for the sites of
Gongwangling (1.15 Myr)14 and Xihoudu (1.27 Myr)15 in the
southern Loess Plateau and for Xiaochangliang (1.36 Myr)1 and
Donggutuo (1.1 Myr)16 sites in the Nihewan basin, our new results
imply an expansion and lengthy flourishing of human groups from
northern to north-central China during the early Pleistocene.

The estimated age of 1.66 Myr for the MJG-III artefact layer pre-
dates the previous oldest age of unambiguous human presence at
408N in East Asia by about 0.3 Myr. Our findings, particularly for
the MJG-III layer, document the oldest coexistence of stone tools
and man-made bone modifications in East Asia, indicating possible
continuity with the oldest stone tools and artificial bone modifi-
cations reported in eastern Africa17,18. Archaeological evidence at
MJG indicates the oldest known use of animal tissues, especially
marrow processing, by early humans in Asia. The earliest archae-
ological level in the Nihewan basin is slightly younger than the
1.75 Myr estimated age for early humans at the Dmanisi site at 408N
latitude in western Eurasia2,3. Our estimated ages also fall within the
1.66–1.51-Myr range for the earliest known human fossils in south-
east Asia19,20. The combined evidence suggests that, near the start of
the Pleistocene, early human populations spread relatively rapidly
across Asia, presumably from an African origin, and reached at least
408N latitude. Our findings further establish that the earliest
populations to reach northeast Asia were able to survive for at
least 500 kyr before the mid-Pleistocene onset of high-amplitude
climate oscillation21–23. A
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If a common ancestor of all living humans is defined as an
individual who is a genealogical ancestor of all present-day
people, the most recent common ancestor (MRCA) for a ran-
domly mating population would have lived in the very recent
past1–3. However, the random mating model ignores essential
aspects of population substructure, such as the tendency of
individuals to choose mates from the same social group, and
the relative isolation of geographically separated groups. Here we
show that recent common ancestors also emerge from two
models incorporating substantial population substructure. One
model, designed for simplicity and theoretical insight, yields
explicit mathematical results through a probabilistic analysis. A
more elaborate second model, designed to capture historical
population dynamics in a more realistic way, is analysed compu-
tationally through Monte Carlo simulations. These analyses
suggest that the genealogies of all living humans overlap in
remarkable ways in the recent past. In particular, the MRCA of
all present-day humans lived just a few thousand years ago in
these models. Moreover, among all individuals living more than
just a few thousand years earlier than the MRCA, each present-
day human has exactly the same set of genealogical ancestors.

In investigations of the common ancestors of all living humans,
much attention has focused on descent through either exclusively
maternal or exclusively paternal lines, as occurs with mitochondrial
DNA and most of the Y chromosome4,5. But according to the more
common genealogical usage of the term ‘ancestor’, ancestry encom-
passes all lines of descent through both males and females, so that
the ancestors of an individual include all of that person’s parents,
grandparents, and so on.

For a population of size n, assuming random mating (and so
ignoring population substructure), probabilistic analysis2 has
proved that the number of generations back to the MRCA, Tn,
has a distribution that is sharply concentrated around log2n. We
express this using the notation Tn , log2n, meaning that the
quotient Tn/log2n converges in probability to 1 as n ! 1. In
contrast, the mean time to the MRCA along exclusively matrilineal
or patrilineal lines is approximately n generations6, and the distri-
bution is not sharply concentrated. For example, in a panmictic
population of one million people, the genealogical MRCA
would have lived about 20 generations ago, or around the year
AD 1400, assuming a generation time of 30 years. The MRCA along
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exclusively maternal lines would have lived something like 50,000
times earlier—in the order of one million generations ago.

As genealogical ancestry is traced back beyond the MRCA, a
growing percentage of people in earlier generations are revealed to
be common ancestors of the present-day population. Tracing
further back in time, there was a threshold, let us sayUn generations
ago, before which ancestry of the present-day population was an all
or nothing affair. That is, each individual living at least Un

generations ago was either a common ancestor of all of today’s
humans or an ancestor of no human alive today. Thus, among all
individuals living at least Un generations ago, each present-day
human has exactly the same set of ancestors. We refer to this point in
time as the identical ancestors (IA) point. As with the MRCA point,
the IA point is also quite recent in a randomly mating population:
Un , 1.77 log2n generations ago2.

The major problem in applying these results to human popu-
lations is that mating is not random in the real world. Mating
patterns are structured by geography, proximity, culture, language
and social class. Nevertheless, even in populations with considerable
internal structure, the time to the MRCA can be remarkably brief.
To demonstrate this in a tractable mathematical model, consider a
population of size n divided into randomly mating subpopulations
that are linked by occasional migrants. The population is rep-
resented by a graph, G, with a node for each subpopulation.
Edges indicate pairs of nodes that exchange a small number (for
example, one pair) of migrants per generation. Let R denote
the radius of G, and let D be a quantity ranging between 0 and 1
that depends on the structure of G (see Box 1). A probabilistic
analysis (see Supplementary Information) shows that as n ! 1,

Tn , ðRþDÞ log2n: Furthermore, if we let D denote the diameter of
the graph, then the number of generations, Un, since the IA point
satisfies Un , ðDþ 1:77Þ log2n:

Computer simulations accord with these theoretical predictions.
Tables 1 and 2 give distributions of Tn and Un for small populations
of varying sizes in graphs with one node, three connected nodes, five
fully connected nodes and for a ten-node graph loosely based on
world geography as shown in Fig. 1. In these simulations, neigh-
bouring subpopulations exchange one pair of migrants per genera-
tion. Each mean is calculated from 100 model runs. Although
guaranteed to be accurate only for sufficiently large n, the theoreti-
cal predictions describe the simulations quite well even for models
with just a few thousand individuals. Whenever n is doubled, Tn is
expected to increase by R þ D, and Un is expected to increase by
D þ 1.77. These predicted increases, which are listed in the last
columns of Tables 1 and 2, agree closely with the simulation results.

To hazard a rough first guess about human recent common
ancestors, we could extrapolate the results for the graph of Fig. 1 to a
growing population with a final size of 250 million. When applying
this model to a growing population, the fixed population size that
provides the best approximation is the size at the time that the
MRCA lived. We take this effective population size to be 250 million,
which is approximately the global population in the year AD 1.
Starting from n ¼ 16,000, a population of 250 million is reached
by doubling 14 times. Approximating the increases in Tn and Un

beyond the values seen in Tables 1 and 2 by their theoretical
predictions for each doubling of n, we arrive at Tn < 34þ 14£ 3 ¼
76 generations (about 2,300 years) and Un < 74þ 14£ 6:77 ¼ 169
generations (about 5,000 years). These estimates would suggest,
with the exchange of just one pair of migrants per generation
between large panmictic populations of realistic size, that the
MRCA appears in about the year 300 BC, and all modern individuals
have identical ancestors by about 3,000 BC. Such estimates are
extremely tentative, and the model contains several obvious sources
of error, as it was motivated more by considerations of theoretical
insight and tractability than by realism. Its main message is that
substantial forms of population subdivision can still be compatible
with very recent common ancestors.

The dynamics of human subpopulations are much more complex
than those in the simple graph model discussed above. Although
these complexities make theoretical analysis difficult, a computer
model incorporating more complicated forms of population sub-
structure and migration allows the demographic history of human
populations to be simulated. The Supplementary Information
contains more details on the model and computations; here we
briefly outline some of the main points.

This model is based on a simplified projection of the world’s

Box 1
Graph-theoretical definitions

The length of a path in a graph, G, is the number of edges in the path.
For each pair of nodes i and j in G, the distance d(i, j) is defined to be
the length of a shortest path joining i and j. The radius of G is

R¼
i[G
min{

k[G
max dði;kÞ}

and a node i is called a centre of G if maxk[G d(i, k) ¼ R. Assume
R $ 1; the case R ¼ 0 (G has one node) was treated previously2. For
each centre node i, let Si be a set of minimal size that consists of
neighbours of node i and satisfies min {d( j, k): j[ {i}<Si} # R21 for
all k [ G. Hi is defined as the number of nodes in Si, H is the minimum
of Hi over all centres i, and D¼ 12 1

H : The diameter of G is
D ¼ maxi,k[G d(i, k).

Table 2 Simulations of Un

Graph n ¼ 1,000 n ¼ 2,000 n ¼ 4,000 n ¼ 8,000 n ¼ 16,000 D þ 1.77
...................................................................................................................................................................................................................................................................................................................................................................

One node 20.8 (1.6) 22.6 (1.5) 24.6 (1.5) 26.5 (1.6) 28.3 (1.4) 1.77
Three fully connected nodes 27.4 (1.5) 30.3 (1.4) 33.4 (1.5) 36.2 (1.7) 38.9 (1.5) 2.77
Five fully connected nodes 25.9 (1.3) 28.9 (1.4) 32.1 (1.7) 35.3 (1.5) 37.9 (1.4) 2.77
Ten-node graph shown in Fig. 1 46.3 (2.7) 53.0 (2.7) 59.8 (2.7) 66.8 (2.9) 73.6 (2.7) 6.77
...................................................................................................................................................................................................................................................................................................................................................................

Means (standard deviations in parentheses) ofUn (the number of generations back to the IA point) for graph-structured populations exchanging a single pair of migrants per edge per generation. The
last column shows D þ 1.77, the expected asymptotic increase in Un per doubling of n.

Table 1 Simulations of Tn

Graph n ¼ 1,000 n ¼ 2,000 n ¼ 4,000 n ¼ 8,000 n ¼ 16,000 R þ D
...................................................................................................................................................................................................................................................................................................................................................................

One node 10.8 (0.4) 11.8 (0.4) 12.8 (0.4) 13.9 (0.3) 14.8 (0.4) 1.00
Three fully connected nodes 14.0 (0.7) 15.6 (0.7) 17.1 (0.9) 18.9 (0.8) 20.3 (1.0) 1.50
Five fully connected nodes 14.0 (0.5) 15.8 (0.5) 17.8 (0.5) 19.6 (0.5) 21.5 (0.6) 1.75
Ten-node graph shown in Fig. 1 21.1 (1.3) 24.3 (1.5) 27.6 (1.5) 30.5 (1.5) 33.8 (1.7) 3.00
...................................................................................................................................................................................................................................................................................................................................................................

