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Abstract Fluctuations of temperature and degree of satu-

ration have considerable influence on the mechanical,

hydraulic and retention properties of unsaturated soils.

Localized failure is a ubiquitous feature of geomaterials.

Major research on localized failure of geomaterials has

been focused on geomaterials under the isothermal condi-

tion. In this article, we study the localized failure of

unsaturated soils under non-isothermal conditions. In par-

ticular, we derive the isothermal and adiabatic bifurcation

conditions from a homogeneous deformation at the con-

stitutive level under a locally drained condition. A recently

proposed meso-scale constitutive model for thermal

unsaturated soils is used to derive the isothermal and adi-

abatic acoustic tensors. We present the spectral form of the

consistent tangential elasto-plastic operator from a local

material integration algorithm. The numerical simulations

at the material level are conducted to study the impact of

temperature on localized failure of unsaturated soils under

the plane strain condition. The numerical results show that

the timing and the critical angle of bifurcation are depen-

dent on temperature.

Keywords Bifurcation � Localized failure � Plasticity �
Temperature � Unsaturated soils

1 Introduction

Localized failure is a ubiquitous feature of geomaterials.

The onset of shear banding may dramatically reduce the

overall load carrying capacity as well as impact the

transport properties of geomaterials. For these reasons,

shear banding in saturated soils have been investigated

theoretically, experimentally and numerically over the past

several decades (e.g.,[16, 40, 43, 61, 62]). However, there

is few research on the localized deformation of unsaturated

soils. For instance, Borja [7] proposed a mathematical

framework to detect the onset of strain localization in

unsaturated soils at the constitutive level under the

isothermal conditions. Ehlers et al. [20] investigated the

inception of strain localization in partially saturated soils

via a finite element model formulated based on the general

porous media theory [14, 15]. Schiava and Etse [48] ana-

lyzed the condition for discontinuous bifurcation in

unsaturated soils for different suctions and effective stress

states. Callari et al. [13] studied the inception and propa-

gation of strain localization in unsaturated soils via an

enhanced finite element technique. Buscarnera and Nova

[12] studied instabilities of unsaturated soils in triaxial

testing via a second-order work concept. Peric et al. [39]

presented general analytical solutions for the onset of strain

localization in unsaturated soils. Recent research conducted

by the first author showed that the material heterogeneities

(i.e., density and degree of saturation) are potential triggers

on localized failure in unsaturated soils [52–55, 57, 58].

The above study of strain localization in unsaturated

soils has been focused on unsaturated soils at constant

ambient temperature. However, in recent years the ther-

mal–hydro-mechanical analysis of unsaturated soils has

received increasing interest in the geomechanics commu-

nity because of its wide spectrum of engineering
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applications, for instance, geothermal structures [33], pet-

roleum drilling, injection and production activities [18],

and zones around high-voltage cables [2, 36]. This can be

seen from the recent experimental work (e.g., [42, 46, 59])

and constitutive modeling (e.g., [5, 17, 21, 25, 35, 63]) of

thermal unsaturated soils. On the experimental side, Sala-

ger et al. [46] investigated the influence of temperature and

suction effects on compressibility and preconsolidation

pressure of a sandy silt, and proposed an evolution equation

for the apparent preconsolidation stress with respect to

temperature and suction, which has been used in thermal

constitutive models for unsaturated soils (e.g., [21, 56]).

Recently Uchaipichat and Khalili [59] presented an

experimental study on non-isothermal behavior of unsatu-

rated soils under the triaxial condition.

On the constitutive modeling of thermal unsaturated

soils, the first constitutive model was proposed by Gens

[25]. This thermomechanical model is a combination of the

constitutive model for unsaturated soils under the isother-

mal condition [1] and a thermoplastic modeling for satu-

rated soils [29]. Wu et al. [63] proposed a thermohydro-

mechanical constitutive model for unsaturated soils in

which the effect of temperature on the water retention

curve was considered explicitly. Bolzon and Schrefler [5]

modified an elastic–plastic model for partially saturated

soils to take into account the temperature effect. Francois

and Laloui [21] presented a unified approach dealing with

the thermoplasticity of saturated and unsaturated soils in a

highly coupled framework. Dumont et al. [17] proposed a

thermal–hydro-mechanical model for unsaturated soils

based on a microstructural model for capillary stress.

