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Phylogenetics, Biogeography, Phylogeography, Population genetics

Modeling a complex world

Model comparison

Bayes factors, marginal likelihood
Parallel evaluation of many unlinked loci

Model-based assignment of individuals
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Phylogenetics Population genetics

Biogeography Phylogeography



Population models
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Species
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Species

Population

Mutation

Loss of variability

[genetic drift]

introduces variability
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Population structure
Models available in MIGRATE
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Population structure
Models available in MIGRATE
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Population through time
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Populations through time
key assumption of MIGRATE
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migration rate is constant over time

population sizes are constant over time

[soon taking into account population splitting]



Inference of parameters
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Model of prime interest:

Geographic structure, colonization, recurrent gene flow, past population

splitting, ...
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Model of prime interest:

Geographic structure, colonization, recurrent gene flow, past population

splitting, ...

But our data is usually not a detailed historical record, so we depend on genetic
data. This is problematic because we only see differences in the sequences
thus we need some more models.
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Model of prime interest:

Geographic structure, colonization, recurrent gene flow, past population

splitting, ...

But our data is usually not a detailed historical record, so we depend on genetic
data. This is problematic because we only see differences in the sequences
thus we need some more models.

Nuisances (we are not really interested in estimating these)

Mutation model, genealogies of individuals



Geographic structure
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The program STRUCTURE is used commonly to find the number of populations.
Thus judging whether the data is from a structured population or not.

This seems an abuse of a fine program, because the main goal of the program
assigning individuals to populations is not really used. Other programs, such as
structurama coestimate assignment and number of populations.

The model used in STRUCTURE, does not take into account different population
sizes and potential asymmetries in gene flow and thus will not really be able to
give a complete picture of historical events.
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Geographic structure
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Model comparison
Models available in MIGRATE
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4-parameters

3-parameters 2-parameters 1-parameter

All simple “two-population” population models that can be use in my software
MIGRATE to estimate population parameters using Bayesian inference.

[The size difference of the disks marks independent estimation of population sizes.]



The nitty gritty detail
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infer the posterior probability of parameters of a population model

P (θ|D) =
P (θ)P (D|θ)

P (D)
=

P (θ)
∫
G
P (G|θ)P (D|G,µ)dG∫

P
(θ)
∫
G
P (G|θ)P (D|G,µ)dGdθ
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infer the posterior probability of parameters of a population model, usually

using Markov Chain Monte Carlo

report the posteriors and highlight some differences of the parameter, done!?
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infer the posterior probability of parameters of a population model, usually

using Markov Chain Monte Carlo

report the posteriors and highlight some differences of the parameter, done!

We can do better than that and stastistically compare different models.



Bayesian Odds Ratios

29/?? c©2013 Peter Beerli Twitter: #evoPB @peterbeerli

Using Bayes’ theorem:

p(M1|X) =
p(M1)p(X|M1)

p(X)

we can express support of one model over another as a ratio:

Bayes FactorPosterior Odds Prior Odds

p(M1|X)

p(M2|X)
=

p(M1)p(X|M1)
p(X)

p(M1)p(X|M1)
p(X)

p(M1|X)

p(M2|X)
=

p(M1)

p(M2)
× p(X|M1)

p(X|M2)



Bayes factor
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We can use the posterior odds ratio or equivalently the Bayes factors
for model comparison:

BF =
p(X|M1)

p(X|M2)
LBF = 2 lnBF = 2 ln

(
p(X|M1)

p(X|M2)

)

The magnitude of BF gives us evidence how different the models are

LBF = 2 lnBF = z


0 < |z| < 2 No real difference
2 < |z| < 6 Positive
6 < |z| < 10 Strong
|z| > 10 Very strong



Marginal likelihood calculation
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In MCMC application it is often complicated to calculate marginal likelihoods.
Several approaches were put forward, of which the easiest, the harmonic mean
estimator, has turned out to be unreliable and sometimes wrong.

Several other methods give accurate marginal likelihoods:

Thermodynamic integration [MIGRATE uses this]

Stepping-stone integration

Inflated Density Ratio



A simple example
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We want to establish a direction of geneflow between n populations.
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We want to establish a direction of geneflow between 2 populations.



A simple example
Tutorial on MIGRATE website
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We want to establish a direction of geneflow between 2 populations.

We generate 4 hypotheses
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We collect data from individuals in the two populations

Analyze the data in MIGRATE



A simple example
Tutorial on MIGRATE website
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Recipe: starting with the finished dish

Log Marginal likelihoods [lmL] of the 4 hypotheses:

lmL
&%
'$

-
� &%

'$

-4856.2
&%
'$

-

&%
'$

-4822.5
&%
'$

� &%
'$

-4832.6
&%
'$

-4837.8

Data was simulated using the second model (2) from the left.
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Recipe: starting with the finished dish

Log Marginal likelihoods [lmL] of the 4 hypotheses:

lmL
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-4856.2
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'$

-4837.8

The best model (highest lmL) is the model second from left (model 2).
We can calculate the log Bayes factor for two leftmost models as

LBF12 = 2(lmL1 − lmL2) = 2(−4856.2−−4822.5) = −67.4

The value suggests that we should strongly prefer model 2 over model 1.