Means (standard deviations in parentheses) of Tn (the number of generations back to the MRCA) for graph-structured populations exchanging a single pair of migrants per edge per generation. The
last column shows R þ D, the expected asymptotic increase in Tn per doubling of n.
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actual inhabited land masses and has three levels of substructure:
continents, ‘countries’ and ‘towns.’ Figure 2 depicts the model’s
geography and migration routes used before AD 1500, with the
countries shown as squares and the number of towns per country
differing from continent to continent. Towns and countries rep-
resent both the local geographical areas and the relevant social and
ethnic groups from which most people find mates.

The model uses a simplified migration system in which each
person has a single opportunity to migrate from his or her town of
birth. The probabilities of leaving a town or a country are set at
various levels to reflect different migration patterns. Migrants who
move between towns can travel to any other town within the
country. A migrant who leaves a country for another country within
the same continent chooses the destination with a probability that
diminishes as the inverse square of the geographical distance.

Each continent has a number of port countries from which
migrants can travel to another continent. A fixed, large percentage
(for example, 95% in some simulations) of the migrants through a

port come from the country in which the port is located, with the
remainder drawn from other countries in the continent in pro-
portion to their inverse squared distance. The value next to a port in
Fig. 2 is its migration rate, in people per generation, and the date in
parentheses indicates when the port opens, if it is more recent than
the start of the simulation in 20,000 BC. When a port opens, there is
usually a single generation of migration at a higher rate than the
steady-state rate shown in the figure. After the year AD 1500,
additional large ports, which are not shown, begin to open to
simulate colonization of the Americas, Australia and elsewhere.
Immediately before this, the native population of the Americas is
markedly reduced to simulate the effects of European-introduced
diseases7.

Generations overlap in this model and we explicitly simulated the
lifespan and the times at which mating and reproduction events
occur for each individual8,9, as described in more detail in Sup-
plementary Information. The birth rate of each continent or island
was individually adjusted so that the populations match historical

Figure 1 World map viewed as a ten-node graph. This graph has radius 3 and diameter 5.

Figure 2 Geography and migration routes of the simulated model. Arrows denote ports

and the adjacent numbers are their steady migration rates, in individuals per generation. If

given, the date in parentheses indicates when the port opens. Upon opening, there is

usually a first-wave migration burst at a higher rate, lasting one generation.
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estimates, and growth rates were higher in under-populated areas.
Full-sized populations were used until the world population
reached 50 million in 1,000 BC. Subsequently, birth rates were
reduced to achieve a worldwide level of 55 million, carried out in
such a way that sparsely populated areas were less affected. This
limit was a computational necessity, but simulations show that
population growth has little effect, especially if it occurs after the
MRCA has died.

With 5% of individuals migrating out of their home town, 0.05%
migrating out of their home country, and 95% of port users born in
the country from which the port emanates, the simulations produce
a mean MRCA date of 1,415 BC and a mean IA date of 5,353 BC.
Interestingly, the MRCAs are nearly always found in eastern Asia.
This is due to the proximity of this region to both Eurasia and either
the remote Pacific islands or the Americas, allowing the MRCA’s
descendants to reach a few major world regions in a relatively short
time.

Arguably, this simulation is far too conservative, especially given
its prediction that, even in densely populated Eurasia, only 55.3
people will leave each country per generation in AD 1500. If the
migration rate among towns is increased to 20%, the local port users
are reduced to 80%, and the migration rates between countries and
continents are scaled up by factors of 5 and 10, respectively, the
mean MRCA date is as recent as AD 55 and the mean IA date is 2,158
BC. The predictions of the simple ten-node graph model sketched
earlier fall somewhere between these dates and those of the more
conservative computational model.

The model also can be used to calculate the percentage of ancestry
that current individuals receive from different parts of the world. In
generations sufficiently far removed from the present, some ances-
tors appear much more often than do others on any current
individual’s family tree, and can therefore be expected to contribute
proportionately more to his or her genetic inheritance1,10,11. For
example, a present-day Norwegian generally owes the majority of
his or her ancestry to people living in northern Europe at the IA
point, and a very small portion to people living throughout the rest
of the world. Furthermore, because DNA is inherited in relatively
large segments from ancestors, an individual will receive little or no
actual genetic inheritance from the vast majority of the ancestors
living at the IA point12.

Several factors could cause the time to the true MRCA or IA point
to depart from the predictions of our model. If a group of humans
were completely isolated, then no mixing could occur between that
group and others, and the MRCA would have to have lived before
the start of the isolation. A more recent MRCA would not arise until
the groups were once again well integrated. In the case of Tasmania,
which may have been completely isolated from mainland Australia
between the flooding of the Bass Strait, 9,000–12,000 years ago, and
the European colonization of the island, starting in 1803 (ref. 13),
the IA date for all living humans must fall before the start of
isolation. However, the MRCA date would be unaffected, because
today there are no remaining native Tasmanians without some
European or mainland Australian ancestry.

No large group is known to have maintained complete repro-
ductive isolation for extended periods. The populations on either
side of the Bering Strait appear to have exchanged mates throughout
the period documented in the archaeological record14. Religious
isolates such as the Samaritans occasionally have absorbed migrants
from outside the group15. Even populations on isolated Pacific
islands have experienced occasional infusions of newcomers16.
Even if rates of migration between some adjoining populations
are very low, the time to the MRCA tends not to change substan-
tially. For example, with a migration rate across the Bering Strait of
just one person in each direction every ten generations, rather than
the ten per generation in the more conservative simulation
described earlier, Tn only increases from 3,415 years to 3,668 years.

Conversely, other factors could reduce the time to the MRCA

from that predicted by the model. Examples of such factors include
the existence of more diverse intercontinental migration routes, the
large-scale movement and mixing of populations documented in
the historical record17, marked individual differences in fertility18,
and the population increase of the past two millennia, which would
result in more migrants.

Actual migration rates among populations are very poorly known
and undoubtedly have varied considerably in different times and
places. Studies of hunter-gatherer groups and subsistence agricul-
tural communities have found that anywhere from 1% (ref. 19) to as
much as 30% (ref. 20) of mates are from outside the group. The
tendency of most human groups to marry out with surrounding
groups, at least to a limited extent, links networks of ancestry within
specific regions (see http://www.compapp.dcu.ie/,humphrys/
FamTree/Royal/Famous.descents.html).

Given the remaining uncertainties about migration rates and
real-world mating patterns, the date of the MRCA for everyone
living today cannot be identified with great precision. Nevertheless,
our results suggest that the most recent common ancestor for the
world’s current population lived in the relatively recent past—
perhaps within the last few thousand years. And a few thousand
years before that, although we have received genetic material in
markedly different proportions from the people alive at the time,
the ancestors of everyone on the Earth today were exactly the same.

Further work is needed to determine the effect of this common
ancestry on patterns of genetic variation in structured popu-
lations21–24. But to the extent that ancestry is considered in genea-
logical rather than genetic terms, our findings suggest a remarkable
proposition: no matter the languages we speak or the colour of our
skin, we share ancestors who planted rice on the banks of the
Yangtze, who first domesticated horses on the steppes of the
Ukraine, who hunted giant sloths in the forests of North and
South America, and who laboured to build the Great Pyramid of
Khufu. A
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Estimates of the effect of increasing atmospheric CO2 concen-
trations on future global plant production rely on the physio-
logical response of individual plants or plant communities when
exposed to high CO2 (refs 1–6). Plant populations may adapt to
the changing atmosphere, however, such that the evolved plant
communities of the next century are likely to be genetically
different from contemporary communities7–12. The properties
of these future communities are unknown, introducing a bias
of unknown sign and magnitude into projections of global
carbon pool dynamics. Here we report a long-term selection
experiment to investigate the phenotypic consequences of selec-
tion for growth at elevated CO2 concentrations. After about 1,000
generations, selection lines of the unicellular green alga Chlamy-
domonas failed to evolve specific adaptation to a CO2 concen-
tration of 1,050 parts per million. Some lines, however, evolved a
syndrome involving high rates of photosynthesis and respiration,
combined with higher chlorophyll content and reduced cell size.
These lines also grew poorly at ambient concentrations of CO2.
We tentatively attribute this outcome to the accumulation of
conditionally neutral mutations in genes affecting the carbon
concentration mechanism.

Plant growth depends on CO2 concentration1,2, which is expected
to rise from current levels of about 400 parts per million (p.p.m.) to
between 700 and 1,000 p.p.m. during the next century3. In response,
global plant productivity in forests4, grasslands5, agroecosystems6

and other ecosystems is expected to increase. Projections of future
net primary productivity are complicated by synchronous changes
in temperature and other factors, but most models predict increases
in the land–atmosphere and ocean–atmosphere fluxes from current
values of .22 petagrams (Pg) C per year to about 25 Pg C per
year3. This process is likely to be complicated by shifts in the species
composition of plant communities7, and more fundamentally by
evolutionary changes within plant populations. In the very long term,
this may involve the extinction of some groups and the radiation of
others8, but within a few hundred generations most plant popu-
lations may adapt to the increased supply of inorganic carbon.
Selection experiments with plants have demonstrated a variety of

responses9–12, but have been limited to fewer than ten generations.
The long-term response to selection and the properties of popu-
lations adapted to elevated CO2 remain unknown, and constitute an
important limit on our ability to predict future plant productivity.

We used a microbial model system in which large population size
and short generation time make it possible to evaluate evolutionary
change caused by the spread of novel mutations over hundreds of
generations. Chlamydomonas reinhardtii is a unicellular green alga
that has been extensively used to study the physiology and genetics
of photosynthesis13. It possesses a carbon-concentrating mechanism
(CCM), which increases the concentration of CO2 near the active
site of ribulose 1,5-bisphosphate carboxylase–oxygenase (Rubisco),
in common with most other eukaryotic microalgae that have been
studied14. We set up ten isogenic selection lines from each of two
ancestral genotypes, half being grown at ambient CO2 (ambient
lines) and half at a concentration that increased from ambient to
1,050 p.p.m. over about 600 generations and was then maintained at
this level for a further 400 generations (high lines). At least 105 cells
per line were transferred for 125 transfers in a buffered, nutrient-
rich medium. The history of these lines thus emulates the con-
ditions that photosynthetic organisms are likely to experience
during the next century or so, with respect to CO2 levels alone.