Masin and Khalili [35] formulated a thermomechanical

model for unsaturated soils based on hypoplasticity.

Recently the first author of this paper presented a meso-

scale thermal constitutive model for unsaturated soils

which can capture both the inherent and induced hetero-

geneity of porosity [56].

Another factor that needs to be considered in modeling

unsaturated soils is water retention model [23, 60]. Water

retention model is a relationship between water content and

water potential in unsaturated porous media. It has been

recognized that the water retention curve for unsaturated

soils is dependent on the density of soils [44] as well as

temperature [45, 47]. Experimental results showed that the

retention curves shift toward lower saturations in the suc-

tion–saturation plot with increasing temperatures (see

Fig. 1). The major reason for this observed phenomenon is

the interfacial tension between the water and the grains

decreases as temperature increases [41]. Grant and Sale-

hzadeh [27] investigated the temperature effects on the

capillary pressure and contact angle cA between water and

solid phase, and proposed a temperature-dependent soil–

water retention curve, which is a variant of the model

proposed by van Genuchten [60]. However, none of the

aforementioned water retention models considered the

influence of the density of the solid phase on the water

retention in porous media. Salager et al. [45] proposed a

general law quantifying the variation of suction with water

content, temperature and void ratio, which was validated

by their own laboratory experiments. This law was adopted

to describe soil–water retention in the meso-scale consti-

tutive model for thermal unsaturated soils [56].

The inception of shear banding in geomaterials can be

described as a bifurcation of the incremental solution for a

boundary value problem. Mechanically, shear banding can

be described as a strong (i.e., displacement) or weak (i.e.,

strain) discontinuity problem. In this article, we derive a

bifurcation condition from a homogeneous deformation at

the constitutive level under the fully ‘‘drained’’ condition.

Here, the local fully ‘‘drained’’ condition means the pore

pressures of water and air, and temperature inside and

outside the shear band are continuous. The meso-scale

constitutive model for thermal unsaturated soils is used to

derive the ‘‘drained’’ acoustic tensor. We present the

spectral form of the consistent tangent operator from a

local material integration algorithm. The numerical simu-

lations at the material point level are conducted to study the

impact of the elevated constant temperature and tempera-

ture variations on localized failure in unsaturated soils

under the suction-controlled plane strain condition. The

numerical results show that the fluctuation of temperature

may facilitate localized failure in unsaturated soils. We

also present the detection of localized deformation under

the different initial dry density of unsaturated soils that

demonstrates that the impact of temperature on localized

failure is sensitive to the initial dry density of unsaturated

soils.

As for notations and symbols used in this article, bold-

faced letters denote tensors and vectors; the symbol ‘‘.’’

denotes an inner product of two vectors; the symbol ‘‘:’’

denotes an inner product of two second-order tensors, or
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Fig. 1 Water retention curves for three different specific volumes at

three different temperatures. S suction, v specific volume
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double contraction of adjacent indices of tensors of rank

two or higher; the symbol ‘‘�’’ denotes a juxtaposition. For

any symmetric second-order tensors a and b,

ða� bÞijkl ¼ aijbkl.

2 A meso-scale thermal plasticity model
for unsaturated soils

In the section, we briefly introduce the key elements of a

meso-scale thermal constitutive model for unsaturated

soils [56]. We first introduce the effective stress chosen

for this constitutive model because the stress tensor is a

key element to model unsaturated soils [26]. There are

two types of stress tensors proposed to model unsaturated

soils. In the first category the total stress is decomposed

into a net stress (i.e., total stress minus pore air pressure)

and suction (i.e., pore air pressure minus pore water

pressure) (e.g., [1, 22]). For the second one the Bishop-

type effective stress [3, 4] is used to model the solid

phase via

r0 ¼ ðrþ pa1Þ � vðpa � pwÞ1; ð1Þ

where r and r0 are the total and effective Cauchy stress

tensor respectively; pa and pw are pore air and pore water

pressures, respectively; 1 is the second-order identity

tensor respectively; v is the effective stress parameter,

which equals to 1 for saturated soils and zero for dry soils.

