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[1] Hydrologic systems are open and complex, rendering them prone to multiple
conceptualizations and mathematical descriptions. There has been a growing tendency to
postulate several alternative hydrologic models for a site and use model selection criteria
to (1) rank these models, (2) eliminate some of them, and/or (3) weigh and average
predictions and statistics generated by multiple models. This has led to some debate
among hydrogeologists about the merits and demerits of common model selection (also
known as model discrimination or information) criteria such as AIC, AICc, BIC, and KIC
and some lack of clarity about the proper interpretation and mathematical representation of
each criterion. We examine the model selection literature to find that (1) all published
rigorous derivations of AIC and AICc require that the (true) model having generated the
observational data be in the set of candidate models; (2) though BIC and KIC were
originally derived by assuming that such a model is in the set, BIC has been rederived by
Cavanaugh and Neath (1999) without the need for such an assumption; and (3) KIC
reduces to BIC as the number of observations becomes large relative to the number of
adjustable model parameters, implying that it likewise does not require the existence of a
true model in the set of alternatives. We explain why KIC is the only criterion accounting
validly for the likelihood of prior parameter estimates, elucidate the unique role that the
Fisher information matrix plays in KIC, and demonstrate through an example that it
imbues KIC with desirable model selection properties not shared by AIC, AICc, or BIC.
Our example appears to provide the first comprehensive test of how AIC, AICc, BIC, and
KIC weigh and rank alternative models in light of the models’ predictive performance
under cross validation with real hydrologic data.
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1. Introduction

[2] Hydrologic environments are open and complex,
rendering them prone to multiple interpretations and math-
ematical descriptions regardless of the quantity and quality
of available data. This recognition has led to a growing
tendency among hydrologists to postulate several alterna-
tive hydrologic models for a site and use various criteria to
(1) rank these models, (2) eliminate some of them, and/or
(3) weigh and average predictions and statistics generated
by multiple models (Neuman [2003], Neuman and Wierenga
[2003], Ye et al. [2004], Poeter and Anderson [2005], Beven
[2006] and references therein pertaining to GLUE, and
Refsgaard et al. [2006]). This in turn has brought about a
debate among hydrogeologists about the merits and demerits
of various model selection (also known as model discrimi-
nation or information) criteria such as the information-
theoretic criteria AIC [Akaike, 1974] and AICc [Hurvich
and Tsai, 1989] and the Bayesian criteria BIC [Schwarz,
1978] and KIC [Kashyap, 1982]. These criteria discriminate

between models based on how closely they reproduce
hydrologic observations using maximum likelihood esti-
mates of model parameters (favoring models that reproduce
observed behavior most closely) and how many such param-
eters they contain (penalizing models that contain many).
KIC additionally considers the likelihood of the parameter
estimates in light of their prior values (when such are
available) and contains a Fisher information matrix term that
as we shall see, imbues it with desirable model selection
properties not shared by AIC, AICc, or BIC. Models associ-
ated with smaller values of a given criterion are ranked higher
than those associated with larger values, the absolute value of
the criterion being irrelevant.
[3] Consider a set M of K alternative models, Mk, k = 1,

2, . . ., K. Then AIC, AICc, BIC, and KIC are defined for
model Mk as

AICk ¼ �2 ln L b̂k z*j
� �h i

þ 2Nk ð1Þ

AICck ¼ �2 ln L b̂k z*j
� �h i

þ 2Nk þ
2Nk Nk þ 1ð Þ
Nz � Nk � 1

ð2Þ

BICk ¼ �2 ln L b̂k z*j
� �h i

þ Nk lnNz ð3Þ
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KICk ¼ �2 ln L b̂k z*j
� �h i

� 2 ln p b̂k

� �
þ Nk ln Nz=2pð Þ þ ln �Fkj j;

ð4Þ

where b̂k is the maximum likelihood (ML) estimate of a
vector bk of Nk adjustable parameters (which may include
statistical parameters of the calibration data) associated with
model Mk; z* is an observed vector of Nz random
(hydrologic) system state variables z in space-time, the
randomness of which may be inherent (and thus modeled
stochastically) or resulting from an additive random error
(typically taken to be associated with measurements),
common to all K models in the set; �ln[L(b̂kjz*)] is the
minimum of the negative log-likelihood (NLL) function
�ln[L(bkjz*)] occurring, by definition, at b̂k; p(b̂k) is
the prior probability of bk evaluated at b̂k and �Fk = Fk/Nz is
the normalized (by Nz) observed (implicitly conditioned on
the observations z* and evaluated at the maximum
likelihood parameter estimates b̂k) Fisher information
matrix Fk having elements [Kashyap, 1982]

�Fkij ¼
1

Nz

Fkij ¼ � 1

Nz

@2 ln L bk z*jð Þ½ �
@bki@bkj

�����
bk¼b̂k

: ð5Þ

[4] The first term of each criterion, �2ln[L(b̂kjz*)]
measures goodness of fit between predicted and observed
system states, ẑ and z*, respectively; the smaller this term,
the better the fit. The terms containing Nk represent
measures of model complexity. The criteria thus embody
(to various degrees) the principle of parsimony, penalizing
models for having a relatively large number of parameters if
this does not bring about a corresponding improvement in
model fit.
[5] Expressions equivalent to (1)–(4) for the case of

Gaussian likelihood functions, which correspond to param-
eter estimation schemes based on weighted least squares of
the kind employed in some hydrologic inverse codes (e.g.,
PEST [Doherty, 2006], UCODE_2005 [Poeter et al., 2005],
and MODFLOW2000 [Hill et al., 2000]), are given in
Appendix B.
[6] In the ensuing discussion we drop the subscript k

from all terms other than Mk and Nk unless required for
clarity. We start by noting that AIC [Akaike, 1974; Linhart
and Zucchini, 1986; Bozdogan, 1987] is based on the
Kullback-Leibler (K-L) information, a measure of the
discrepancy between a true but unknown representation
(model) of reality from which the observations z* arise,
denoted here as f, and an approximate representation of the
same reality, denoted here as the model g having parameters
b. The Kullback-Leibler information can be expressed as
[Akaike, 1974]

I f ; g 	jbð Þð Þ ¼
Z

ln
f z*ð Þ
g z*jbð Þ

� �
f z*ð Þ dz*: ð6Þ

[7] AIC is an asymptotically unbiased estimator of
E[I( f;g(	j b̂))] =

R
I( f;g(	jb̂)) f (z*) dz* with g evaluated at

the maximum likelihood estimate b̂ of b, the expectation
being taken with respect to f(z*). As Nz/Nk decreases AIC

becomes progressively more biased, a property improved
upon by AICc [Hurvich and Tsai, 1989], which constitutes an
approximation of E[I( f;g(	jb̂))] with better small sample
performance. Burnham and Anderson [2002] advocate the
use of AICc when Nz/Nk is less than 40.
[8] BIC was derived in a Bayesian context by Schwarz