The physiological effect of elevated CO2 concentration is
expected to be an increase in photosynthesis, causing an increase
in growth. Net photosynthesis in the ambient lines increased by
about 30% when they were grown at high CO2 (Fig. 1a). The
ambient lines diverged through time so that by the end of the
experiment they varied significantly in the rate of photosynthesis
(one-way analysis of variance (ANOVA): F9,18 ¼ 9.0, P , 0.001)
when grown at ambient CO2 concentrations. The high lines had
normal rates of photosynthesis at ambient CO2, which increased by
more than 50% as an average over all lines at high CO2. However,
this effect was very inconsistent: one group of high lines had low
rates whereas a second group had very high rates of photosynthesis
at high CO2 concentration (Fig. 1a). This distinction was not related
to the identity of the ancestor, and represented significantly more
divergence in photosynthetic rates than was seen in the ambient
lines (F1,16 ¼ 10.5, P ¼ 0.005).

The growth rate of cultures grown at elevated CO2 was correlated
with their photosynthetic rate among the ambient lines, but not
among the high lines (Fig. 1b). The physiological effect of CO2 on
photosynthesis was reflected by growth in pure culture, where the
maximal rate of increase (Fig. 1c) and the limiting density (Fig. 1d)
of both the ambient and the high lines are enhanced substantially by
high CO2. However, there was no indication of a parallel evolution-
ary response: by the end of the selection experiment, the high lines
had not become specifically adapted to growth at high CO2; their
growth at high CO2 being no greater than, and perhaps even less
than, the growth of the ambient lines. There was nevertheless an
indirect response: the growth of some high lines was markedly
impaired at ambient CO2 concentrations where two of the lines
could scarcely be propagated. This result was supported by the
outcome of competition assays in which the selection lines were
mixed with standard genetically marked strains and the change in
frequency during growth in culture recorded (Table 1). The high
lines had considerably lower competitive ability at ambient CO2,
where three of them (including the two with strongly reduced growth
in pure culture) were such weak competitors that they were consist-
ently eliminated by the tester strains within 10–15 generations. They
were, however, no more successful than the ambient lines at high
CO2. In short, 1,000 generations of selection at high CO2 concen-
trations had caused no increase in growth at high CO2, whereas
growth at ambient CO2 was often considerably reduced.

Photosynthesis is linearly related to respiration in the dark
among lines at ambient CO2; this relationship is the same for
ambient and high lines (Fig. 2a). It has been shown in Chlamydo-
monas that post-illumination rates of O2 consumption provide a
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Modeling the recent common ancestry of all living humans
Supplementary Methods A:

Further Explanation and Derivations of Mathematical Results

Douglas L. T. Rohde, Steve Olson, Joseph T. Chang

The purpose of this note is to explain the derivations of the mathematical results in the paper.  Much of
the reasoning follows similar lines and uses similar techniques to those presented in full detail in the
earlier paper [1].   Here we will draw freely upon results and arguments from that paper, and some of
those arguments will be sketched in a less rigorous way here.

One of the principal conceptual messages of the results discussed here about the simple graph models is
that a seemingly rather severe form of population subdivision can still be compatible with recent common
ancestors.  In these simple models, the population is divided up into subpopulations that exchange
migrants very infrequently.  We assume some small fixed number of migrant individuals per generation;
for example, that number could be just one migrant per generation, of even smaller.

The model begins with a connected graph G  consisting of G  nodes, which we will refer to here as
“islands,” with a constant population size of /n G  on each island.  This is a discrete-time model with
time measured in generations.  We could choose to call an arbitrary generation 0t = , and then t
increases by 1 whenever time proceeds forward by one generation.  Each individual lives on a particular
island (the individual’s “home island”) in a particular generation.  We will use the notation ( , , )I t i m  to
refer to individual number m  on island i  in generation t .  

Each individual has two parents in the previous generation.  The two parents are chosen independently,
both according to the following probabilistic process.  There is a “migration probability” which we will
denote by nµ .  With probability nµ , an individual’s parent is chosen from a different island from the
home island of the individual, in which case the parent’s island is equally likely to be any of the neighbors
of the individual’s home island (where neighbors are determined by the edges in the graph G ).  With
probability 1 nµ−  an individual’s parent is chosen from the same island as the individual.  In either case
– whether chosen from the individual’s home island or a neighboring island – the parent is taken to be
uniformly distributed, that is, equally likely to be any of the /n G  individuals on the chosen island in the
previous generation.   In other words, to choose a parent of individual ( 1, , )I t i m+ , we would first
choose a random index m′  uniformly distributed over the set {1,2, , }nG…  and then with probability

1 nµ−  take the parent to be ( , , )I t i m′ , and with probability nµ , choose an island j  randomly from
among the neighbors of i  and take the parent to be ( , , )I t j m′ .  For each individual, two parents are
chosen in this way.

We call an individual a migrant if at least one of that individual’s parents is from an island other than the
individual’s home island.  (It might be more natural to call the parent the migrant, but we will retain this
terminology here as it has been convenient.)  

Here we take the migration probability nµ  to be of order 1/n  by letting c  be a constant and taking
/n c nµ = .  With the idea of modeling a strongly subdivided population, we are letting the migration rate

have a very small order of magnitude.  For example, we could choose c  so that the expected number of
migrants in the whole population is just 1 per generation.  Or we could choose c  one tenth as large, which
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would model a situation in which in a span of ten generations just one migrant is expected in the whole
population.  

As defined in the paper, a common ancestor of a given set of individuals is an individual who is an
ancestor of everyone in the set.  For example we will speak of a common ancestor of everyone on a
particular island at a particular time, or the whole population at a particular time.  We use “CA” as an
abbreviation for common ancestor.  nT  is the number of generations back to the most recent common
ancestor (MRCA) of the population.  nU  is the number of generations back to the “IA point,” the most
recent generation in which all current individuals have identical ancestors.

We will use standard notation related to orders of magnitude and asymptotic behavior as n → ∞ :  

• ( )( ) ( )f n o g n=  means ( ) 0
( )
f n
g n

→  as n → ∞ , 

• ( )( ) ( )f n O g n=  means ( )
( )
f n
g n

 is bounded, 

• ( ) ( )f n g n  means that both ( )( ) ( )f n O g n=  and ( )( ) ( )g n O f n=  hold, and

• ( ) ( )f n g n∼  means ( ) 1
( )
f n
g n

→  as n → ∞ .  

For notational convenience we will omit writing the obvious “greatest-integer” type functions that are
needed in order to round real numbers into integers, such as in the phrase “in generation

( ) 2(1 ) 1 logt D nε ζ= − + + .”

Statements of Results

We are given a connected graph G  and define the distance ( , )d i j  to be the number of edges in a shortest
path joining i  and j .  This definition is extended to sets of nodes by considering shortest paths joining
some node of one set to some node of the other set.  That is, for sets of nodes A  and B  we define
( , ) min{ ( , ) : , }d A B d i j i A j B= ∈ ∈ , and as a special case, for a set of nodes A , we define

{ }( , ) min ( , ) :d A j d i j i A= ∈ .

The radius of G  is min{max ( , )}
i k

R d i k
∈ ∈

=
G G

, and a node i  is called a center of G  if max ( , )
k
d i k R

∈
=

G
.  Let

( )C G  denote the collection of all centers of G .  The diameter of G  is max{max ( , )}
i k

D d i k
∈ ∈

=
G G

.

We assume throughout that 0R > ; the case 0R =  (that is, G  has just one node) was treated in [1].

For ( )i C∈ G , let iS  be a set of minimal size that consists of neighbors of node i  and satisfies
max ({ } , ) 1i
j
d i S j R

∈
∪ = −

G
.  Define iH  to be the number of nodes in iS ,  ( 1)/i i iH H∆ = − , and

( )
min i
i C∈

∆ = ∆
G

.  Note 0 1≤ ∆ < .

The results are asymptotic, with the number of islands and the graph fixed,  and n  tending to infinity.
We use “ lg ” to denote the base-2 logarithm.
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Theorem 1:  
( ) lg

nT
R n+ ∆

 converges in probability to 1 as n → ∞ .

Theorem 2:  Let 0.7698ζ ≈  be as defined in Theorem 2 of [1].  
( )ζ+ +1 lg

nU
D n

 converges in

probability to 1 as n → ∞ .

To attempt a quick and very rough explanation of the theorems in a nutshell: the main idea of Theorem 1
is that every lgn  generations, the set of nodes occupied by descendants of any given individual expands
to include all of its neighbors.  One can imagine this as a set that expands like clockwork, with a clock
that ticks once every lgn  generations. At time 0 the set starts out including only one node.  With each
tick of the clock, the set expands to encompass all neighbors of nodes currently in the set. Applying this
idea to the individuals on a center node of a graph of radius R gives the essence of the result: in roughly R
ticks of the clock, or lgR n  generations, this set of nodes expands to include the whole graph.  Similar
comments apply to give a rough explanation of Theorem 2 – at least why the diameter appears.  The
longest path in the graph is of length D .  So after the clock ticks about D  times, everyone who is
destined to become a CA of the full population should have done so.  

A few more remarks about the results are in order here.  First, the reason that the process behaves much
like a regularly ticking clock is related to the fact that the distribution of nT  is concentrated around lg n ,
with little variability.  Second, as in the case where G  has one node [1], at the IA point about 80 percent
of the population in the structured model consists of common ancestors of everyone in the population
today and the lineages of the remaining 20 percent have gone extinct.  The derivation will also show that
as n  increases MRCAs are increasingly likely to be found in center nodes of the graph -- in particular, in
nodes i  that minimize iH .

Examples

In the graph shown at right, 2R = , and the center node 3 has 3H =
neighbors 2, 4, and 6, such that the set 3 {3,2, 4, 6}S =  lies within 1 1R − =
of each node, that is, 3max ( , ) 1 1

j G
d S j R

∈
= − = .  So here,

( 1)/ 2/ 3H H∆ = − = , and 2
3(2 ) lgnT n+∼ .  Since the diameter of this

graph is 4, we have (5 ) lgnU nζ+∼ .

For another example, consider the 11-node graph at right.  For this graph, the
radius is 3R =  and the centers are nodes 1, 2, 5, 6, 7, 8, and 9.  It turns out that
each of the centers i  has 2iH = .  For example, node 1 has 1 {2, 5}S = ; in fact
every node is within 1 2R − =  of the set {2, 5} .  Node 6 has 6 {2, 7}S = ; every
node is within 2 of the set {2, 6, 7} .  For this graph, 2H = , 1

2∆ = , and
1
2(3 ) lgnT n+∼ .  The diameter of this graph is 4; for example, (3,11) 4d = .

Therefore, (5 ) lgnU nζ+∼ .