Here we follow the convention in continuum mechanics

(i.e., stress and strain in compression are negative and pore

pressure in compression is positive). In general, to model

partially saturated porous media, it is convenient to apply

the Bishop effective stress to describe unsaturated soils

though selection of which stress tensor mostly depends on

the convenience [38]. The generalized Bishop effective

stress transfers the multiphase, multistress sate porous

material into a mechanically equivalent, single-phase,

single-stress state material [31, 34, 37]. In this paper, we

use the generalized Bishop-type effective stress [49]

combined with thermal effect to describe the mechanical

behavior of unsaturated soils,

r0 ¼ ðrþ pa1Þ � Srðpa � pwÞ1; ð2Þ

where v is replaced by degree of saturation Sr.

Furthermore, we assume that the total strain is

decomposed into thermal elastic and thermal plastic parts

under the assumption of the infinitesimal deformation.

� ¼ �e þ �p: ð3Þ

Next, we briefly describe the main elements of this ther-

moplastic constitutive model for unsaturated soils.

2.1 Thermal elastic model

For the thermal elasticity, we assume that the temperature

variation only impacts the volumetric strain of soils [29].

That is, the elastic region is determined by the isothermal

elastic deformation and thermal volumetric expansion. In

particular, the elastic modulus (i.e., bulk modulus and shear

modulus) is assumed to be governed by the isotropic strain-

energy function for modeling granular materials under the

isothermal condition [10, 11],

Wð�ev; �esÞ ¼ ~Wð�evÞ þ
3

2
leð�esÞ

2; ð4Þ

where

~Wð�evÞ ¼ �p0 ~j expx;x ¼ � �ev � �ev0
~j

; le ¼ l0 þ
a
~j
~Wð�evÞ:

ð5Þ

Here ~j is the elastic compressibility index; �ev0 is the elastic

volumetric strain corresponding to a mean normal stress of

p0; le is the elastic shear modulus, which contains a con-

stant term l0 and a term that varies with the elastic volu-

metric strain through the constant coefficient a.
The independent variables are the isothermal infinitesi-

mal volumetric strain and isothermal deviatoric strain,

�ev ¼ trð�eÞ � �eT; �
e
s ¼

ffiffiffi

2

3

r

k�e � 1

3
trð�eÞ1k: ð6Þ

The thermal volumetric strain is determined by the

following equation,

�eT ¼ bsðT � T0Þ; ð7Þ

where bs is the volumetric thermal expansion coefficient of

the solid skeleton; T is the soil temperature; T0 is the

reference temperature (ambient temperature). We use the

following expression for bs0 [21] but assuming that bs0 is

independent of the effective mean pressure and the initial

critical state pressure,

bs ¼ bs0 1� T � T0

100

� �

; ð8Þ

where bs0 is the isotropic thermal expansion coefficient at

T0.

2.2 Water retention curve

To model thermal–hydro-mechanical properties of unsat-

urated soils, we need a general water retention model

which is dependent on porosity and temperature of unsat-

urated soils. Here we adopt the water retention law pro-

posed by [45], which reads
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Sr ¼
1

1þ aðv� 1ÞbaTs
h in

8

<

:

9

=

;

m

; ð9Þ

where v is the specific volume; aT represents the

temperature effect on the air-entry suction [45]; and

aT ¼ a1 þ b1T0

a1 þ b1T

� �b1

; ð10Þ

where n, m, a, b, a1 and b1 are material parameters. Table 1

shows the parameters of the water retention model for a

sandy silt [45]. These material parameters are used to

conduct the numerical simulations of thermal unsaturated

soils presented in the section of numerical simulations.

Figure 1 shows water retention curves for three different

specific volumes at three different temperatures.