[1978] as an asymptotic approximation to a transformation of
the posterior probability of a candidate model (Cavanaugh
and Neath [1999]; other derivations are due to Akaike [1977]
and Rissanen [1978]). Cavanaugh and Neath [1999] noted
that in the case of large samples, BIC favors the model which
is a posteriori most probable, i.e., is most plausible in light of
the available data. Assuming (as did Schwarz) that the data
were generated by a model which belongs to the set of
candidate models renders BIC consistent in the sense that as
the sample size Nz increases relative to Nk, the criterion tends
to identify this generating (operating), or true model with
probability one.
[9] KIC was derived in a Bayesian context by Kashyap

[1982] as an asymptotic approximation to the model
likelihood, i.e., the marginal probability density p(z*jMk) =R
p(z*jb, Mk) p(bjMk)db of the observations conditional

on a givenmodelMk in a set ofK suchmodels. Like BIC,KIC
was originally derived on the assumption that the (true) model
having generated the data is in the set of candidate models.
KIC is asymptotic in the sense that the approximation
improves as p(z*jb, Mk) becomes more peaked about b̂,
which will generally occur as the number Nz of observations
increases. KIC is closely related to the asymptotic Laplace
approximation of p(z*jMk) [Kass and Vaidyanathan, 1992;
Kass and Raftery, 1995]. The model likelihood arises when
evaluating alternative models using Bayes factors [Kass and
Raftery, 1995] and model probabilities using Bayesian
model averaging (BMA). Neuman [2003] proposed using,
and Ye et al. [2004, 2005] as well as Meyer et al. [2007]
have implemented, KIC in the context of maximum
likelihood BMA (MLBMA). It is well established (and we
show in Appendix A) that KIC reduces asymptotically to
BIC as Nz becomes large in comparison to Nk (i.e., as Nz/Nk

! 1). When Nz is not large, BIC sometimes prefers models
with too few parameters [Bozdogan and Haughton, 1998],
in which case KIC is a more appropriate criterion to use. We
note also that when Nz > 8 the penalty term Nk ln Nz in BIC
is larger than 2Nk, in which case BIC places more emphasis
on parsimony than does AIC (compare equations (1) and
(3)).
[10] Selecting the prior probability in the second term,

�2lnp(b̂), of KIC is considered by Kass and Wasserman
[1996], and estimating it in the model selection context is
discussed by Kass and Raftery [1995]. In the special case
where prior parameter measurements b* are available, p(b)
may be taken to represent the probability density fuction
(pdf) of corresponding measurement errors (b* � b), and
p(b̂) the pdf of associated residuals (b* � b̂), as done
byCarrera and Neuman [1986a]. The latter authors proposed
absorbing �2lnp(b̂) into the leading negative log likelihood
term, �2ln[L(b̂jz*)], and included it also in the leading term
of AIC and BIC. As �2lnp(b̂) drops out of KIC in the
asymptotic limit of large Nz/Nk (see Appendix A), this term
should be excluded from BIC. We are not aware of any
theoretical justification for including �2lnp(b̂) in AIC, AICc

and/or BIC as allowed by Hill [1998], Hill and Tiedeman
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[2007], and Poeter and Hill [2007]. In the absence of such
justification the presence of �2lnp(b̂) in KIC appears to be
a unique feature of this criterion.
[11] There has been much debate in the model selection

literature over the merits and demerits of these and other
model selection criteria, without a clear consensus. The
primary criticism of BIC (and KIC by association) is that it
assumes one of the models under consideration to be true
(representing reality) and that BIC and KIC are therefore
inappropriate in applications where models are, by neces-
sity, simplifications of reality. Our paper is motivated in part
by a need to clarify this issue considering its relevance to
hydrology (and other fields). In particular, whereas we
[Neuman, 2003; Ye et al., 2004, 2005; Meyer et al., 2007]
have based our approach to multimodel hydrogeologic
ranking and inference on the Bayesian criterion KIC
(which we saw reduces asymptotically to BIC), Poeter and
Anderson [2005] have voiced a preference for the
information-theoretic criterion AICc (which reduces asymp-
totically to AIC). Citing primarily Burnham and Anderson
[2002, 2004], Poeter and Anderson [2005, p. 604]
conclude that

. . .Approaches based on K-L information view models as approxima-
tions of the truth, and assume (1) a true model does not exist and
cannot be expected to be in the set of models and (2) as the number
of observations increases, one can uncover more details of the system;
thus, AICc will select more complex models when more observations
are available. Alternative model selection criteria (e.g., BIC, HQ, and
KIC) seek to identify the true (or quasi-true) model with consistent
complexity as the number of observations goes to infinity. These
alternatives are based on the assumption that reality can be nearly
expressed as a model and that this quasi-true model is in the set.
Although these measures may perform similarly in applications, it is
unreasonable to assume that they would ever include the true or
quasi-true model in the set of alternative ground water models; thus,
approaches based on K-L information such as AICc are the preferable
model ranking and inference criterion.

[12] In the remainder of this paper we address these and
related issues in light of the published literature and
present a computational example which appears to provide
the first comprehensive test of how AIC, AICc, BIC, and
KIC weigh and rank alternative models in light of the
models’ predictive performance under cross validation with
real hydrologic data. Another application of cross validation
to the testing of alternative hydrogeological models (with-
out considering KIC) is provided by Foglia et al. [2006,
2007].

2. Underlying Principles

[13] In deriving AICc for regression models, Hurvich and
Tsai [1989, p. 299] state, and their mathematics makes clear,
that they ‘‘assume. . .the approximating family includes the
operating model. This is a strong assumption, but it is also
used in the derivation of AIC [Linhart and Zucchini, 1986,
p. 245],’’ and, we add, in those of Sawa [1978] and Konishi
and Kitagawa [1996]. In deriving AICc for autoregressive
models, Hurvich and Tsai (p. 305) again ‘‘assume that the
approximating family includes the operating model’’. Both
regression and autoregressive models are relevant to
hydrology, the latter in time series analysis and the former
in parameter estimation [Hill, 1998; Hill and Tiedeman,
2007], both having been employed jointly by Carrera and
Neuman [1986a, 1986b]. The operating model (the

generating model referred to above in the context of BIC
derivation) is the underlying model that has given rise to the
observations [Hurvich and Tsai, 1989, pp. 298, 305;
Zucchini, 2000, p. 42]. Zucchini [2000, pp. 52–53] states
without ambiguity that the derivation of AIC depends on
assuming ‘‘the operating model belongs to the approximat-
ing family’’.
[14] Burnham and Anderson [2002, pp. 362–374] follow