31
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In a complete graph having 1G >  nodes, each pair of nodes is joined by an edge.  Such a graph has
radius 1R =  and diameter 1D = .  Also, for each i  the set iS  is simply {1, , } { }G i−… , so that

1iH G= − , ( 2)/( 1)i G G∆ = − − , and ( 2)/( 1)G G∆ = − − .  Thus, (1 ( 2)/( 1)) lgnT G G n+ − −∼ ;
for example, for 2G =  we have lgnT n∼ , for 3G =  we have 1

2(1 ) lgnT n+∼ , and for 5G =  we
have 3

4(1 ) lgnT n+∼ .  The result for nU  is (2 ) lgnU nζ+∼ .

More on Simulations and Approximations

The above theorems give the main term of asymptotic results of the form ( ) lg( )nT R n+ ∆∼  as n → ∞ ,
for example, which do not distinguish among various possible explicit forms for the lower order effects.
For example, the statements ( ) lg( ) 2.7nT R n+ ∆ +∼  and ( ) lg( ) 8.3nT R n+ ∆ −∼ , which differ by
having different additive offsets, would both be consistent with the theorem.  However, we can find some
simple formulas that agree with the asymptotic results in the theorems, make intuitive sense, and provide
rather good approximations to the simulation results.  Defining G  as above to be the number of nodes in
the graph, if we use the approximations ( ) lg( / )nT R n G+ ∆∼   and  ( 1.77) lg( / )nU D n G+∼ , we get
the following predicted values for the simulation results in Table 1 and Table 2.

Predictions for Table 1 using the formula ( ) lg( / )nT R n G+ ∆∼ :

n=1000 2000 4000 8000 16000
One node 10.0 11.0 12.0 13.0 14.0
Three fully-connected nodes 13.4 14.9 16.4 17.9 19.4
Five fully-connected nodes 14.7 16.4 18.2 19.9 21.7
Ten-node graph in Figure 1 19.9 22.9 25.9 28.9 31.9

Predictions for Table 2 using the formula ( 1.77) lg( / )nU D n G+∼ :

n=1000 2000 4000 8000 16000
One node 17.6 19.4 21.2 22.9 24.7
Three fully-connected nodes 24.8 27.6 30.4 33.1 35.9
Five fully-connected nodes 23.2 26.0 28.8 31.5 34.3
Ten-node graph in Figure 1 45.0 51.7 58.5 65.3 72.1

Comparing these predictions to the actual simulation results in Table 1 and Table 2 of the paper, we see
that the agreement is quite good, with the predictions capturing the main features of the simulation results.

More Terminology, Head Starts and the Idea of Delta

To introduce convenient terminology for some ideas that were introduced in [1] and are helpful here, let
us say that a given individual 1 1 1( , , )I t i m  is established on a given island 2i  in a given generation 2t  if
the number of descendants of 1 1 1( , , )I t i m  on island 2i  in generation 2t  is greater than  2lg ( )n .  We say

1 1 1( , , )I t i m  is established in generation 2t  (without reference to a particular island 2i ) if 1 1 1( , , )I t i m  is
established on some island in generation 2t .   We say an individual is in jeopardy in a given generation if
that individual is not established on any island in that generation and is also not extinct in that generation. 
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The idea is that an individual who is not in jeopardy at a given time is either already extinct, which means
he has no surviving descendants at that time, or established, which means that his number of descendants
is large enough to assure that it is very unlikely that the individual will become extinct in the future.  That
is, individuals who are not in jeopardy are either extinct or are very likely to become CA’s.  We say an
individual is destined to become established, a CA, and so on, if these events will occur for that individual
in the future.

Let us say that a “head start” has been completed for a center island i  as soon as some individual on
island i  has migrant descendants who have become established on each of the islands in some set iS
consisting of neighbors of node i  and satisfying max ({ } , ) 1i

j
d i S j R

∈
∪ = −

G
.  We will express the time at

which some individual from island i  becomes a CA of the whole population as the sum of the time
required to complete a head start for i  and the additional time required to complete the process of
becoming a CA after completing the head start.

Proposition H:  For a center island i , the time required to complete a head start is lgi n∆∼ .  That is, for
0 1α< < , as n → ∞ , the probability that at least one individual from island i  has completed a head
start by time lgnα  converges to 0 if iα < ∆  and converges to 1 if iα > ∆ .

To verify the proposition, consider the individuals on island i  at time 0.   Those individuals fall into a
number of categories, defined in terms of the number of descendants those individuals have at time

lgnα .  As shown in [1], a fraction of nearly 1 0.8ρ− ≈  of those individuals will have become
established by time lgnα , with their descendants having grown geometrically to reach a size of

lg2 n nα α= .  Most of the remaining individuals will have become extinct, and a few will be in
between (including that small set of people who might remain in jeopardy, depending on the value of α ).
Consider one of these established individuals who has a number of descendants whose order of magnitude
is nα .  Each of these descendants has probability 1/n  of being a migrant to a neighboring island.  So
the probability that the individual has migrant descendants on each of the iH  neighboring islands in the

“head start” set iS  is ( 1)( / ) i iH Hn n nα α −= .  Consequently, the expected number of individuals who

have migrant descendants on each of the iH  neighboring islands in iS  by time lgnα  is 1 ( 1) iHn α+ − .
Therefore, if 1 ( 1) 0iHα+ − < , that is, ( 1)/i i iH Hα < ∆ = − , then the expected number of individuals
having completed a head start by time lgnα  converges to 0, so that the probability that any of the n
individuals on island i  has completed a head start by time lgnα  converges to 0 as n → ∞ .  On the
other hand, if 1 ( 1) 0iHα+ − > , that is, iα > ∆ , then the expected number of individuals who have
completed a head start by time lgnα  grows to infinity as n → ∞ .  From this, together with a
demonstration of asymptotic pairwise independence among the events that different individuals complete
a head start by time lgnα  (along lines similar to the proofs of Lemmas 19 and 20 of  [1]), it follows that
the probability that at least one individual has completed a head start by time lgnα  converges to 1.

Lower bound in Theorem 1

Recall we call a given individual a migrant if either parent of that individual lived on an island other than
the given individual’s home island.  Note that since all of our results concern time spans that are only
order lgn , there are only order lgn  migrants in total.
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Proposition L:  Let s  be a positive integer and let 0ε > .  The probability that there exists an individual
at a given time 0t  who has any descendant on an island at distance s  steps away from that individual’s
home island within (1 )( 1) lgs nε− −  generations approaches 0 as n → ∞ .   

To see this, note that if there is such an individual 0 0 0( , , )I t i m , then there must be a path of islands

0 1 si i i→ → →"  and a chain 1 1 1 2 2 2( , , ), ( , , ), , ( , , )s s sI t i m I t i m I t i m…  of migrant descendants of

0 0 0( , , )I t i m , with each ( , , )k k kI t i m  being a descendant of 1 1 1( , , )k k kI t i m− − − , and ( , , )k k kI t i m  having a
parent from island 1ki − .  We know nothing particular about 1t  except that 1 0 0t t− > (for example, it is
likely that we could find individuals at time 0t  who have a migrant child, so that we could have

1 0 1t t− = ) .  However, for each 2k ≥ , we claim that with probability approaching 1, none of the
differences 1k kt t −−  will be less than (1 ) lgnε− .  In fact, with probability approaching 1, no migrant up
to a time of order lgn  can have any further migrant descendants within (1 ) lgnε−  generations.  That is,
the probability that there exist times lgt t s n′< <  satisfying (1 ) lgt t nε′ − ≤ −  and there exist migrant
individuals ( , , )I t i m  and ( , , )I t i m′ ′ ′  with ( , , )I t i m′ ′ ′  being a descendant of ( , , )I t i m  approaches 0 as
n → ∞ .  The reason for this is that for any given individual, the probability of having a migrant
descendant within (1 ) lgnε−  generations is of order n ε− , so that since there are only order lgn
migrants in total up to time lgs n , the probability of some migrant having a migrant descendant within
(1 ) lgnε−  generations is ( lg )O n nε− , which converges to 0.  

Lower bound:  For 0ε > , we have ( ){ }(1 ) lg 1nP T R nε≥ − + ∆ →  as n → ∞ .

To prove this, fix a node 0i .  We want to show that the probability that some individual on 0i  becomes a
CA within ( )(1 ) lgR nε− + ∆  generations approaches 0.  We will assume 0i  is a center of the graph.
This is the more involved case; we omit the similar but easier proof for a node that is not a center of the
graph.  

Recall we say that a head start has been completed when some individual has descendants who are
established on each island in a set of islands that is within a distance of 1R −  from every node of the
graph.  Let τ  denote the time required for some individual living on 0i  at time 0 to have completed a
head start.  That is, before time τ , no individual on 0i  has completed a head start.

Let 0 (1 ) lgt nε= − ∆ .  We have

( ){ } ( ){ }0 0(1 ) lg { } { } (1 ) lgn nP T R n P t P t T R nε τ τ ε⎡ ⎤≤ − + ∆ ≤ ≤ + > ∩ ≤ − + ∆⎣ ⎦ .

By Proposition H, 0{ }P tτ ≤  approaches 0 as n → ∞ .

Next we want to show that the probability of the event ( ){ }0{ } (1 ) lgnt T R nτ ε> ∩ ≤ − + ∆  converges
to 0.  For convenience, let 0(0, ,1)I i  denote whichever of the individuals on island 0i  at time 0 becomes a
CA the fastest (if there is a tie, choose one arbitrarily).  Let A denote the set of islands reached by the
descendants of 0(0, ,1)I i  by time 0t .  Let j  be an island such that ( , )d A j R= ; we know we can find
such a j  whenever 0tτ > .  We observe that for both events 0{ (1 ) lg }t nτ ε> = − ∆  and
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( ){ }(1 ) lgnT R nε≤ − + ∆  to occur it must be the case that at least one of the following two events
occurs: 

(1)  There exist i A∈  and m  such that individual 0( , , )I t i m  has a descendant on island j  within
(1 )( 1) lgR nε− −  generations

(2)  The remaining time, after the first migrant descendant of some individual on island 0i  reaches island
j , required for some individual on 0i  to become a CA of j , is at most (1 ) lgnε−  generations.  In other
words, some set of migrants to island j  “collectively” become a common ancestor of island j  within
(1 ) lgnε−  generations, in the sense that there is a set of migrants

1 1 2 2{ ( , , ), ( , , ), , ( , , )}K KI u j m I u j m I u j m…  with 1 2 Ku u u≤ ≤ ≤"  such that the union of their sets of
descendants at time 1 (1 ) lgu nε+ −  is everyone on j .  That is, 

{ }

{ }

1
1

1

descendants of ( , , ) on island  at time (1 ) lg

    ( (1 ) lg , , ) : 1 / .