Data was simulated using the second model from the left (model 2).



A simple example
Tutorial on MIGRATE website
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Recipe:

1. Pick the hypothesis with largest number of parameters

2. Set priors and run parameters (use heated chains) so that you are
comfortable with the result (converged, etc)

3. Record the log marginal likelihood from the output.

4. Pick next hypothesis, adjust migration model, and run and record the log
marginal likelihood.

5. Repeat (4) until all log marginal likelihoods are calculated

6. Compare the log marginal likelihoods, for example order the hypothesis
accordingly, or calculate the model probability



A simple example
Tutorial on MIGRATE website
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Ordered models

lmL
P(model)
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-
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0.99
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-4832.6
0.01
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-4837.8
0.0
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-
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'$

-4856.2
0.0

Model probability (Burnham and Anderson 2002) calculation:

P(Mi) =
exp(lmLi)∑
j exp(lmLj)

=
mLi∑
jmLj



Marginal likelihood for lots of data
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Running complex models with many genetic loci using MCMC are often very
time consuming (hours, days, weeks computing time). In genetics we have often
independent genes (loci) that allow us to treat the analysis as if we evaluate
multiple independent replicates.

P (D|M1) = P (D1, ..., Dn|M1)

Unfortunately live is an inter-dependent mess and we cannot do

P (D1, ..., Dn|M1) 6=
n∏
i

P (Di|M1)

First we thought that we are doomed to run all the independent data blocks in
sync to calculate the combine marginal likelihood.



Marginal likelihood for lots of data
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Theorem: The combined marginal likelihoods over all independent data blocks
can be calculated as a product of independently calculated marginal likelihoods
for each data block and a constant. (Proof in Beerli and Palczewski 2010)

P (D1, ..., Dn|M1) = K

n∏
i

P (Di|M1)

K =

∫
θ

n∏
i

P (θ|Di,M1)P (θ|M1)
1−ndθ.



Marginal likelihood for lots of data
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Theorem: The combined marginal likelihoods over all independent data blocks
can be calculated as a product of independently calculated marginal likelihoods
for each data block and a constant. (Proof in Beerli and Palczewski 2010)

P (D1, ..., Dn|M1) = K

n∏
i

P (Di|M1)

K =

∫
θ

n∏
i

P (θ|Di,M1)P (θ|M1)
1−ndθ.

This allows to run independent data blocks
in parallel on a computer cluster!



Marginal likelihood for lots of data
Example
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70 individuals from 7 populations analyzed for 377 microsatellite loci:
Brownian motion approximation to the single-step mutation model



Pick a model
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Pick a model
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4

Somewhat less



Pick a model

46 Reanalysis of data from Rosenberg et al. Science 2001/?? c©2013 Peter Beerli Twitter: #evoPB @peterbeerli



Pick a model

47 Reanalysis of data from Rosenberg et al. Science 2001/?? c©2013 Peter Beerli Twitter: #evoPB @peterbeerli



Pick a model

48 Reanalysis of data from Rosenberg et al. Science 2001/?? c©2013 Peter Beerli Twitter: #evoPB @peterbeerli



Pick a model

49 Reanalysis of data from Rosenberg et al. Science 2001/?? c©2013 Peter Beerli Twitter: #evoPB @peterbeerli



Pick a model
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1.

2.

3.

4.

5.

6.

7.
4

Somewhat less

Model order and probability using Bayes factors

all other models: 0.0
Minimal model 1.0



Summary
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Caveats:

MIGRATE supports a large list of models but that may not be sufficient for your

hypothesis.

MIGRATE assumes a simple population model that may not fit your data.

Plus:

MIGRATE supports a large list of models.

MIGRATE can run in parallel allowing to analyze large numbers of loci in

decent time.

Bayesian model selection allows comparison of non-nested models.



Questions?
Twitter: #evoPB @peterbeerli
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MIGRATE website:
http://popgen.sc.fsu.edu



Assignment of individuals

53/?? c©2013 Peter Beerli Twitter: #evoPB @peterbeerli

Migrate (this summer) will be able to assign individuals to populations, for
example we collect individuals from 3 locations and wonder whether these
individuals at the center location are local or recognizable immigrants.

Migration rate M Average assignment probability
1 2 3 4

- 3 2 2 2
low migration 1.0 1.0 0.86 0.81
medium 0.98 0.99 0.64 0.53
high 0.33 0.20 0.68 0.36