Takeuchi [1976] in deriving [Burnham and Anderson, 2004,
p. 270] ‘‘an asymptotically unbiased estimator of relative,
expected K-L information that applies in general without
assuming that model g is true (i.e., without the special
conditions underlying Akaike’s derivation of AIC)’’. To
derive AIC from this general criterion, one must assume
[Burnham and Anderson, 2002, p. 368] that the true model f
is a subset of the approximating family of g, i.e., that ‘‘g = f
or f is contained within g in the sense of nested models’’.
Burnham and Anderson [2002] make the same assumption
in deriving the AICc result of Hurvich and Tsai [1989].
Thus, whereas it may be that [Burnham and Anderson,
2004, p. 270] ‘‘In practice, one need not assume that the
‘‘true model’’ is in the set of candidates’’ when using AIC or
AICc, there does not appear to be any rigorous published
mathematics to support this theoretically. Contrary to the
assertion of Poeter and Anderson [2005] that ‘‘Approaches
based on K-L information’’ such as AIC and AICc
‘‘assume. . . a true model does not exist and cannot be
expected to be in the set of models’’, the literature
demonstrates that the opposite is, in fact, the case.
[15] Though BIC and KIC were originally derived by

assuming that the data-generating model is in the set, BIC
has been rederived by Cavanaugh and Neath [1999] in a
Bayesian context which eliminates several restrictive
assumptions adopted for this purpose by Schwarz [1978].
Most important, their development requires no assumptions
regarding the structure of the models entering the set or the
way that the data are interrelated statistically. In the words
of Burnham and Anderson [2002, p. 293], ‘‘Cavanaugh and
Neath. . .make it clear that the derivation of BIC does not
require any assumption about the true model being in the set
of models’’. The assumption by Kashyap [1982] in deriving
KIC that the true model having generated the data be in the
set of the candidate models is introduced solely to insure
consistency, i.e., that this model is identified by KIC with
probability 1 in the limit of large sample size. It follows that
since BIC is an asymptotic limit of KIC (Appendix A), the
fact that BIC does not require the presence of a generating
model in the set implies that neither does KIC (in which case
their consistency property becomes irrelevant). According
to Burnham and Anderson [2002, p. 294], in the derivation
leading to KIC (and BIC) in our Appendix A, which is
analogous to the ‘‘heuristic derivation’’ of BIC in section
6.4.1 of their book, ‘‘there is no requirement that g be the
true model’’ where g is equivalent to model Mk in our
Appendix A. This lays to rest the assertion by Poeter and
Anderson [2005] that BIC and KIC require a true or quasi-
true model to be in the set of candidate models.
[16] Concerning the interpretation of model probability,

although prior model probability, p(Mk), has been inter-
preted by Kashyap (as well as by Schwarz [1978] and
Hoeting et al. [1999]) as the prior probability that Mk is the
true model given that one of the models in M is true, the
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Bayesian context is equally compatible with a view of p(Mk)
as a subjective prior probability reflecting the analyst’s
perception about how plausible each alternative model (or a
group of models) is relative to other models based on their
apparent (qualitative, a priori) consistency with available
knowledge and data [Ye et al., 2004, 2005]. The analyst’s
perception, degree of reasonable belief [Jeffreys, 1957], or
confidence [Zio and Apostolakis, 1996] in a model is ideally
based on expert judgment, which Bredehoeft [2005]
considers to be the basis for conceptual model development.
Hence integrating expert judgment into the specification of
subjective prior probabilities is a strength rather than a
weakness. In the same vein, posterior model probability
represents a measure of how plausible each model is relative
to all other models within the set in light of its consistency
with available knowledge and data following maximum
likelihood calibration.
[17] Burnham and Anderson [2002, p. 295] state that

‘‘there is. . .nothing in the foundation or derivation of BIC
that addresses a bias-variance trade-off, and hence addresses
parsimony as a feature of BIC model selection. This is not a
strike against BIC because this trade-off is a frequentist
concept not explicitly invoked in Bayesian statistics. But we
are left with no theoretical basis to know what sort of
parsimony the BIC model selection procedure has’’. In our
Bayesian view, BIC favors a model with just the right sort of
parsimony (as well as bias-variance trade-off) that render it,
asymptotically, most probable a posteriori of having
generated the data (without requiring that this probability
go asymptotically to 1). The same applies to KIC. We note
(and demonstrate by example later) that whereas the term
Nk ln Nz causes BIC to prefer less complex models (with
fewer parameters) as sample size increases, in KIC this
tendency is tempered (for all but very large Nz/Nk) by the last
term containing a Fisher information matrix as explained in
some detail below. This tendency of KIC to sometimes prefer
more complex models than do either BIC, AIC, or AICc is
due to its unique ability to discriminate between models
based not only on their number of parameters and sample
size but also on the quality of the parameter estimates and
the observational data. Whereas Poeter and Anderson
[2005] may be right in stating that AICc will select more
complex models when more observations are available, it
will do so without regard to the quality of these observations
or that of the parameter estimates. This explains why
comparisons in the literature between information-theoretic
criteria and BIC do not generally carry over to KIC.
[18] The comparative analysis of model selection criteria

of Burnham and Anderson [2002, pp. 284–301] is
predicated on the notion that (p. 284) ‘‘AIC, AICc. . . were
motivated by the concept that truth is very complex and that
no ‘‘true model’’ exists’’, which contradicts our finding that
all rigorous derivations of AIC and AICc assume f � g or
f 
 g. The analysis is limited to hydrologically irrelevant
cases in which BIC is consistent so that a true or a quasi-true
model (the lowest-dimensional among a nested sequence of
true models, nested meaning that each model of dimension
Nk contains all models of dimension smaller than Nk) is in
the set. In this comparison BIC fares poorly relative to AIC
due primarily to the underlying premises. It also appears to
perform in a less satisfactory manner than does AIC when
the candidate models exhibit a tapering effect (smaller and

smaller modeling effects are revealed gradually as sample
size increases so that the K-L information I( f ;gk(	jb̂)) in (6)
diminishes gradually and monotonically as Nz goes up) of
the kind illustrated by Burnham and Anderson [2004,
pp. 278–279]. We are, however, not aware of any analyses
comparing the performance of AIC, AICc, BIC, and/or KIC
in a comprehensive and convincing manner under assump-
tions and conditions reflective of actual situations com-
monly encountered in hydrology. We present such a
comparative analysis in this paper.