K

k k
k

I u j m j u n

I u n j m m n G

ε

ε
=

+ −

= + − ≤ ≤

∪

By Proposition L and because ( , )d A j R= , the probability of the event in (1) approaches 0 as n → ∞ .

For the event in (2) to occur, clearly at least one migrant to island j  must have at least order /(lg )n n
descendants within (1 ) lgnε−  generations, since there are a total of only order lgn  migrants to island j
within the time span relevant to the desired result.  But the proof of Proposition 15 of [1] shows that the
probability that a migrant can have order /(lg )n n  descendants within (1 ) lgnε−  generations is very
small – in fact, it is of order ( )po n−  for all p .  So taking the union over the order lgn  migrants still
gives a probability of ( lg )po n n− , which approaches 0.
 

Upper bound in Theorem 1 

Proposition U:  Suppose an individual (0, , )I i m from island i  is established on island j  in a given
generation t , and let 0ε > .  Then, with probability that approaches 1 as n → ∞ ,  by generation

(1 ) lgt nε+ + , individual (0, , )I i m  will be a CA of island j  and will be established on each island
neighboring island j .

Arguments from the upper bound in Theorem 1 of [1] applied to this setting show that with probability
approaching 1, within (1 /2) lgnε+  generations, (0, , )I i m  will become a CA of island j .  And within
an additional ( /2) lgnε  generations [in fact in (lg )o n  generations], among the descendants of (0, , )I i m
will also be migrants who have become established on each island neighboring j .  In fact, there are 1
migrants each generation, and each migrant is destined to become established with a probability that
approaches 1 0.8ρ− ≈ , so that it takes only (1)O  generations for migrants who are destined to become
established to reach each island neighboring j .  Furthermore, with probability approaching 1, each
migrant who is destined to become established will in fact do so within a time that is only

(lg lg ) (lg )O n o n= . 



Rohde, Olson, & Chang Recent common ancestry of all living humans, Supplement A

8

Upper bound:  For each 0ε > , we have ( ){ }(1 ) lg 1nP T R nε≤ + + ∆ →  as n → ∞ .

Let *i  be an island achieving the minimum in the definition 
( )

min i
i C∈

∆ = ∆
G

 and let *S  denote *iS .  By

Proposition H, within (1 ) lgnε+ ∆  generations, some individual *(0, , )I i m  on island *i  will become

established on each island in the set **{ }i S∪ .    Next, by induction, applying Proposition U repeatedly,

we see that within an additional (1 ) lgk nε+  generations, individual *(0, , )I i m   will have become a CA

of all islands whose distance from **{ }i S∪  is less than k, and will be established on all islands whose

minimum distance to **{ }i S∪  is equal to k.  In particular, since all islands are within a distance of

1R −  from **{ }i S∪ , it follows that by generation (1 ) lg ( 1)(1 ) lgn R nε ε+ ∆ + − + , individual
*(0, , )I i m  will have become established on all islands in the graph.  From here, an additional (1 ) lgnε+

generations suffices to complete the process, making *(0, , )I i m  a CA of all islands. 

Lower bound in Theorem 2

Let 0.7698ζ ≈  be as defined in Theorem 2 of [1].

Lower bound:  For each 0ε > ,  ( ) 2{ (1 ) 1 log } 1nP U D nε ζ≥ − + + →   as n → ∞ .

Let islands 0i  and 1i  be separated by a distance of D from each other, and define
( )1 2(1 ) 1 logt D nε ζ= − + + .  We claim that with probability approaching 1, there are individuals

0 0(0, , )I i m  and 1 1 1( , , )I t i m  such that 0 0(0, , )I i m  is not extinct at time 1t  and 0 0(0, , )I i m  is not an
ancestor of 1 1 1( , , )I t i m .  In other words, the claim is that with probability approaching 1, at time 1t , there
is an individual 0 0(0, , )I i m  on island 0i  who is not extinct but is not yet a CA of island 1i .  By [1], we
know that there are many (i.e. a number that approaches infinity as n → ∞ ) individuals living on island
0i  at time 0 who, at time (1 ) lgnε ζ− , are destined to become CA’s but are not yet established and also

have no descendants on any island other than 0i .  Let 0 0(0, , )I i m  be one of these individuals.  Now we
just need to show that with probability approaching 1, it will take more than ( )(1 ) 1 lgD nε− +
generations for 0 0(0, , )I i m  to become a CA of island 1i .  This follows from Proposition L, from the same
reasoning as used earlier to establish the lower bound in Theorem 1.

Upper bound in Theorem 2 

Proposition U2:  The probability that an individual who is established on a given island fails to become a
CA of that island within (1 ) lgnε+  additional generations is (1/ )o n .  

This follows from minor modifications of the analogous result in [1].  The same arguments work because
this statement concerns the number of descendants of a given individual on just a single island.  The only
issue to check here is that the result is not changed by those few individuals per generation who may have
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a child on a different island; it turns out that this makes no important change in the behavior of the
process of counts of descendants of a given individual on a single island.

Upper bound:  For 0ε > ,  ( ) 2{ (1 ) 1 log } 1nP U D nε ζ≤ + + + →   as n → ∞ .

Let 0 δ ε< < .

Establishment Stage: From [1], we know that within (1 ) lgnδ ζ+  generations, everyone (that is, all
individuals (0, , )I i m  on all islands at time 0) is out of jeopardy – either extinct or established.  

Let us call the individuals (0, , )I i m  who become established the “original established individuals.”  The
remaining individuals from time 0 are all extinct at the end of the Establishment Stage.

To complete the proof we show that with probability approaching 1, the original established individuals
will all become CA’s of the full population within ( )(1 )( 1) lg lgD n o nδ+ + +  additional generations.
We have 1D +  additional stretches of (1 ) lgnδ+  generations to work with.  

Growth Stage 0:  We wait until all established individuals have become CA’s of their own islands. 

Proposition U2 implies that with probability approaching 1, Growth Stage 0 requires less than
(1 ) lgnδ+  generations.  After Growth Stage 0 is completed, we begin Migration Stage 1. 

Migration Stage 1:  We monitor migrants and wait until we have seen, for each edge of the graph and for
both directions along that edge, a migrant along that edge in that direction, with that migrant being
established on the destination island.  

Migration Stage 1 is readily seen to take only (lg )o n  generations.  In fact, the time required to collect a
full set of migrants who are destined to become established on the destination island (but have not yet
become established) has a distribution that is easily upper bounded by a geometric decay, so this time
contributes just (1)O  to Migration Stage 1.  Then, the additional time required for those migrants who are
destined to become established actually to become established is just (lg lg ) (lg )O n o n= . 

At the end of Migration Stage 1, each of the original established individuals is a CA of his home island
and has become established on each island within a distance of 1 from his home island.

Growth Stage 1:  We wait until the established migrants found during Migration Stage 1 all have become
CA’s of their islands.

Just as with Growth Stage 0, with probability approaching 1, Growth Stage 1 takes less than (1 ) lgnδ+
generations.  At the end of Growth Stage 1, each of the original established individuals has become CA of
each island within a distance of 1 from his home island.  We continue to define Migration and Growth
Stages in the same way, inductively.

Migration Stage k :  After the end of Growth Stage 1k − , we begin monitoring migrants and wait until
we have seen, for each edge of the graph and for both directions along that edge, a migrant along that
edge in that direction, with that migrant being established on the destination island.  
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Growth Stage k :  We wait until the established migrants found during Migration Stage k  have all
become CA’s of their islands.

As above, with probability approaching 1, Migration Stage k  takes (lg )o n  generations and Growth Stage
k  takes less than (1 ) lgnδ+  generations.  At the end of Growth Stage k , each of the original established
individuals has become CA of each island within a distance of k  from his home island.  

Since each island is within a distance of D  from every other island, it follows that at the end of Growth
Stage D , each of the original established individuals is a CA of the full population.  With probability
approaching 1, the total time taken for this to occur is less than (1 ) lgnδ ζ+  for the Establishment Stage,
plus (1 ) lgnδ+  for Growth Stage 0, plus ( )(1 ) lg (lg )D n o nδ+ +  for Migration Stage 1, Growth Stage
1, …, Migration Stage D , and Growth Stage D .   That is, as n  approaches infinity,

( ){ (1 ) lg (1 ) lg (1 ) lg (lg ) } 1nP U n n D n o nδ ζ δ δ≤ + + + + + + → .  Since δ ε< , this implies
{ (1 )( 1 ) lg } 1nP U D nε ζ≤ + + + → .  

Reference
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Modeling the recent common ancestry of all living humans
Supplementary Methods B:

Further Details of the Computational Model

Douglas L. T. Rohde, Steve Olson, Joseph T. Chang

This supplement provides additional details about the
implementation and analysis of the computational model
of human mating and migration introduced in the main
paper. The model simulates the lives of individual peo-
ple, known as sims, over the course of thousands of years,
including such events as the sims’ birth and death, pos-
sible migrations, mate choices, and offspring production.
As the model runs, it records this information in a series
of large computer files. A second program, discussed in
Section 6, traces ancestral lines through this data to iden-
tify the common ancestors.

1 Lifespan
The model does not assume discrete, uniform generations.
Each sim is born in a certain year and has a particular life
span. The maximum age of any sim is 100, as it was pre-
sumably quite rare, prior to modern medicine, for some-
one to live, let alone father children, beyond that age. The
age of sexual maturity is taken to be 16 years for both
men and women. Anyone who would have died before
that age could not have produced offspring and is thus not
a factor for the purposes of this study. Therefore, only the
lives of those destined to at least reach adulthood are actu-
ally simulated. As a result, the population sizes discussed
throughout this paper are effectively somewhat larger than
stated because they do not include any children.

Otherwise, the probability that an individual dies at age
s, conditional on not having died before age s, is assumed
to follow a discrete Gompertz-Makeham form (Pletcher,
1999):

p(s) = α + (1 − α) exp{(s − 100)/β}

In this equation, β is the death rate. A higher death rate
results in shorter life spans on average, although the effect
is not linear. The α parameter is the accident rate, which
can be adjusted to reflect the probability that an individ-
ual of any age dies of unnatural causes. With an accident
rate of 0.01 and a death rate of 10.5, this formula quite
closely models the life span data for the U.S. between
1900 and 1930 (U.S. National Office of Vital Statistics,
1956). To account for historically shorter life spans due
to poor nutrition, medicine, and so forth, the death rate,
β, was raised to 12.5 for the purposes of the model. This

produces an average life span of 51.8 for those who reach
maturity.