2.3 Thermal plastic model

We use the ðp0; q; hÞ representation to formulate the three

stress-invariant constitutive model. The three stress-in-

variants are

p0 ¼ 1

3
trðr0Þ; q ¼

ffiffiffi

3

2

r

jjn0jj; 1
ffiffiffi

6
p cosð3hÞ ¼ trn0

3

v3
;

ð11Þ

where q is the deviatoric stress, n0 ¼ r0 � p01, v2 ¼ trðn02Þ
and h is Lode’s angle whose values range from

0 6 h 6 p=3.
It has been accepted that both suction and degree of

saturation have a major impact on the yielding of the

unsaturated soils under the isothermal conditions. Follow-

ing [24], a bonding variable, which characterizes the

overall effect of a meniscus between two soil particles and

degree of saturation on the preconsolidation pressure, is

written as follows [7],

n ¼ f ðsÞð1� SrÞ; f ðsÞ ¼ 1þ s=patm
10:7þ 2:4ðs=patmÞ

; ð12Þ

where patm ¼ 101:3 kPa is the atmospheric pressure, and

s ¼ pa � pw is capillary pressure or suction.

Experimental study by Salager et al. [46] demonstrated

that temperature increase tends to decrease the isotropic

yield limit and a logarithmic function (i.e., the term ð1�
cT logðT=T0ÞÞ in Eq. 13) fits well with the evolution of

preconsolidation pressure with respect to temperature. To

capture the experimentally observed physics, we proposed

a preconsolidation pressure which is dependent on suction,

degree of saturation [24] and temperature [32, 46] as

follows,

pc ¼ � exp aðnÞ½ �ð�pcÞbðnÞ 1� cT logðT=T0Þ½ �; ð13Þ

where

aðnÞ ¼
~N cðnÞ � 1½ �
~kcðnÞ � ~j

; bðnÞ ¼
~k� ~j

~kcðnÞ � ~j
;

cðnÞ ¼ 1� c1 1� expðc2nÞ½ �;
ð14Þ

~k and ~j are compressibility parameters, and c1 and c2 are

constants; ~N is the specific volume when p0 ¼ 1 kPa; cT is a

material parameter capturing the thermal evolution of

preconsolidation pressure [21]; pc is the preconsolidation

pressure at the ambient temperature T0 and zero suction.

Like other constitutive models based on critical state the-

ory, pc serves as the hardening variable in this model.

Finally, the yield function is written as,

F ¼ fqþ gp0 6 0; ð15Þ

where

g¼
M 1þ lnðpi=p0Þ½ � if N ¼ 0;

ðM=NÞ 1�ð1�NÞðp0=piÞ
N=ð1�NÞ

h i

if N[0:

(

ð16Þ

is the maximum stress ratio, and

pi ¼
pc=e if N ¼ 0;

ð1� NÞð1�NÞ=N
pc if N[ 0:

(

ð17Þ

is an intermediate plastic internal variable [30]. Here M is

the slope of the critical state line; N is the shape factor of

the yield function; e is the natural number; f ¼ fðq; hÞ is a
scaling function which reproduces the effect of ellipticity;

and q is ellipticity of the yield surface on the deviatoric

plane [8]. In this constitutive model, M is independent of

temperature because the impact of temperature on M is

arguable as elaborated by Masin and Khalili [35]. The

associative flow rule is adopted in the constitutive model.

As demonstrated by the numerical simulations in the sec-

tion below, this thermal plastic constitutive model can

capture the localized deformation even the normal flow

rule is assumed. However, we can implement a similar

plastic potential as the yield function in Eq. (15) if nec-

essary. Figure 2 shows three yield surfaces in the principal

Table 1 Water retention material parameters [45]

Symbol Value Unit

a 0.038 kPa�1

b 3.490 –

n 0.718 –

m 0.632 –

a1 -608.0 K

b1 1.0 –
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effective stress space and cross sections on the deviatoric

plane at three different temperatures, respectively. Figure 2

implies that the increase in temperature decreases the size

of yield surface of the solid skeleton. In other words, this

thermal constitutive model can capture the soften effect of

temperature on the solid skeleton.