3. Role of the Fisher Information Term in KIC

[19] A major difference between AIC, AICc, and BIC on
one hand and KIC on the other is the presence of a Fisher
information term lnj�Fj in equation (4) defining KIC.
Viewing z either as a stochastic vector or as a deterministic
vector of ‘‘true’’ system states, and z* either as a sample of a
stochastic z or as a vector of ‘‘true’’ z values corrupted by
measurement errors, renders the vector z* random. A
convenient way to explain the role that lnj�Fj plays in KIC is
to consider the random vector e* = z* � z as having a
Gaussian distribution with zero mean and a covariance
matrix Cz (observations that are not Gaussian can be
transformed into a Gaussian form). Writing Cz = TTTwhere
T is a lower or an upper triangular matrix (other such
decompositions are possible) allows writing e* = Tz*
where z* is a random vector of mutually uncorrelated
components having zero mean and unit variance. Then the
weighted sum of squares e*TCz

�1e* entering into a Gaussian
likelihood

L b z*jð Þ ¼ p z* bjð Þ ¼ 2pð Þ�Nz=2 Czj j�1=2
exp � 1

2
e*TC�1

z e*

 �

ð7Þ

can be replaced by the simple sum of squares z*Tz*, the
components of which, being Gaussian, are independent and
identically distributed. It follows that each element of �F can
be written as a sum of terms,

�Fij ¼ � 1

Nz

XNz

n¼1

@2 ln p zn*jbð Þ½ �
@bi@bj

: ð8Þ

Correspondingly, the law of large numbers implies that �F
ij

converges to the expectation of a single term,

�Fij ! �E
@2 ln p z

1
*jb


 �� �
@bi@bj

" #
¼ F1ij

� �
as Nz ! 1; ð9Þ

where hF1i is the expected Fisher information associated
with a single observation.
[20] If the expected information content per observation

as expressed by ln j�Fj does not vary from model to model,
then KIC rewards models in proportion to the quality of the
fit they provide between predictions and a given set of
observations (as measured by the negative log likelihood
function �2ln[L(b̂jz*)], common to all four criteria) and
between posterior parameter estimates and their prior values
(as measured by �2ln p(b̂), which we saw is not included in
BIC and does not appear to be a valid component of either
AIC or AICc). At the same time, KIC penalizes models in
proportion to their number of parameters, Nk, through the
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term Nk ln (Nz/2p), which differs from corresponding terms
in BIC, AIC, and AICc and depends to a lesser extent on
sample size, Nz, than does Nk ln Nz in BIC. Yet among
models having an equal number of parameters, and equal
values of �2ln[L(b̂jz*)] � 2ln p(b̂), KIC favors models
with relatively small expected information content per
observation. This is consistent with the criterion of
sufficiency according to which [Fisher, 1922, p. 316],
‘‘the statistic chosen should summarize the whole of the
relevant information supplied by the sample’’. Since KIC
considers the parameter estimates to be normally distributed
(see Appendix A), and a Gaussian distribution of estimates
with a larger variance (smaller information content) per unit
sample contains a similar distribution with a smaller
variance (larger information content) per unit sample, the
former summarizes the multimodel population (the whole)
more fully than does the latter and is therefore chosen.
Looking at this from a different but related angle, one
anticipates a model having large expected information
content per observation (and small estimation variance) to
exhibit improved performance (exhibit better combined fits
to observations and prior parameters) and vice versa. If
increasing the expected information content of a model fails
to improve its performance relative to another model, then
selecting a model with greater expected information content
would, according to KIC, be unjustified.
[21] Among models having different numbers of param-

eters with equal combined fits to observations and prior
parameters, KIC balances parsimony as expressed by Nk

ln(Nz/2p) with expected information content per observa-
tion as expressed by lnj�Fj. If under these circumstances Nk

ln(Nz/2p) of model Mk exceeds Nlln(Nz/2p) of model Ml

while Nl ln(Nz/2p) + lnj�Flj exceeds Nk ln(Nz/2p) + lnj�Fkj,
then KIC selects the less parsimonious model Mk over
model Ml because the latter, though more parsimonious,
contains a greater amount of expected information per
observation than does the former. The inclusion of lnj�Fj in
KIC is thus seen to imbue it with a unique ability to
discriminate between models based not only on how well
they fit observations and how many parameters they contain
as do AIC, AICc, and BIC but also on how close are the
posterior parameter estimates to their prior values and how
much expected information is contained, on average, in
each observation.
[22] By virtue of (5) the Fisher information term of KIC

in (4) can be written as

ln j�Fj ¼ ln j 1
Nz

Fj ¼ ln N�Nk

z jFj

 �

¼ �Nk lnNz þ ln jFj; ð10Þ

where F is the observed Fisher information matrix.
Substituting (10) into (4) gives

KIC ¼ �2 ln L b̂ z*j
� �h i

� 2 ln pðb̂Þ � Nk ln 2pþ ln jFj; ð11Þ

which is the Laplace approximation of model likelihood
given by Kass and Vaidyanathan [1992] and Kass and
Raftery [1995]. The expected Fisher information matrix
having elements

Fij

� �
¼ �E

@2 ln L b z*jð Þ½ �
@bi@bj

" #�����
b¼b̂

ð12Þ

is often interchanged with F. Substituting hFi for F in (4) or
(11) increases the order of the error in the approximation
[Kass and Raftery, 1995]. The inverse expected Fisher
information matrix is the Cramer-Rao (lower) bound of the
covariance matrix, S, of the ML parameter estimates, b̂
[Papoulis, 1991]. It is common to set

S ¼ Fh i�1 ð13Þ

as an approximation [e.g., Carrera and Neuman, 1986a].
Assuming equivalence of hFi and F [Efron and Hinkley,
1978; Kass and Raftery, 1995] and substituting (13) into
(11) gives

KIC ¼ �2 ln½L b̂jz*
� �

� � 2 ln pðb̂Þ � Nk ln 2p� ln jSj: ð14Þ

When prior information about the hydrologic parameters is
unavailable, the term �2ln p(b̂) drops out. An equivalent
expression corresponding to parameter estimation schemes
based on weighted least squares, of the kind employed in
some hydrologic inverse codes (e.g., PEST [Doherty,
2006], UCODE_2005 [Poeter et al., 2005], and MOD-
FLOW2000 [Hill et al., 2000]), is given in Appendix B.
[23] Past applications of model selection criteria in the

hydrologic literature have not always used expressions for
KIC consistent with those presented here. Although Carrera
and Neuman [1986a] presented the correct expression for
KIC, in computing KIC values for their example Carrera
and Neuman [1986b] apparently substituted hFi for �F in (4);
their application of (14) was missing the term �NklnNz.
Hernandez et al. [2006] likewise left out this term. Poeter
and Anderson [2005] appear to have left out two terms,
�PklnŝML

2 and �PklnNz where Pk is the number of
hydrologic model parameters and ŝML

2 is a ML estimate of
a nominal observation error variance (all defined in
Appendix B), due to an erroneous specification of the
Fisher information matrix.