2 Mating

Another important component of the model is the system
by which mates are chosen and children are produced. In
this respect, the model was implemented from the per-
spective of the mother. It first determines the years in
which the mother will give birth, and then a father is cho-
sen for each child. The assumption is made that women
give birth between the ages of 16 and 40, inclusive, with
an equal probability of producing a child in each of these
years. Of course, some women may produce many chil-
dren and others will produce none, and some may die be-
fore age 40. After taking this latter factor into account, we
can control population growth by adjusting the average
number of children (who reach adulthood) per woman. A
value of exactly 2 children per woman results in a stable
population size.

Once it has been determined that a woman will give
birth in a certain year, the father is chosen. If possible,
the father is always selected from the town in which the
mother lives. It sometimes happens, especially early in the
simulation when populations are low or when a new area
is first colonized, that there are no suitable fathers living
in the same town as a woman who is to have a child. In
this case, fathers are sought in the other towns within the
same country.

The father of a woman’s first child is selected at ran-
dom from the men who are at least as old as the woman.
The prohibition against younger husbands was primarily
for computational reasons, but it seems to be a fairly rea-
sonable, if not entirely valid, assumption. There is an ad-
ditional bias such that men are twice as likely to be cho-
sen if they are not already married, in the sense that they
have already produced a child with another woman. This
tends to make mate selection more equitable. After the
first child, there is an 80% chance that the father of the
previous child will also father the next one, thus simulat-
ing marriage. There is a fundamental asymmetry in the
sexes, in that a woman can only be “married” to one man,
although a man could be married to more than one wife, or
at least fathering children by more than one woman; but
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there is a bias towards monogamous relationships. Also
note that women cannot bear children past the age of 40,
while men can father children throughout their adult lives.

As a result of these assumptions, the distribution of
children per woman is essentially binomial, with 19%
producing no (adult) children and only 2.8% producing
more than 5 children. The distribution for men has greater
variance, with nearly 36% of men producing no children
and 8.6% producing more than 5 children. Thus, there
is a higher percentage of men than women that have no
children or many children, but relatively fewer men with
a moderate number of children. The average age of a par-
ent when a child is born is approximately 30 years, so this
will be taken as the length of a generation.

3 Migration Overview

The model is organized into three structural levels: con-
tinents, countries, and towns. The continents, depicted in
Supplementary Figure 1, represent physically separated
land masses that are likely to have very low rates of inter-
migration, which we will carefully control. The mod-
els’ 12 continents are divided into countries, arranged
in a grid. These reflect major tribal, ethnic, or lan-
guage groups, with both geographic and cultural barriers
to intermarriage. Each country represents approximately
119,000 square miles, with the exception of Oceania, in
which the countries are intended to resemble the major
island groups and are typically much smaller in terms of
both area and population. The distances shown between
the continents in Supplementary Figure 1 are arbitrary,
the only important factor being the number and migration
rate of the ports connecting them, which we will discuss
shortly.

The countries are divided into towns. These do not nec-
essarily represent towns per se, but the relevant social unit
from within which most people find mates. Thus, a town
may actually reflect a clan, a rural county, or even a partic-
ular social class within a larger group. The towns within
each country are assumed to be in relatively frequent con-
tact with one another and are not in any particular geo-
graphic arrangement.

Not all humans confine themselves to a single location
throughout their lives and a critical factor in the model is
the rate at which people migrate to different places in the
world. Although it seems likely that many people, and
perhaps the vast majority historically, live out their lives
close to where they were born, various forms of migration
lead to the gradual spread of ancestral lineages over long
distances. When men and women from different groups
marry, one of them, often the wife but sometimes the hus-
band, moves to the other’s community. Merchants, sol-
diers, and bureaucrats, who are typically male, sometimes

travel widely, potentially fathering children far from their
place of birth. And, occasionally, large groups have con-
quered or colonized new areas.

The model uses a simplified migration system, in which
each person can move only once in his or her life. A sim
is born in the town in which his or her parents, or at least
mother, lives, but then has a chance to migrate to a differ-
ent continent, country, or town prior to adulthood. Hence-
forth, that person can produce children only with other
inhabitants of his or her new town, provided it contains
some potential mates.

As is the case in human mating patterns (Fix, 1979), the
rate of exogamy decreases substantially with larger group
size in the model. Adams and Kasakoff (1976) found that,
across a variety of human societies, there was a recogniz-
able threshold in group size at around a 20% exogamy
rate, although the sizes of these groups differed as a func-
tion of population density. This “natural” group size is
taken here to be that of the town. The ChangeTownProb
parameter controls the percentage of sims who leave the
town of their birth for another town within the same coun-
try. It typically ranges from 20% down to 1%.

There is a much lower chance that a sim will leave his
or her home country for another country on the same con-
tinent. The probability that this occurs is governed in
the model by the ChangeCountryProb parameter, which
ranges from 0.1% to 0.001% (1 in 100,000), and is there-
fore a fixed fraction of the individuals who reach adult-
hood. The countries within a continent are arranged in
a grid and locality plays a role in inter-country migration.
The probability of reaching any other country in the conti-
nent is proportional to the inverse square of the Euclidean
distance to the new country. Thus, the probability of trav-
eling a distance of 2 countries is 1/4 that of traveling to a
neighboring country, and the probability of traveling from
a country at the northern tip of South America to one at
the southern tip is less than 1% that of traveling to a neigh-
boring country.

It is important to keep in mind that migration between
countries is quite rare in the model. In the year 1500
AD, there will be about 191,000 people in each country
in Eurasia, which translates to 111,000 born every gen-
eration. If the ChangeCountryProb is set to 0.05%, as in
the first (more conservative) simulation reported in the pa-
per, we can expect only 55.3 sims to leave each country
per generation, or 1.8 each year. Because most of these
migrants will go to neighboring countries, truly long-
distance migrations only occur a few times per century.
In other continents and during earlier time periods, pop-
ulation density, and therefore the number of inter-country
migrants, is even lower. In the same year, Africa and
Oceania have about 30.0 migrants per generation leaving
each country, while South America has 22.1, North Amer-
ica has 17.6, and Australia has only 0.98. Thus, even the
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Supplementary Figure 1: Geography and migration routes of the simulated model. Arrows denote ports and the
adjacent numbers are their steady migration rates, in individuals per generation. If given, the date in parentheses
indicates when the port opens. Upon opening, there is usually a first-wave migration burst at a higher rate, lasting one
generation.

more liberal model reported in the paper, which has five
times this rate of inter-country migration, is still quite con-
servative in this respect.

Intercontinental migration takes place through ports.
Ports lead from a source country in one continent to a des-
tination country in another. The rate of migration through
a port can be regulated and monitored and is expressed
in terms of migrants per generation. In most of the sim-
ulations, the majority of the sims using a port are born
locally, in its source country, while a proportion of port
users, governed by the NonLocalPortProb parameter, are
drawn from random countries within the continent, in-
cluding the source country. These typically account for
5% to 20% of the port users.

It is often the case in modern times, and presumably
throughout history, that immigrants to a new continent
will gravitate towards a sub-community of fellow immi-
grants who share the same cultural or linguistic back-
ground. The result is a delay in the exchange of lineages
between the immigrants and hosts. This is simulated in
the model by having new immigrants initially choose from
one of five towns, out of up to 46, in the destination coun-
try. This set of towns is dependent on the source country
from which the migrant came. As a result, immigrants
with similar origin will tend to cluster together, though
they will not be entirely segregated.

The migration choices of individual sims in the model
are independent. However, there is a problem when a port
opens to a previously uninhabited continent. Pioneers to
this new territory cannot organize a sustainable colony in

advance, and, because the rate of migration to new coun-
tries is typically very low, individual migrants will usually
find themselves isolated and unable to reproduce. There-
fore, the pioneers would tend to die off and it could take
quite some time for them to gain a foothold. The result
is that the earliest migrants into the Americas and Ocea-
nia would not spread out evenly but would tend to cluster
around the port countries, only advancing once the pop-
ulation there reached sufficient density. It may take cen-
turies before a sustainable population could take hold on
a remote island.

Therefore, in order to avoid this problem, any sim who
reaches an uninhabited town is essentially cloned and five
more sims, of random sex, are created to join him or her.
These new sims are given the same parents so the rate of
lineage spread is minimally affected. This may be a rea-
sonable assumption, given that most organized pioneer-
ing groups were probably quite closely related. With any
luck, this new colony will be a sustainable, albeit incestu-
ous, breeding population. Additionally, newly colonized
countries will usually have considerably higher than aver-
age population growth rates, as discussed in Section 5

4 Migration Details
The simulations typically begin in the year 20000 BC,
at which point the populated areas only include Africa,
Eurasia, Indonesia (including New Guinea), and Aus-
tralia. Some of the inter-continental ports are already open
at the start of the model and remain at a fixed migration
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rate, in terms of the expected number of sims per gen-
eration traveling in each direction. The ports are shown
as arrows in Supplementary Figure 1, labeled with these
migration rates. Between Africa and Eurasia, there are
ports connecting modern-day Morocco and Spain (100
sims/generation), Tunisia and Italy (100 s/g), Egypt and
Israel (500 s/g), and between Ethiopia and Yemen (50
s/g), providing several points of contact. Other static ports
include a pair between Thailand and Malaysia (100 s/g),
and from the tip of Indonesia (Timor) to Arnhem Land and
from New Guinea to Cape York, both with rates of just 5
s/g. Aside from those already mentioned, the remainder
of the ports in the model only open at particular points in
time, indicated in Supplementary Figure 1 by the dates in
parentheses.

The migration rates used in this model are not based on
firm historical data, because such information is, for the
most part, unknown (Jorde, 1980). They are based almost
entirely on estimates, loosely taking into account prox-
imity, population density, and available seafaring technol-
ogy. Without a firm basis in fact, an attempt was made
to err on the side of conservatism. Some of the migration
rates may be considerably smaller than they should be,
and many routes are undoubtedly missing. Some readers
will disagree with particular details of the timing, loca-
tion, and migration rate of these routes. Greater accuracy
will certainly improve the quality of the results generated
by the model and our confidence in them. However, expe-
rience suggests that its results are quite stable and insen-
sitive to all but the most significant changes.