3 Locally ‘‘drained’’ isothermal and adiabatic
bifurcation analysis

The model described above is suitable for strain localization

analysis into tabular deformation bands in thermal unsaturated

soils. Here we formulate a criterion for the emergence of a

tabular deformation band under the condition of locally

‘‘drained’’ deformation. This criterion can capture the impact of

temperature through the thermal constitutive model for unsat-

urated soil. Furthermore, under the locally ‘‘drained’’ condition,

the partially saturated soils can be treated as a single-phase

material, i.e., the solid skeleton. Therefore, to derive the con-

dition of the localized deformation,we can assume that the total

traction on both sides of a shear band is continuous; the same

constitutive model applies to the material within the localized

band and the bulk; and the strain is discontinuous across the

shear band at the inception of bifurcation.

3.1 Kinematics of a tabular band

To capture such a tabular deformation band, following the

notation of [6, 7], a velocity field of the solid phase can be

defined by the following ramp-like relation,

v ¼
�v if �g 6 0;

�vþ �g½½v��=h if 0 6 �g 6 h;

�vþ ½½v�� if �g > h;

8

>

<

>

:

ð18Þ

where �v is a continuous velocity field of the solid phase, ½½v��
represents the relative velocity of the opposite faces of the

shear band, and h is the finite thickness of the shear band,

and �g is the distance of the solid material relative to the

negative side the shear band. Assuming ½½v�� is uniform over

the discontinuity S, the corresponding velocity gradient

fields outside and inside the band take the form

l ¼ r�v inXnD;

r�vþ ½½v�� � nð Þ=h inD;

(

ð19Þ

where X is the problem domain, D s the open shear band

domain, D is the closure of D, and n is the unit normal

vector to the band. By the relation _� ¼ symðlÞ we readily

obtain the strain rate within and outside the band

_� ¼
_�� inXnD;

_��þ sym ½½v�� � nð Þ=h inD:

(

ð20Þ

Assuming the same material law applies to the localized

zone and the bulk, we can write out the jump of the total

Cauchy stress rate across the shear band,

½½ _r�� ¼ c : ½½ _���; ð21Þ

where c is the constitutive tangent operator with

components c :¼ or=o�. Next, the continuity of the total

traction across the shear band reads,

c : ½½ _���ð Þ � n ¼ 0: ð22Þ

From Eq. (20), we get

½½ _��� ¼ ½½v�� � n=h: ð23Þ

Substituting Eq. (23) into Eq. (22) results in the jump

condition,

1

h
a � ½½v�� ¼ 0; a ¼ n � c � n; ð24Þ

where a is the so-called acoustic tensor [28]. For non-trivial

solutions of the strain rate jump of the mixture, we obtain

the localization condition,

det a ¼ 0; ð25Þ

where det means the determinant of a tensor.

3.2 Locally ‘‘drained’’ isothermal bifurcation

condition

For the locally ‘‘drained’’ condition, we assume both pore

water and pore air pressures and temperature are continu-

ous across the shear band. Therefore, the jumps of their

rates equal to zero. Applying the jump operator on the rate

form of Eq. (2), we have

½½ _r�� ¼ or0

o�
þ pa � pwð Þ1� oSr

o�

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cep

: ½½ _���:
ð26Þ

Increasing T

Increasing T

σ1

σ2 σ3

σ3

σ2

σ1

σ1 = σ2 = σ3

(a) (b)

Fig. 2 a Yield surfaces in principal effective stress space; b cross

sections on the deviatoric plane at three different temperatures
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Let cep ¼ or0=o� be the consistent thermal elasto-plastic

tangent operator, where the superscript means the elasto-

plastic. It is worth noting that cep equals to cep if we assume

Sr only depends on suction and temperature. In general, for

thermal unsaturated soils, cep is dependent on the strain of

the solid phase, suction, degree of saturation and

temperature of the mixture. From Eq. (24), the drained

acoustic tensor takes the form

a ¼ n � cep � n: ð27Þ

To determined cep we need to compute cep and
oSr

o�
. The

latter can be readily determined by Eq. (9) since the

specific volume v is a function of volumetric strains of

soils. However, it is non-trivial to determine cep. Next, we

derive a spectral representation of cep from a local

numerical implementation of the constitutive model via the

return mapping algorithm for computational plasticity [51].