4. Comparative Analysis of Model Selection
Criteria

[24] We present below what appears to be the first
comparative analysis of how well AIC, AICc, BIC, and
KIC discriminate between models given information about
the models’ ability to render hydrologic predictions of
measured quantities. Our analysis concerns the geostatis-
tical characterization of log air permeability (log10k) in
unsaturated fractured tuff at the Apache Leap Research Site
(ALRS) in central Arizona. It is based on 184 pneumatic
injection tests in 1-m-long segments of six vertical and
inclined (at 45�) boreholes at the site. Seven alternative
variogram models were fitted to these data by Ye et al.
[2004]: power (Pow0), exponential without a drift (Exp0),
exponential with a linear drift (Exp1), exponential with a
quadratic drift (Exp2), spherical without a drift (Sph0),
spherical with a linear drift (Sph1), and spherical with a
quadratic drift (Sph2). The authors used an adjoint state
maximum likelihood cross validation (ASMLCV) method
due to Samper and Neuman [1989] in conjunction with
universal kriging [Deutsch and Journel, 1998] and general-
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ized least squares [Neuman and Jacobson, 1984] to obtain
unbiased ML estimates of variogram parameters and drift
coefficients for each of the seven models. They used
ASMLCV rather than the ML estimator to associate each
measurement with a variance s2 and computed the observed
Fisher information matrix directly [Ye et al., 2004,
equation (9)] rather than on the basis of a Jacobian matrix.
[25] In a manner patterned after Ye et al. [2004] we cross

validate below each of the seven variogram models by
checking their ability to predict log permeability in each of
the six boreholes based solely on measured values in the
remaining five boreholes. We translate the values of AIC,
AICc, BIC, and KIC associated with each model into a
posterior model weight, p(Mkjz*), which in the case of BIC
and KIC represents posterior model probability. The
posterior model weights are computed according to

p Mk z*jð Þ ¼
exp � 1

2
DICk


 �
p Mkð ÞP7

l¼1

exp � 1
2
DICl


 �
p Mlð Þ

; ð15Þ

where DICk = ICk � ICmin, ICk being any of the four model
selection or information criteria and ICmin = min

k
{ICk} its

minimum over all seven models. To render our analysis
neutral, we set the prior probability p(Mk) of each of the
seven models, Mk, k = 1, 2, . . ., 7, equal to 1/7. Next, we
characterize the predictive capabilities of each model in
terms of its predictive log score (a measure of information
lost upon eliminating from consideration some of the data
for purposes of cross validation; calculation of the log score
is based on equations (20)–(22) of Ye et al. [2004]) and
predictive coverage (percent of eliminated data falling
within the 90% prediction interval). The lower the
predictive log score and the higher the predictive coverage
of a given model, the better its predictive capabilities. We

compute similar measures of performance for predictions
obtained upon averaging those of all seven individual
models using the corresponding values of p(Mkjz*), based
on each of the four information criteria, as weights. Details
of our cross-validation and model averaging procedures are
given by Ye et al. [2004].
[26] Table 1 lists the predictive log score results corresponding

to individual variogram models and to model averaged
predictions based on AIC, AICc, BIC, and KIC obtained
through cross validation against measured log10k values in
boreholes V2, X2, Y2, Y3, Z2, and W2A. Predictive log
scores obtained through model averaging were smaller than
values obtained using individual models, regardless of which
model selection criterion was used (Table 1). Differences in
predictive log scores obtained using individual models were
considerably larger than differences in model-average results
between model selection criteria. These results suggest that
in terms of predictive performance, choosing to use model-
average predictions (instead of predictions from a single
model) is much more important than the choice of a
particular model selection criterion.
[27] Predictive coverage results, shown in Table 2, are

similar to the log score results. Predictive coverage values
obtained through model averaging were generally larger than
those obtained using individual models except in the case of
AIC and AICc, which yielded smaller coverage values than
did models Pow0 and Sph0 (Table 2). Differences between
predictive coverage values obtained using individual models
were considerably larger than differences in model-average
results between model selection criteria. Nonetheless, Tables
1 and 2 indicate that the overall model-averaged performance
of KIC (as measured by an average log score of 31.40 and an
average predictive coverage of 87.46%) was superior to that
of the other three criteria, the least satisfactory log score
being that of BIC and the lowest predictive coverage that of
AICc.

Table 1. Predictive Log Score of Each log10k Variogram Model

and of Model-Averaged Results Based on AIC, AICc, BIC, and

KIC in Cross Validations Against Measured log10k Values in

Boreholes V2, X2, Y2, Y3, Z2, and W2A at the Apache Leap

Research Site

Borehole

Predictive Log Scores of Individual Models

Pow0 Exp0 Exp1 Exp2 Sph0 Sph1 Sph2

V2 21.63 23.48 23.27 25.64 24.88 31.59 32.05
X2 29.68 27.05 27.88 27.91 32.60 41.08 41.11
Y2 27.28 29.33 24.13 25.06 30.65 32.76 32.85
Y3 55.79 59.11 39.58 45.27 59.62 53.24 53.31
Z2 37.97 38.70 48.35 92.32 39.18 57.78 58.03
W2A 32.30 33.79 40.61 24.96 35.50 33.68 33.68
Average 34.11 35.24 33.97 40.19 37.07 41.69 41.84

Log Scores of Model-Averaged Predictions

Borehole AIC AICc BIC KIC

V2 21.64 21.64 21.63 21.79
X2 28.04 28.07 29.30 27.64
Y2 24.46 24.33 26.01 24.25
Y3 40.73 40.57 45.43 41.82
Z2 44.09 43.08 38.02 40.41
W2A 32.15 32.26 32.31 32.48
Average 31.85 31.66 32.12 31.40

Table 2. Predictive Coverage (%) of Each log10k Variogram

Model and of Model-Averaged Results Based on AIC, AICc, BIC,

and KIC in Cross Validations Against Measured log10k Values in

Boreholes V2, X2, Y2, Y3, Z2, and W2A at the Apache Leap

Research Site

Borehole

Predictive Coverage of Individual Models, %

Pow0 Exp0 Exp1 Exp2 Sph0 Sph1 Sph2

V2 100.00 60.00 80.00 70.00 80.00 75.00 70.00
X2 90.00 90.00 93.33 90.00 93.33 96.67 90.00
Y2 89.29 92.86 85.71 78.57 92.86 92.86 92.86
Y3 57.50 60.00 77.50 77.50 62.50 72.50 72.50
Z2 82.14 82.14 82.14 50.00 82.14 78.57 53.57
W2A 100.00 100.00 83.78 51.35 100.00 86.49 83.78
Average 86.49 80.83 83.75 69.57 85.14 83.68 77.12

Borehole

Coverage of Model-Averaged Predictions, %

AIC AICc BIC KIC

V2 100.00 100.00 100.00 100.00
X2 93.33 93.33 90.00 93.33
Y2 89.29 89.29 92.86 89.29
Y3 77.50 70.00 57.50 60.00
Z2 50.00 50.00 82.14 82.14
W2A 100.00 100.00 100.00 100.00
Average 85.02 83.77 87.08 87.46
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[28] Table 3 compares posterior model weights (prob-
abilities in the case of BIC and KIC) (%) and correspond-
ing ranks assigned to each variogram model by AIC, AICc,
BIC, and KIC with log score and predictive coverage values
and ranks based on actual model performance under cross
validation. Table 3 also lists the sum of model ranks based
on log score and predictive coverage (SPR), ranks based on
SPR, and the sum of absolute differences (SAD) between
the rank assigned to each model by a given information
criterion and the rank based on SPR. Table 3 shows that
(1) BIC and KIC clearly identified the two best performing
(Pow0 and Exp1) and the two worst performing (Sph2 and
Exp2) models, (2) AIC and AICc ranked the second worst
performing model (Exp2) as second best, and (3) in terms of
the overall measure SAD, BIC, and KIC ranked the models
much more consistently with their order of performance
(as measured by the cross validation) than did AIC and
AICc.
[29] Additional details and insights concerning our cross-

validation results are offered in Appendix C.

