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1 Population models

To understand inferences based on sampling random relationships among a small sample of indi-

viduals of a contemporary population we need to know some basic models of population history.

Several such models exist. Fisher (1929, and 1930) and Wright (1931) developed independently a

simple population model. We call this model the Wright-Fisher population model. Alternatives

are the Moran model, developed by Moran in 1958. A model that extends the Wright-Fisher model

was found by Cannings in 1974. We will discuss the three models

1.1 Wright-Fisher population model

We assume that we have a population of N diploid individuals, so each individual has two gene

copies at a specific locus. A population therefore has 2N gene copies. Every generation the

individuals reproduce once and die. Each individual is releasing a very large number of gametes.

The next generation is formed by picking random pairs from this pool of gametes. Most simple

implementation of this model do not allow for change of population size through time, mutation,

selection, immigration and other complicating population genetics forces. If we assume that we

start such a population with two alleles A1 and A2, than we look at the number of one specific

allele X, say the number of A1 alleles. The future states of X can represent any of 0, 1, 2, ...., 2N .

Sampling from the gene pool can be replaced by a sampling with replacement from the population

at time t. This means that X(t + 1) is a binomial random variable with index 2N and parameter

X(t)/(2N). We can express the transition probability from X(t) = i to X(t + 1) = j as

pij =
(

2N

j

) (
i

2N

)j (
1− (

i

2N

)2N−j

, i, j = 0, 1, 2, 3, ..., 2N
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Figure 1: Example of a Wright-Fisher population model

We could now calculate (or approximate) average time to fixation of an allele or probability of

fixation. The Wright-Fisher population model as explained here is prognostic as we look into the

future and this makes it particularly difficult to derive quantities as average to fixation, Ewens

(2004) gives and example of the time of fixation of an allele with frequency i/(2N). For i = 1 one

gets a mean absorption time

t

(
1

2N

)
= 2 + log 2N

We shall later see that we can derive similar estimates using coalescence theory.

Extending from two alleles to k alleles is easy as it uses simply the multinomial instead of the

binomial distribution.
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1.2 Moran’s population model

Moran’s model was derived for haploid populations, but many of its findings can be applied to

diploids because if we assume neutrality then the alleles in a diploid population of size N behave

like a haploid population of size 2N . At time points t1, t2, t3, t4, ...., an “adult” individual is chosen

at random to reproduce, after reproduction and “adult” individual is chosen randomly to die. Again

with two alleles, A1 and A2, we can calculate transition probabilities. For comparison with the

diploid Wright-Fisher model we still use 2N as the number of chromosomes in the population. If

we have at time t i copies of allele A1 then it at time t + 1 there will be i − 1 A1 copies if an A2

individual reproduced and an A1 is chosen to die. This results in the probability

p(i, i− 1) =
i

2N

2N − i

2N
.

With probability i/2N an A1-individual dies and it gets replaced by an A2-indvidual with proba-

bility (2N − i)/2N . For gaining an A1 (equals loosing an A2 first) we find

p(i, i + 1) =
i

2N

2N − i

2N
,

and for no change

p(i, i) =
i2 + (2N − i)2

(2N)2
.

The above probabilities form a transition probability matrix and, one can calculate the probability

of fixation π of allele A1 given that we have i individuals with allele A1 now. Ewens (2004) calculates

π =
i

2N
.

Using this one can calculate the expected fixation time of a single allele A1 as

t = 2N(2N − 1)

For a comparison with the Wright-Fisher population model we need to find a common measure of

time as the events happening at times tj in a Moran model are not equivalent to the events that

happen at the times t′j in a Wright-Fisher Model. We can express a common time g as the complete

turnover of a population. If we set g=1 for the Wright-Fisher model then the Moran model needs

on average around 2N time events to turn over, so we can express it generation time g = 2N . So

we might express the waiting time to fixation in Wright-Fisher units as tg(1/(2N)) = 2N − 1.