3.3 Spectral representation of the consistent tangent

operator

This proposed model was implemented numerically at the

material point level via the return mapping algorithm. As a

by-product of the numerical implementation, the tempera-

ture-dependent consistent tangent operator is readily

accessible for the bifurcation analysis. For this three-in-

variant model, the return mapping algorithm is imple-

mented in principal elastic strain space via the spectral

decomposition of the strain tensor. The motivation of using

the spectral representation is twofold. Firstly, the numerical

implementation in the principal strain space will reduce the

residual equations from seven to four (see Eq. 34) for the

infinitesimal deformation case considered in this paper,

which will reduce the computational cost for a large-scale

simulation (e.g., a field-scale problem). Secondly, as a by-

product of the material integration subroutine, we can

readily express the thermal–hydro-mechanical consistent

tangent operator cep in the spectral form at a time step

nþ 1. First, we can derive cep through the chain rule,

cep ¼ or0

o�
� or0

o�e;tr
¼ or0

o�e
:
o�e

o�e;tr
; ð28Þ

where �, �etr and �e are the total strain, the trial elastic

strain, and the real elastic strain at the time step nþ 1,

respectively; and tr means trial.

The effective Cauchy stress tensor and the elastic strain

tensor in their spectral forms are written as,

r0 ¼
X

3

A¼1

r0Am
ðAÞ; �e ¼

X

3

A¼1

�eAm
ðAÞ; �e;tr ¼

X

3

A¼1

�e;trA mðAÞ;

ð29Þ

where mðAÞ ¼ nðAÞ � nðAÞ is the spectral direction con-

structed from unit vector nðAÞ in the direction of principal

stress r0A.
The spectral form of the elastic tangent modulus ce ¼

or0=o�e (a fourth-order tensor) can be expressed as

ce ¼
X

3

A¼1

X

3

B¼1

Ae
ABm

ðAÞ �mðBÞ þ 1

2

X

3

A¼1

X

B6¼A

r0B � r0A
�eB � �eA

� �

mðABÞ �mðABÞ
�

þmðABÞ �mðBAÞ
	

; ð30Þ

where mðABÞ ¼ nðAÞ � nðBÞ and Ae
AB is the element with

index AB of the tangential elasticity matrix in principal

axes. Similarly the spectral form of a ¼ o�e=o�e;tr (a

fourth-order tensor) is

a ¼
X

3

A¼1

X

3

B¼1

o�eA
o�e;trB

mðAÞ �mðBÞ þ 1

2

X

3

A¼1

X

B 6¼A

�eB � �eA
�e;trB � �e;trA

 !

mðABÞ �mðABÞ
�

þmðABÞ �mðBAÞ
	

: ð31Þ

Substituting Eqs. (30) and (31) into Eq. (28), we obtain the

consistent tangent operator in the spectral form,

cep ¼
X

3

A¼1

X

3

B¼1

AABm
ðAÞ �mðBÞ þ 1

2

X

3

A¼1

X

B 6¼A

r0B � r0A
�e;trB � �e;trA

 !

mðABÞ �mðABÞ
�

þ mðABÞ �mðBAÞ
	

; ð32Þ

where

AAB ¼ or0A
o�e;trB

¼
X

3

K¼1

or0A
o�eK

o�eK
o�e;trB

¼
X

3

K¼1

Ae
AK

o�eK
o�e;trB

; ð33Þ

which needs to be calculated from the material point

integration subroutine as briefly described next.