5. Summary of Key Findings

[30] The following is a summary of our key findings:
[31] 1. All published rigorous derivations of the

information-theoretic model selection criteria AIC and AICc
require that the (true) model, which has generated the
observational data, be in the set of models being analyzed.
[32] 2. Though the Bayesian model selection criteria BIC

and KIC were originally derived by assuming that the true
model is in the set of candidate models, BIC has
subsequently been rederived without the need for such an
assumption.
[33] 3. KIC reduces to BIC as the number of observations

becomes large relative to the number of adjustable model
parameters, implying that it likewise does not require the
existence of a true model in the set of alternatives.
[34] 4. If a true model is in the set, BIC and KIC select

with probability one the true model as sample size increases,
a consistency property not shared by AIC and AICc.
[35] 5. Published comparisons between BIC and AIC

(none considers KIC and few consider AICc) tend to rely on

the consistency of BIC, which does not apply when a true
model is not in the set, as is usually the case in hydrology.
[36] 6. KIC is the only criterion accounting validly for the

likelihood of prior parameter estimates.
[37] 7. The presence of a Fisher information term in KIC

imbues it with desirable model selection properties not
shared by AIC, AICc, or BIC. KIC sometimes prefers more
complex models than do other criteria due to its unique
ability to discriminate between models based not only on
their goodness of fit to observational data and number of
parameters but also on the quality of the available data and
of the parameter estimates. Whereas AICc may select more
complex models as the number of observations increases, it
does so without regard to such quality considerations. BIC
and KIC are sufficiently different from each other to render
published comparisons between information-theoretic cri-
teria and BIC inapplicable to KIC.
[38] 8. Our computational example appears to provide the

first comparative analysis of how well AIC, AICc, BIC, and
KIC discriminate between models given information about
the models’ ability to render hydrologic predictions of
measured quantities under cross validation. In the example,
variogram parameters are estimated using adjoint-state and
nonlinear regression methods, similar to those employed
widely in estimating groundwater flow and transport
parameters. In our example, predictions obtained through
weighted model averaging were generally better than those
generated by individual models regardless of which model
selection criterion was used to assign the weights.
Differences among predictions obtained through model
averaging based on various model selection criteria were
much smaller than among those generated by individual
models. While this suggests that choosing to use model
averaging is a much more important decision than choosing
a particular model selection criterion, the overall model-
averaged performance of KIC was better than that of any
other criterion tested, the least satisfactory measures of
performance being associated with BIC (highest log score)
and AICc (lowest percent of predictive coverage).
[39] 9. Whereas weights assigned to the various models

in our example by AIC and AICc tended to be similar,

Table 3. Posterior Model Weights (%) and Corresponding Ranks Assigned to Each Variogram Model by AIC,

AICc, BIC, and KIC Compared With Log Score and Predictive Coverage Values and Ranks Based on Actual

Model Performance Under Cross Validationa

Model Pow0 Exp0 Exp1 Exp2 Sph0 Sph1 Sph2 SAD

AIC 13.65% 0.17% 50.60% 34.17% 0.00% 0.91% 0.50% . . .
Rank 3 6 1 2 7 4 5 16
AICc 19.44% 0.24% 58.76% 20.21% 0.00% 1.06% 0.30% . . .
Rank 3 6 1 2 7 4 5 16
BIC 98.21% 1.19% 0.59% 0.00% 0.00% 0.01% 0.00% . . .
Rank 1 2 3 6 5 4 7 6
KIC 35.30% 26.58% 37.61% 0.00% 0.00% 0.51% 0.00% . . .
Rank 2 3 1 6 5 4 7 6
Log score 34.11 35.24 33.97 40.19 37.07 41.69 41.84 . . .
Rank 2 3 1 5 4 6 7 . . .
Coverage 86.49% 80.83% 83.75% 69.57% 85.14% 83.68% 77.12% . . .
Rank 1 5 3 7 2 4 6 . . .
SPR 3 8 4 12 6 10 13 . . .
Rank 1 4 2 6 3 5 7 . . .

aSPR is the sum of ranks based on log score and predictive coverage; the bottom row is the rank based on SPR. SAD is the
sum of absolute differences between the rank assigned to each model by a model selection criterion and the rank based on SPR.
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posterior probabilities assigned to the models by BIC and
KIC tended to differ markedly from each other and from the
AIC/AICc weights. KIC is strongly and uniquely influenced
by its Fisher information term, which increased sharply with
the number of model parameters within each of two nested
sets of exponential and spherical variogram models we
considered.
[40] 10. Whereas BIC and KIC clearly identified the two

best performing (Pow0 and Exp1) and the two worst
performing (Sph2 and Exp2) models among seven vario-
gram models in our example, AIC and AICc ranked the
second worst performing model (Exp2) as second best. BIC
and KIC ranked the models much more consistently with
their actual order of performance than did AIC and AICc.
[41] 11. Only one of the seven sample variograms

obtained upon cross validating data from one of six bore-
holes (Y3) in our example appeared to represent a stationary
random field (see Appendix C). KIC was the only
information criterion that recognized this by favoring a
stationary variogram model (Exp0) in this case.
[42] 12. Predictions obtained using variogram model

Exp2 when cross validating data from one of six boreholes
(Z2) in our example were very different from those
generated by Pow0, Exp0, and Exp1 (see Appendix C),
reflecting what appeared to be an excessive fit to noisy data
(due to a relatively large number of adjustable parameters).
Whereas Exp2 was ranked in this case second to last among
all seven models by BIC and KIC, it was ranked second best
by AIC and AICc. Similar rankings were reflected in model-
averaged results, which in the case of AIC and AICc were
dominated by Exp2. This exemplifies the known tendency
of AIC and AICc to favor models which exhibit a closer fit
to data than these data warrant (i.e., the tendency to over fit,
which some confuse with accuracy).