The port between the eastern tip of Siberia (Chukotka)
and Alaska opens in the year 12000 BC. There contin-
ues to be scientific debate over the date of the first human
arrival in North America, but this seems to fall at about
the median of suggested dates. As with most other new
ports, this one begins at a higher rate to create an ini-
tial wave of migrants. In the first generation, there are
about 100 migrants from Chukotka to Alaska, with 10 in
the reverse direction. Subsequently, the port rate remains
at 10 s/g in both directions. A continuous, low rate of
contact between Siberia and Alaska following the close
of the Bering land bridge is supported by the available
archaeological evidence. “It would appear. . . that Bering
Strait was never a hindrance to the passage of materials
and ideas among local populations living along both its
shores,” (Arutiunov & Fitzhugh, 1988, pg. 129). It seems
reasonable to assume that this exchange of technology
and culture was accompanied by, and perhaps driven by, a
gradual exchange of people between the two continents.

One thousand years after the first migrants enter North
America, ports open between Panama and Columbia (50
s/g) and between the Caribbean islands and Venezuela (10
s/g). These do not have an initial migration burst, as it is
assumed that the earliest inhabitants would have gradually

diffused throughout North America and into South Amer-
ica over the span of one or two thousand years. Much
later, in 2500 BC, an additional port opens between Baf-
fin Island and Greenland, to simulate the advance of Pre-
Dorset or Independence I Inuit, whose earliest northern
Greenland sites have been dated to 2400 BC (Arutiunov
& Fitzhugh, 1988; Grønnow & Pind, 1996).

The Polynesian colonization of the Pacific islands is be-
lieved to have had its source in the expansion of the Ta-
p’en-k’eng culture from Taiwan into the Philippines and
later into Indonesia. This was followed, around 1600 BC,
by the fairly rapid spread of the Lapita culture to Microne-
sia and Melasia and then eastward throughout Polyne-
sia (Diamond, 1997; Cavalli-Sforza, Menozzi, & Piazza,
1994). This is simulated in the model by the opening of
a direct port between Taiwan and the Philippines in 3000
BC, with an initial burst of 1000 migrants, settling to an
exchange of 10 s/g. In 1600 BC, three more ports open,
from the Philippines to the Mariana islands and Microne-
sia, and from New Guinea to the Solomons.

Most of the other inhabitable Pacific islands are then
colonized via the standard inter-country migration mecha-
nism. At this early stage, assuming a ChangeCountryProb
of 0.05%, the most populous of the islands produce about
3 emigrants per generation, most of whom settle in neigh-
boring islands. At this rate, it takes about 600 years for
the majority of the island groups to be reached. Note that
the inter-country migration mechanism does not only sup-
port the initial population spread but also the continuous
exchange of people between neighboring islands. This is
consistent with the recent view that early Polynesian soci-
eties were not entirely isolated (Terrell, Hunt, & Gosden,
1997), and yet the rate of long-distance migration is so
low that it would not seem to contradict the views of crit-
ics who argue that such contacts were probably very rare.

Some of the more remote islands are not colonized un-
til much later, including Easter Island (Rapa Nui), Hawaii,
New Zealand, and the Chatham Islands, which are treated
in the model as separate continents. Easter Island is
reached from the Marquesas Islands in 300 AD, with an
initial wave of 50 migrants followed by a steady exchange
of just 1 per generation. Hawaii is reached from the Mar-
quesas in 500 AD, with an initial wave of 200 migrants,
although there is some question as to whether the first
colonizers might have come from Tahiti or the Cook Is-
lands. Meanwhile, in 400 AD, migrants begin traveling
from Borneo to Madagascar, with an initial wave of 100.
Although there is also some question about the source and
date of the first inhabitation of New Zealand, it is settled
in the model from the Society Islands in 1000 AD with an
initial wave of 200 migrants. The last place to be popu-
lated is the Chatham Islands, reached from New Zealand
in 1400 AD by a wave of 100 migrants.

Southern Greenland is known to have been colonized
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by Vikings from Iceland in 985 AD. They were visited
regularly for several hundred years and are thought to
have died out or been assimilated by the Inuit sometime
before 1500. In the model, a port opens from Iceland to
Greenland in the year 1000, with 1000 initial inhabitants
followed by 100 more per generation until 1400. There is
no migration in the reverse direction because of the likeli-
hood that no Inuit reached Iceland or other parts of Europe
during the time period in question.

After 1500 AD, several additional large ports, not
shown in Supplementary Figure 1, are opened to simulate
colonization of the Americas and elsewhere. These in-
clude migration routes between Spain and Peru, Mexico,
and the Caribbean, and between Portugal and Brazil. In
1600, ports open from England to the eastern U.S., from
France to eastern Canada, from Spain, France and west
Africa to the southern U.S., and from west Africa to the
Caribbean and Brazil. In 1700, a port opens from Den-
mark to Greenland and in 1800 many more ports open,
including various ones from Europe and China to the U.S.,
from England to South Africa, Australia, India, and New
Zealand, and from the western U.S., China, and Japan to
Hawaii. Most of these ports are quite substantial, with
rates between 1,000 and 5,000 immigrants per generation
in the primary direction of colonization, with 100 to 200
in the opposite direction. As discussed in Section 5, the
first European migrations to North and South America are
coincident with a significant decline in the size of the na-
tive populations due to disease.

In order to model generally increased mobility, the
NonLocalPortProb was gradually increased towards the
end of the simulation. A higher NonLocalPortProb per-
mits more sims from outside of the source country to use a
port, increasing the overall frequency of long-distance mi-
gration. In most of the simulations, this parameter starts
at 5%, but increases to 20% in the year 1500 AD, 50%
in 1600, 75% in 1700, 85% in 1800, and 90% in 1900.
Smaller increases are used for the more conservative mod-
els. The ChangeTownProb also increases in recent cen-
turies from an initial value of 5% to 10% in 1700 and 20%
in 1900, with greater increases for the simulations with a
baseline of 10%. The ChangeCountryProb likewise in-
creases to simulate greater mobility, doubling in the years
1500, 1750, and 1900.

5 Population

Human population density differs throughout the world.
Historically, this can be attributed to such factors as cli-
mate, disease, and the methods and success of food pro-
duction. These differing densities are likely to have a
significant impact on the distribution of common ances-
try. Lineage will tend to spread faster, as a function of

distance, with higher density populations because of the
greater number of migrants. It is important, therefore, that
the model take into account differing population density
throughout the world.

The roman numbers in Supplementary Table 1 give the
population estimates in each of the modeled “continents”
at various points in time. These numbers are based pri-
marily on Table 2.1.2 of Cavalli-Sforza, Menozzi, and
Piazza (1994), which was itself adopted from Biraben
(1980), as well as on other estimated populations found
throughout their book. Other values were taken from var-
ious sources or were interpolated or extrapolated as nec-
essary. The earliest values were set to achieve the desired
overall world population with a gradually increasing pro-
portion of inhabitants in Eurasia relative to Africa.1

Due to computational constraints, it was not possible to
simulate world populations much larger than 60 million
sims. Therefore, natural-size populations were used until
the population reached 50 million, which occurs around
the year 1000 BC. Reduced populations were used there-
after to achieve a maximum world population of 55 mil-
lion. If the population is reduced after the death of the
MRCA, it should have little effect on the results because
this growth will not necessarily alter the percentage of the
population descending from that ancestor, which is the
primary determinant of the rate of spread of his or her lin-
eage. If anything, smaller populations may result in less
recent MRCAs because of the reduced intra-continental
migration. So it is hoped that the population cap in this
model will not lead to overly recent estimates.

A straightforward approach to limiting the world popu-
lation would be to scale the population in every continent
by the same factor. In the year 1970, this would require
scaling the population by a factor of 1/68, from 3.75 bil-
lion to 55 million. However, this may have a serious im-
pact on the small continents. The population of the aver-
age Greenland town would be reduced from 5,600 to 82,
while the population of the Chatham Islands would be re-
duced from 1,000 to 15. These changes would force such
populations below the lowest sustainable level of a few
hundred sims and would have a serious impact on the ef-
fective migration rates out of the small countries. With a
ChangeCountryProb of 0.01%, a country of 200,000 peo-
ple can expect a sim to emigrate every 2.6 years. If the
population is reduced by a factor of 10, the expected delay
between sims would increase to 26 years, a significant but
not necessarily detrimental change. However, if a coun-
try’s population is scaled from 20,000 to 2,000, the ex-
pected delay between emigrants would increase from 26

1The final numbers in Supplementary Table 1 are based on data from
1970. However, in the model, these were used to determine the year
2000 population targets. The approximate doubling of the world pop-
ulation between 1970 and 2000 should have little or no effect on the
outcome.
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Supplementary Table 1: Continental populations, in thousands, at various points in time. The roman numbers are
estimates of the true populations. The italic numbers below them are the rescaled values used in the simulations to
achieve a maximum world population of 55 million.

Continent 20K BC 15K BC 10K BC 5K BC 2K BC 1K BC 500 BC 1 AD 500 AD 1000 1250 1500 1750 1970
Eurasia 1230 2030 2850 3350 18700 38800 125000 217000 158000 193000 323000 320000 629000 2722000

1230 2030 2850 3350 18700 38800 43979 44288 40251 38814 38513 34170 41655 37307
Africa 670 870 950 1100 3220 5290 17000 26000 31000 39000 58000 87000 104000 353000

670 870 950 1100 3220 5290 6735 6371 8474 8434 7737 9474 7880 6192
S. America 0 0 50 200 1500 3000 4000 5000 8000 12000 23000 40000 15000 283000

0 0 50.0 200 1500 3000 1882 1679 2556 2925 3271 4435 1876 4234
N. America 0 0 50 200 1000 1500 2000 3000 5000 10000 20000 35000 5000 228000

0 0 50.0 200 1000 1500 1348 1581 2293 3195 3755 4862 1733 4639
Indonesia 50 50 50 100 500 1000 1000 2000 3000 5000 8000 12000 16000 119000

50.0 50.0 50.0 100 500 1000 545 689 995 1227 1215 1462 1340 1788
Australia 50 50 50 50 70 100 100 100 100 100 200 250 250 20000

50.0 50.0 50.0 50.0 70.0 100 66.1 59.5 61.6 59.2 81.2 88.2 83.0 317
Oceania 0 0 0 0 0 300 1000 1000 1000 1000 2000 3000 3000 19000

0 0 0 0 0 300 439 329 364 324 381 449 366 430
New Zeal. 0 0 0 0 0 0 0 0 0 2 50 100 150 3000

0 0 0 0 0 0 0 0 0 1.9 18.6 24.9 26.3 53.8
Hawaii 0 0 0 0 0 0 0 0 0 20 50 100 200 800

0 0 0 0 0 0 0 0 0 12.3 19.1 25.5 30.3 30.7
Greenland 0 0 0 0 10 10 10 10 10 15 15 20 25 56

0 0 0 0 10.0 10.0 6.5 5.9 6.1 7.5 6.9 7.8 8.1 9.0
Chatham Is. 0 0 0 0 0 0 0 0 0 0 0 2 2 1

0 0 0 0 0 0 0 0 0 0 0 1.4 1.4 0.8
Easter Is. 0 0 0 0 0 0 0 0 2 5 10 10 2 0

0 0 0 0 0 0 0 0 1.2 2.0 2.5 2.4 1.1 0
Total 2000 3000 4000 5000 25000 50000 150110 254110 206112 260142 434325 497482 772629 3747860

2000 3000 4000 5000 25000 50000 55000 55002 55001 55001 55000 55002 55000 55001

to 260 years. This is likely to have a much more profound
effect on the resulting rate of lineage spread.