1.3 Canning’s (Exchangeable) population model

The Canning’s model can be viewed as an intermediate between the Wright-Fisher model and the

Moran model. Because depending on the reproduction function it can mimic the other two models.
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Figure 2: Example of Moran’s population model

In its most basic version it looks like the Wright-Fisher model . Consider a a “population” of genes

of size 2N reproducing at time points t1, t2, ..... The transition between the old generation and

the new generation can be very general (not like the Wright-Fisher model) as long as the model

guarantees that all alleles at time t have the same distribution of descendants at time t + 1: they

need to have the same offspring probability distribution. This distribution has a mean of 1 offspring

with variance σ2. We can construct offspring distributions that fit this general description that are

far from the multinomial distribution needed for the Wright-Fisher model.
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2 The coalescent – coalescence theory

2.1 Historical note

Up to 1982 most development in population genetics was prospective and developed expectations

based on situations of today. Most work did provide expectations about the future. With the easy

availability of genetic data retrospective analyses did catch up only in phylogenetics (starting in

the sixties). Only Malécot who pioneered “looking backwards in time” in 1948 to develop results

in population genetics. Kingman expressed this “looking backwards in time” approach as the

coalescence of sampled lineages. He was not the only one working on such problem at the the time

as with many great solutions it was in the air, see Hudson (1983) and Tajima (1983).

2.2 The coalescent

A sample of n gene copies is taken at the present time and we are interested in the ancestral

relationship of these gene copies. We express time τ increasing the further back in real time we go:

τ1 < τ2 means that τ2 is further in the past than τ1. Kingman (1982) and Ewens (2004) describe

this backwards in time process with equivalence classes. Two copies are in the same equivalence

class at time τ when they have a common ancestor at that time. At time τ = 0 each individual

Figure 3: Example of the coalescence process
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gene can be considered in its own equivalence class and we could express this for a sample of n = 8

as

φ0 = {(a), (b), (c), (d), (e), (f), (g), (h)}

Kingman’s n-coalescent describes the moves from φ0 to a single equivalence class

φn = {(a, b, c, d, e, f, g, h)}.

All individuals are in some equivalence relation ξ and we can find a new equivalence relation η by

joining two of the equivalence classes in ξ. This joining process is called a coalescence, and a series

of such joinings is called the coalescent or coalescence process. Figure 4 gives an example of the

relationship of a sample and the equivalence classes describing the process. It is assumed that the

probability of a coalescence depends on time waiting time δτ

Prob(process in η at time tau + δτ | process in ξ at time τ) = δτ

(ignoring higher order terms), and if k is the number of equivalence classes in ξ then

Prob(process in ξ at time tau + δτ | process in ξ at time τ) = 1− k(k − 1)
2

δτ = 1−
(

k

2

)
δτ

These result in the rates of the coalescent event of τ and the rate for the waiting that that event

happens
(
k
2

)
τ . We will see that if we apply the right time scale to τ then we will end up in the

more familiar terms that are common in the applied population genetics literature.

Kingman focused on the Canning model, and since the Wright-Fisher model is a special case of

the results carry over easily. The coalescent is an approximation to these models because it was

developed on a continuous time scale whereas the Canning and Wright-Fisher population models

have discrete time. Any findings using this coalescent machinery needs to be rescaled to the time

scale of these discrete time models. In the coalescent framework one has only a single coalescent

per infinitesimal time period. This forces us to restrict the use of the coalescent to discrete time

models were we can guarantee that there is not more than one coalescent event occurring per time

period. For example, for a Wright-Fisher population we can allow only one coalescent event per

generation. this sound rather restrictive but as long as the sample n is much smaller than the

population N this situation rarely occurs. Fu (year?) calculates that a sample needs to be less

than the square-root of N

n <
√

N,

when we use the coalescent for a model such as the Wright-Fisher or some version of the Canning

model.
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2.3 The coalescent and the Wright-Fisher population model

The coalescent process is in effect a sequence of n− 1 Poisson processes1, with rates

rk =
k(k − 1)

2
, k = n, n− 1, n− 2, ..., 2

describing the Poisson process at which two of the equivalence classes merge when there are k

equivalence classes.