Appendix A

[43] Following Kashyap [1982], for K competing (linear
or nonlinear, Gaussian or non-Gaussian) models Mk, the
posterior probability p(Mkjz*) of Mk conditioned on the
observations z* is expressed according to Bayes’ rule as

p Mk jz*ð Þ ¼ p z*jMkð Þp Mkð Þ
p z*ð Þ ¼ Ckp z*jMkð Þ: ðA1Þ

The likelihood function p(z*jMk) of Mk is given by

p z*jMkð Þ ¼
Z

p z* bk ;Mkjð Þ p bk Mkjð Þ dbk ; ðA2Þ

where bk (of dimension Nk) is the vector of parameters
associated with Mk. Let b̂k be the maximum likelihood
estimates of bk based on observations z* and the likelihood
function L(bkjz*,Mk) = p(z*jbk,Mk). Expressing the latter as
exp(ln p(z*jbk,Mk)), expanding ln p(z*jbk,Mk) and p(bkjMk)
in a Taylor series about b̂k and ignoring higher-order terms
in the parameter estimation error (b̂k � bk) gives

p z*jMkð Þ ¼ p z* b̂k ;Mk

���� �
p b̂k Mkj
� �

Z
exp � 1

2
b̂k�bk

� �T

Nz
�Fk z* bk ;Mkjð Þ b̂k � bk

� �
 �
dbk;

ðA3Þ

where the normalized (by Nz) observed Fisher information
matrix �Fk (z*jqk, Mk) is defined as

�Fkij z* bk ;Mkjð Þ ¼ � 1

Nz

@2 ln p z* bk ;Mkjð Þ
@bi @bj

�����
bk¼ b̂k

; ðA4Þ

Nz being the dimension of z*. Near bk the estimation error
(b̂k � bk) is close to Gaussian so that

1 ¼ 2pð Þ
�
Nk
2
Nz

�Fk z* b̂k ;Mk

���� ���� ���12Z
exp � 1

2
b̂k � bk

� �T

Nz
�Fk z* bk ;Mkjð Þ b̂k � bk

� �
 �
dbk :

ðA5Þ

Substituting (A5) into (A3) yields

p z*jMkð Þ ¼ p z* b̂k ;Mk

���� �
p b̂k Mkj
� �

� 2p=Nzð Þ
Nk
2
Fk z* b̂k ;Mk

���� ���� ����1
2

: ðA6Þ

Taking natural logarithm and multiplying by �2 leads
directly to (4). Since �2ln[L(b̂kjz*)] in (4) is of order Nz it
follows from (5) that �Fij is of order 1 and lnj�Fj is of order
lnNk while �2ln p(b̂k) is of order Nk as is �Nk ln(2p). In the
limit of a large sample Nz relative to Nk (Nz/Nk ! 1), terms
of order Nk and lnNk can be disregarded in comparison to
terms of order Nz and KIC reduces to BIC in (3). A similar
derivation of KIC and discussion of the relationship between
KIC and BIC are given by Kass and Raftery [1995], Neath
and Cavanaugh [1997], and Congdon [2001].

Appendix B

[44] The covariance Cz of the observation errors e* =
z* � z is sometimes expressed as [Carrera and Neuman,
1986a; Hill, 1998] Cz = s2 w�1 where w is a known weight
matrix and s2 is a known or unknown nominal error
variance. When prior estimates of hydrologic parameters are
available, they can be incorporated into z* as proposed by
Carrera and Neuman [1986a] and Cooley [1983] for
deterministic models and by Hernandez et al. [2006] for
stochastic ensemble moment models; in both cases the
prior parameter estimates are taken to be uncorrelated with
the observational system state errors, yielding a block
diagonal covariance matrix Cz. Substituting Cz = s2 w�1

into (7) gives

L bk z*jð Þ ¼ 2pð Þ�Nz=2 s2w�1
�� ���1=2

exp � 1

2

e*Twe*
s2


 �
; ðB1Þ

which in turn can be rewritten as

�2 ln L bk jz*ð Þ½ � ¼ Nz ln 2pð Þ þ Nz lns2 þ ln jw�1j þ e*Twe*
s2

:

ðB2Þ

[45] If s2 is known, bk = qk where qk is a vector of Pk

hydrologic model parameters so that Nk = Pk. In this case
minimizing the above negative log likelihood criterion
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(maximizing the likelihood L) is equivalent to minimizing
the generalized (or weighted if w is diagonal as given by
Hill [1998]) least squares (LS) criterion eTwe. This yields
a ML and, equivalently, a LS estimate b̂k = q̂k of bk = qk. If
s2 is unknown, one must estimate via ML an extended
(hydrologic and statistical) parameter vector bk ={qk, s2}
having dimension Nk = Pk + 1; LS estimation would not
yield an ML estimate of s2 as required for the evaluation of
AIC, AICc, BIC, and KIC. Since s2 is often difficult to
evaluate a priori, we focus below on this latter case.
[46] Considering that qk and s2 are mutually independent,

it is possible to obtain a ML estimate q̂k of qk without
knowing s2 by setting �2@ln[L(qk, s2jz*)]/@qk = 0. Since
Nzln(2p), Nz ln s2, and lnjw�1j in (B2) are independent of
qk, this is equivalent to minimizing the (generalized or
weighted) sum of squared residuals eTwe where e = ^z - z*
and ^z is the computed value of z, yielding an estimate q̂k that
is at once ML and LS. One can then estimate s2 a posteriori
by setting �2@ln[L(q̂k, s2jz*)]/@s2 = 0, yielding the ML
estimate [Seber and Wild, 1989; Seber and Lee, 2003;
Carrera and Neuman, 1986a]

ŝ2
ML ¼ eTwe

Nz

����
qk¼ q̂k

: ðB3Þ

As this ML estimate is biased, it is sometimes replaced by
the unbiased LS estimator [Seber and Wild, 1989; Seber and
Lee, 2003; Hill, 1998]

ŝ2
LS ¼ eTwe

Nz � Pk

����
qk¼ q̂k

: ðB4Þ

When Nz � Pk, the difference between (B3) and (B4)
is negligible, but in the more general ML context
within which AIC, AICc, BIC, and KIC are defined,
especially in the hydrologically significant case where
Nz is not much larger than Pk (for which AICc and
KIC are the most appropriate), there does not appear to
be a theoretical justification for replacing ŝML

2 with ŝLS
2 ,

even if the former is biased. Accordingly, substituting
(B3) into (B2) yields

�2 ln L q̂k ; ŝ2
ML z*j

� �h i
¼ Nz ln 2pð Þ þ Nz ln ŝ2

ML þ ln w�1
�� ��þ Nz:

ðB5Þ

Since Nzln(2p), lnjw�1j and Nz are constant (independent
of the choice of model or parameters), they do not affect

Table C1. Values of Negative Log-Likelihood (NLL), AIC, AICc, BIC, lnj�Fj, KIC, and Relative Weights or (in the Case of BIC and KIC)

Posterior Probabilities p(Mkjz*) Assigned by Each Information Criterion to Each Variogram Model Mk, k = 1,. . .7, During Cross

Validation of Measured Log Permeabilities in Three (X2, Y3, and Z2) of Six Boreholes at the Apache Leap Research Sitea

Model Pow0 Exp0 Exp1 Exp2 Sph0 Sph1 Sph2
Nk 2 2 6 12 2 6 12

X2 (Nz=154)
NLL 297.13 304.00 285.74 276.67 318.14 291.69 281.56
AIC 301.13 308.00 297.74 300.67 322.14 303.69 305.56
p(Mkjz*) 12.32% 0.40% 67.02% 15.50% 0.00% 3.42% 1.34%
AICc 301.21 308.08 298.31 302.88 322.22 304.26 307.77
p(Mkjz*) 16.74% 0.54% 71.21% 7.25% 0.00% 3.63% 0.63%
BIC 307.20 314.07 315.96 337.11 328.21 321.91 342.00
p(Mkjz*) 95.66% 3.08% 1.20% 0.00% 0.00% 0.06% 0.00%
ln j�Fj 10.32 1.75 5.96 43.25 3.91 8.31 44.76
KIC 313.85 312.15 310.90 358.31 328.45 319.19 364.71
p(Mkjz*) 12.85% 30.07% 56.18% 0.00% 0.01% 0.89% 0.00%