Thus, a uniform scaling of population sizes will tend to
have a greater impact on the small towns, countries, and
continents. To avoid this problem, the estimated conti-
nental population sizes were scaled in the model in such
a way that more of the impact falls on the more densely
populated continents. The actual scaling was done with
the following formula:

Sn = Pn

K Pn

Tn
+ 1000

Pn

Tn
+ 1000

Pn is the full estimated population of continent n, Sn is
its scaled down population, and Tn is the number of towns
in the continent. Therefore, Pn

Tn
is the average town popu-

lation, a measure of population density. K is the scaling
factor, which is adjusted until the overall scaled popula-
tion of the world reaches the desired level of 55 million.
The italicized values in Supplementary Table 1 give the
scaled populations that were actually used in the model.
As a result of this formula, the year 1970 population of
Eurasia is scaled by a factor of 73, from 2.7 billion to 37.3
million. The population of the smaller continents are re-
duced to a lesser extent: North America by a factor of 49
and Hawaii by a factor of 26, while the Chatham islands

are only scaled down from 1000 to 800 sims.
The scaled population values cannot be strictly en-

forced in the model, but merely serve as targets, which
the simulator attempts to achieve by making small ad-
justments to the birth rate in each continent. However,
the growth rate of the population is not always the same
throughout the continent. Diamond (1997) has noted that
colonists to virgin lands are likely to experience higher
than average population growth rates, presumably due to
a lack of competition for resources. This is simulated
in the model using a population balancing mechanism by
which smaller towns will have higher than average growth
rates. The formula for the average number of children per
woman, Cc, in country c is:

Cc =
Cn

2

(

1 +
P Cn

Pc

)

Cn is the desired number of children per woman for the
continent as a whole, which is determined by the popula-
tion growth targets. P Cn is the average current popula-
tion per inhabited country in the continent, while Pc is the
population of country c. As a result of this formula, the
overall weighted average number of children per woman
is still equal to Cn, but the birth rate will be higher in the
less densely populated countries, up to a maximum bound
of 4 children per woman.
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In order to simulate the dramatic reduction in native
American populations as a result of European-introduced
diseases (Stannard, 1992), the populations of these conti-
nents were scaled back starting in the year 1400. The pop-
ulation targets shown for North and South America under
the year 1500 in Supplementary Table 1 were actually the
targets used for 1400. At that point, the birth rate was re-
duced, causing the loss of much of the native population.
The rate of this decline reached its peak around the year
1500, as Europeans began to arrive. The net effect of this
was somewhat greater than intended, resulting in the loss
of 97% of North Americans and 93% of South Americans
before the populations began to recover in 1570. Diamond
estimates that the actual decline may have been as large as
95%. It is unlikely that the more severe decline in North
America will have a noticeable effect on the results of the
simulation.

Because the population density varies between conti-
nents, the number of towns per country was adjusted to
produce towns of reasonable average size. These counts
are given in Supplementary Figure 1. In the year 1500
AD, the primarily agricultural continents have approxi-
mately 4,000 inhabitants per town. The primarily non-
agricultural continents, including North America, Aus-
tralia, Greenland, and Easter Island had approximately
2,000 inhabitants per town, while the Chatham Islands
had 500. Overall, the model contains 497 countries and
15,059 towns.

5.1 Initialization

There is one remaining aspect of the model to be de-
scribed, which is its method of initialization. Some initial
sims are needed in order to get things going. A simple ap-
proach might be to create all of the initial sims in the same
year. However, in that case, their children would form a
baby boom and it would take some time for the age dis-
tribution within the population to stabilize. Unless that
stable age distribution is known in advance, there will al-
ways be some instability introduced by the creation of the
initial people.

Therefore, the simulation actually begins 100 years be-
fore the desired start date. An initial set of sims is gen-
erated, each in a random town and each born at a random
time within a 40-year window. The model is then run as
usual, with the initial sims starting to produce offspring.
Although the population does not have a natural age pro-
file initially, as there are no old people, it quickly settles
into a near-normal distribution within the first 100 years.
The population will roughly double during these first 100
years as fewer people die of old age than are born. Thus,
the size of the initial population is adjusted to achieve the
desired level at the end of the 100-year period.

6 Finding common ancestors

A simulation with a maximum population of 50 million
sims will involve a total of approximately 1.2 billion sims
over its course. As the model runs, it generates files con-
taining the vital statistics of each sim, including his or her
parents, sex, birth and death years, and place of birth, typ-
ically totaling about 60 gigabytes of compressed data per
trial. Although running the simulation is relatively easy,
analyzing this genealogical data to identify the common
ancestors presents a significant computational problem.

Let us refer to all of the sims alive in the year 2000,
when the simulations end, as living sims. A true com-
mon ancestor (CA) is someone who is an ancestor of all
living sims. A straightforward search for common ances-
tors would start with the living sims and work backwards
in time, tracking for every other sim which of the living
sims are his or her descendants. These descendants are the
union of all descendants of his or her children. Tracking
these descendants would be fairly simple, except that it
requires memory proportional to the square of the number
of living sims. With a maximum population of 50 mil-
lion, this would involve the computation and storage of
over 300 terabytes of information.

Therefore, finding the common ancestors is not
tractable using a straightforward approach. However, a
method was developed to zero in on the common ances-
tors using an initial approximation followed by a series
of refinements. This process begins by tracking the an-
cestry not of all living sims, but of a small, randomly se-
lected subset of them. Depending on the available com-
puter memory, there are typically between 192 and 512 of
these individuals, who are known as tracers. By working
backwards through the records, the ancestry of these trac-
ers is determined. This is done by computing, for every
other sim, a bit vector in which the ith bit is turned on if
that sim is an ancestor of the ith tracer. Aside from the
fact that the ith tracer automatically has his or her own bit
turned on, a parent’s bit vector will be the bit-wise dis-
junction of his or her children’s vectors. These bit vectors
still present a heavy memory burden, but can be handled
more efficiently by storing only the unique vectors.

If a sim is not an ancestor of every one of the tracers,
that sim could not possibly be a common ancestor (CA).
However, if a sim is a common ancestor of all of the trac-
ers, there is a high probability that the sim is an ancestor
of a large proportion of the living sims. Such ancestors are
referred to as potential common ancestors (PCAs). Unfor-
tunately, it is generally the case that the most recent PCAs
that are found in this first backward phase are not actu-
ally true CAs. Therefore, this superset of the CAs must
be refined.

The next step is to start with a set of the most re-
cent PCAs and trace their lineage forward through time.
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This is done in much the same way that descendancy was
traced in the backward phase—a sim’s ancestors are the
disjunction of his or her parents’ ancestors. In this case,
we eventually determine which of the most recent PCAs
is an ancestor of each of the living sims. If one of the
PCAs was an ancestor of all of the living sims, then we
are guaranteed to have found the true MRCA. Otherwise,
a new set of tracers is chosen and a second backward pass
is performed to refine the set of PCAs.

Selecting the new set of tracers randomly would help
a little bit, but not much. A more effective approach is
to try to find the sims who are difficult to reach, meaning
that they descend from the fewest number of the PCAs.
We also need to find a diverse set of tracers. If they are all
difficult to reach because they live in the same place, the
use of more than one as a tracer would be redundant. In
order to satisfy these constraints, the tracers are selected
sequentially, with the next tracer chosen being the living
sim with the highest score, defined as follows:

scorei =
∑

p∈P

2
−

(

xp,i

∑

t∈T
xp,t

)

In this equation, i is the sim being considered as a pos-
sible tracer. P is the set of PCAs whose descendants were
tracked. The indicator variable xp,i is 1 if sim i is not a de-
scendant of PCA p, and 0 otherwise. T is the set of tracers
that have been selected thus far. This method essentially
balances the number of new tracers that are not descended
from each of the PCAs, thus increasing the diversity of the
new tracers.

Once these tracers have been chosen, their ancestors are
found as in the first step. In this case, sims are only identi-
fied as PCAs if they are ancestors of all of the new tracers
and all of the original tracers. For this purpose, the prior
PCA-status of every sim is stored using a compressed run-
length encoding. The most recent PCAs are once again
selected and their lineages traced forward through time. It
is usually the case that one of these new PCAs is actually
a CA, which means we have found the true MRCA. Oc-
casionally, an additional set of difficult tracers is required,
with one more backward and forward phase.

Working backwards in time from the date of the
MRCA, the proportion of CAs in the population increases
gradually until, eventually, everyone is either a CA of all
of the living sims or is the ancestor of none of them, and
is therefore extinct. Thus, a point will be reached at which
100% of the non-extinct sims are CAs. In other words,
everyone living at the end of the similation will share the
same set of ancestors who lived at that point. This is what
we refer to as the identical ancestors, or IA, point. Al-
though this successive refinement approach does find the
true MRCA, it does not necessarily find the true IA point,
only the point at which everyone is a potential CA. How-
ever, the IA point that appears in the same backward phase

in which the MRCA is found is nearly always the correct
one, or quite close to it. This can be verified with addi-
tional refinement steps, which generally lead to no further
change in the IA point.

The models were simulated and analyzed on 2.7 GHz
Pentium 4 workstations with 1 to 2 GB of RAM. Actually
running the simulation requires about three hours, while
the process of finding the common ancestors requires five
to ten hours.
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