Since these events are coming from a Poisson distribution we can calculate the expectation for each

interval, which is is 1/rate, here 2/(k(k−1)). All mergers of the equivalence classes are independent

of each other so the expectation of the whole coalescence process is

E(TMRCA) =
n∑

k=2

2
k(k − 1)

= 2
n∑

k=2

1
k(k − 1)

Comparison of the content of the sum with the coalescence rate makes clear that the Wright-Fisher

population model is 2× the standard coalescent units and we need to multiply by 2N to arrive at

the more familiar generation time scale.

Figure 4: Expected times in the Wright-Fisher coalescent process

1From Mathworld: A Poisson process is a process satisfying the following properties:

1. The numbers of changes in non-overlapping intervals are independent for all intervals.

2. The probability of exactly one change in a sufficiently small interval is , where is the probability of one change

and is the number of trials.

3. The probability of two or more changes in a sufficiently small interval is essentially 0.

In the limit of the number of trials becoming large, the resulting distribution is called a Poisson distribution.
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The coalescent process results in a tree of a sample of n individuals. We call this often a genealogy

as the the individuals are typically from the same species or population (hence population size).

Often the probability of the coalescent process for the Wright-Fisher population model is expressed

as

p(G|N) =
n∏

k=2

e−uk
k(k−1)

4N
2

4N
,

where u is expressed in generations. The expected TMRCA is the same as above. Often we will not

use a time scale in generations but generations × mutation rate and then we would express the

above formula as

p(G|Θ) =
n∏

k=2

e−uk
k(k−1)

Θ
2
Θ

,

where Θ is 4×Ne × µ, with µ as the mutation rate per generation and site (when using sequence

data), and Ne as the effective population size. Under a strict Wright-Fisher population model

N = Ne, but under more biological scenarios one needs to know more about the life history of the

species to translate the Ne into real numbers.

2.4 The coalescent and the Moran population model

The coalescent is an exact representation of the Moran model because the problems with the

multiple coalescent events in one generation do not occur. The Moran model allows only one

lineage to change at a given time. Therefore the limitation to small sample size as we have seen

for the Wright-Fisher model is not needed.

Using our findings of the discussion of the Moran model earlier, but instead of thinking forward

in time, think backward in time. Looking backwards we see that the Moran process is similar

structured like the coalescence process. We have n individuals that are reduced in their ancestry

to n− 1, n− 2, ... and eventually to one gene, the most common recent ancestor of the n sampled

individuals. Assume that we are at a time where we have a sample of k individuals, these are

descendants of k − 1 parents of one of these parents was chosen to reproduce and the offspring is

in ancestry of the sample of n genes. The probability of this event is

k(k − 1)
(2N)2

,

and with probability

1− k(k − 1)
(2N)2

,
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the ancestors remain at j. Tracing back this ancestry the number of death and birth events between

the times when there are j and j − 1 ancestors follows a geometric distribution with parameters

k(k − 1)/(2N)2 and thus has a mean of

E(uj) =
(2N)2

k(k − 1)

now we can assemble the expectation for the time to the most recent common ancestor

E(TMRCA) =
n∑

k=2

(2N)2

k(k − 1)
= (2N)2(1− 1

n
)

= (2N)2
n∑

k=2

1
k(k − 1)

(1)

If we assume that we sampled the whole population, where n = 2N than we derive the same result

as with standard (forward) theory.

E(TMRCA) = (2N)2(1− 1
n

) = (2N)2(1− 1
2N

) = 2N(2N − 1)

We also can make the same observation as we made with the Wright-Fisher population model. The

coalescence time scale is by a factor (2N)2 different from the Moran model time scale (formula 1).

We can express the probability of the genealogy under the Moran model using the fact that the

exponential distribution is a good approximation to the geometric distribution

p(G|N) =
n∏

k=2

e
−uk

k(k−1)

2(2N)2
1

(2N)2
,

where u is expressed in generations. The expected TMRCA is the same as above. Often we will not

use a time scale in generations but generations × mutation rate and then we would express the

above formula as

p(G|Θ) =
n∏

k=2

e−uk
2k(k−1)

Θ2
4

Θ2
,

where Θ is 4×Ne × µ, with µ as the mutation rate per generation and site (when using sequence

data), and Ne as the effective population size. Under a strict Wright-Fisher population model

N = Ne, but under more biological scenarios one needs to know more about the life history of the

species to translate the Ne into real numbers.
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