Y3 (Nz=144)
NLL 273.40 277.75 265.01 252.59 291.43 273.70 264.70
AIC 277.40 281.75 277.01 276.59 295.43 285.70 288.70
p(Mkjz*) 26.04% 2.96% 31.55% 38.94% 0.00% 0.41% 0.09%
AICc 277.48 281.83 277.63 278.97 295.51 286.31 291.08
p(Mkjz*) 39.50% 4.49% 36.75% 18.73% 0.00% 0.48% 0.04%
BIC 283.34 287.68 294.83 312.23 301.37 303.51 324.34
p(Mkjz*) 89.51% 10.18% 0.29% 0.00% 0.01% 0.00% 0.00%
lnj�Fj 10.28 2.06 6.25 44.47 4.41 6.60 40.71
KIC 289.94 286.07 290.06 334.65 302.10 299.08 342.99
p(Mkjz*) 11.25% 78.01% 10.60% 0.00% 0.03% 0.12% 0.00%

Z2 (Nz=156)
NLL 264.23 272.95 250.59 232.31 291.12 262.47 236.42
AIC 268.23 276.95 262.59 256.31 295.12 274.47 260.42
p(Mkjz*) 0.22% 0.00% 3.69% 85.14% 0.00% 0.01% 10.93%
AICc 268.31 277.03 263.15 258.49 295.20 275.03 262.60
p(Mkjz*) 0.60% 0.01% 7.90% 81.07% 0.00% 0.02% 10.41%
BIC 274.33 283.05 280.89 292.91 301.22 292.77 297.01
p(Mkjz*) 95.18% 1.21% 3.58% 0.01% 0.00% 0.01% 0.00%
lnj�Fj 10.83 2.46 6.32 43.54 4.98 10.23 44.65
KIC 281.48 281.83 276.18 314.40 302.52 291.97 319.61
p(Mkjz*) 6.24% 5.24% 88.49% 0.00% 0.00% 0.03% 0.00%

aNz is the number of data used to estimate Nk model parameters.
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model selection or relative weighting. Substituting (B5)
with Nk = Pk + 1 into (1)–(3) and dropping all constants
leads to

AICk ¼ Nz ln ŝ2
ML þ 2Pk ðB6Þ

AICck ¼ Nz ln ŝ2
ML þ 2Pk þ

2Nk Nk þ 1ð Þ
Nz � Nk � 1

ðB7Þ

BICk ¼ Nz ln ŝ2
ML þ Pk lnNz: ðB8Þ

Substituting (B5) into (14) and dropping all constants gives

KICk ¼ Nz ln ŝ2
ML � 2 ln pðq̂kÞ � Pk ln 2p� ln jSk j ðB9Þ

with �2ln p(q̂) dropping out when prior information about
the hydrologic parameters is not available. In this latter case
[Carrera and Neuman, 1986a]

S�1
k ¼ 1

ŝ2
ML

JTkwJk ; ðB10Þ

where Jk is the Jacobian (sensitivity) matrix having elements
Jkij = �@ẑi/@qkjjqk = q̂k

that linearizes nonlinear groundwater
models around the maximum likelihood (or least squares)
parameter estimates. Hence

ln Skj j ¼ Pk ln ŝ2
ML � ln JTkwJk

�� �� ðB11Þ

KICk ¼ Nz � Pkð Þ ln ŝ2
ML � Pk ln 2pþ ln JTkwJk

�� ��: ðB12Þ

Appendix C

[47] Here we provide further information about the com-
parative analysis of information criteria discussed in the
text. Table C1 lists values of NLL (negative log-likelihood),
AIC, AICc, BIC, lnj�Fj, KIC, and relative weights or (in the
case of BIC and KIC) posterior probabilities p(Mkjz*)
assigned by each information criterion to each variogram
model Mk, k = 1, 2, . . ., 7, during the cross validation of

measured log permeabilities in three of the six boreholes
(X2, Y3, and Z2) at the Apache Leap Research Site
(ALRS). As expected, NLL generally decreased as the
number of variogram parameters (NP) increased, most
notably so among nested sets of models belonging to the
exponential and spherical families. Whereas weights
assigned to the various models by AIC and AICc tended
to be similar, posterior probabilities assigned to the models
by BIC and KIC tended to differ markedly from each other
and from the AIC/AICc weights. Differences between
posterior probabilities assigned to the models by BIC and
KIC were due in part to differences between corresponding
lnj�Fj values which increased sharply with Nk within each
nested set of exponential and spherical models, affecting
KIC but not BIC. Hence comparisons in the literature
between AIC, AICc, and BIC do not generally extend to
KIC.
[48] Figure C1 depicts omnidirectional sample vario-

grams of all 184 log permeability (m2) data and of partial
data sets obtained upon eliminating those measured in
boreholes X2, Y3, and Z2. This and Figure 11 of Ye et al.
[2004] indicate that only one of the sample variograms,
obtained upon eliminating data from borehole Y3, appeared
to represent a stationary field. Table C1 shows KIC was the
only information criterion to recognize this by favoring a
stationary variogram model (Exp0) in this case. We note
here that the number of data pairs associated with each point

Figure C1. Omnidirectional sample variograms of all log
permeability (m2) data and of partial data sets obtained upon
eliminating those measured in boreholes X2, Y3, and Z2.

Figure C2. Predicted log permeabilities (m2) using (a)
Pow0, Exp0, Exp1, and Exp2 and (b) model averaging
based on AIC, AICc, BIC, and KIC versus measured values
obtained during cross validation of data from borehole Z2.
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on each sample variogram, including those associated with
cross validating the remaining three boreholes, exceeded
several hundred at all lags.
[49] Figure C2a compares predicted log permeabilities

using variogram models Pow0, Exp0, Exp1, and Exp2 with
measured values obtained during cross validation of data
from borehole Z2 (spherical model results were inferior and
therefore are not shown). None of the four models captured
fully the spatial variability of log permeabilities at the site.
Predictions obtained using variogram model Exp2 were
very different from those obtained using Pow0, Exp0, and
Exp1, reflecting what appears to be an excessive fit to noisy
data (due to the relatively large number of adjustable
parameters in model Exp2). It is thus noteworthy that Exp2
was ranked second to last among all seven models by BIC
and KIC but second best by AIC and AICc (Table 3). These
rankings are reflected in model-averaged results in Figure
C2b, which, in the case of AIC and AICc, were dominated
by Exp2. This exemplifies the known tendency of AIC and
AICc to favor models that exhibit a closer fit to data than
these data warrant (i.e., the tendency to over fit, which some
confuse with accuracy).
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