From load step n to load step nþ 1, suppose we know

�n, sn and Tn at time n, and given D�, Ds and DT , we need
to calculate the stress r0 and internal variables (i.e., pi) at

load step nþ 1. We define

r ¼ rðx; zÞ ¼

�e1 � �e;tr1 þ Dkor0
1
F

�e2 � �e;tr2 þ Dkor0
2
F

�e3 � �e;tr3 þ Dkor0
3
F

Fðr01; r02; r03; �pcÞ

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;































nþ1

; ð34Þ

with

x ¼

�e1
�e2
�e3
Dk

8

>

>

>

<

>

>

>

:

9

>

>

>

=
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; ð35Þ

Acta Geotechnica

123



where r is a residual vector, and Dk > 0 is the standard

incremental plastic multiplier. Here x contains the local

independent variables that satisfy the constitutive laws for

a given z, whereas z contains the increment of strains,

suction and temperature at the load step, nþ 1. From this

point of view, we can assume x is dependent on z. The

solution of the problem at a local stress point is the vector �x
such that rð�xÞ ¼ 0 for a given z. To solve the nonlinear

equations, we use Newton’s method to compute x at time

step nþ 1.

To obtain the elements for the consistent tangent oper-

ator, we can differentiate r with respect to z at x ¼ �x to get

or

oz
¼ or

oz













x

þ or

ox

�












z

�

|fflfflfflffl{zfflfflfflffl}

A

� ox
oz

¼ 0;
ð36Þ

where A is a 4� 4 matrix. Given that the local iteration at a

material point has converged, we can solve Eq. (36) and

have

ox

oz
¼ �B � or

oz













x

; ð37Þ

where B ¼ A�1. Expanding Eq. (37) yields

o�e=o�e;tr o�e=ostr o�e=oT tr

oDk=o�e;tr oDk=ostr oDk=oT tr

� �

¼ �
B11 B12

B21 B22

� �

C11 C12 C13

C21 C22 C23

� �

;

ð38Þ

where �e and �e;tr are vectors whose elements are three

principal elastic strains and three principal trial elastic

strains, respectively. B11 is a 3� 3 matrix; B12 and B21 are

a 1� 3 vector and a 3� 1 vector, respectively; and B22 is a

scalar; and the submatrices for C are

C11 ¼ Dko2r0 �pcF � o�e;tr �pc � 1; ð39Þ

C12 ¼ Dko2r0 �pcF � ostr �pc; ð40Þ

C13 ¼ Dko2r0 �pcF � oT tr �pc; ð41Þ

C21 ¼ o�pcF � o�e;tr �pc; ð42Þ

C22 ¼ o�pcF � ostr �pc; ð43Þ

C23 ¼ o�pcF � oT tr �pc; ð44Þ

where r0 is a vector whose elements are three principal

effective stresses. We thus obtain

o�e=o�e;tr ¼ �B11 � C11 � B12 � C21; ð45Þ

o�e=oT tr ¼ �B11 � C13 � B12 � C23: ð46Þ

Note that o�e=o�e;tr is a second-order tensor with compo-

nents o�e=o�e;tr½ �ij¼ o�ei =o�
e;tr
j (i; j ¼ 1; 2; 3). Finally,

substituting o�ei =o�
e;tr
j (i; j ¼ 1; 2; 3) into Eqs. (33) and (32),

we can compute the consistent thermal elasto-plastic tan-

gent operator cep from the material integration subroutine.

3.4 Locally ‘‘drained’’ adiabatic bifurcation

condition

For the adiabatic process, we assume the heat flux and heat

source are zero [19, 50]. To derive a thermal elasto-plastic

tangent operator under the locally drained and adiabatic

conditions, we need two coupled evolution equations for

the effective stress and temperature, respectively [19].

Following the derivation by Semnani et al. [50] for a

thermal single-phase material under the adiabatic condi-

tion, we may write out the heat conduction equation of a

material point in unsaturated soils under the locally drained

and adiabatic conditions as,

qc _T ¼ fTr
0 : _�p; ð47Þ

where c is the heat capacity per unit mass; T denotes the

absolute temperature; and fT describes the portion of

plastic work converted into heat. In this paper, we assume

fT ¼ 1:0 [50]. Using the additive split of total strain rate,

we can write

_T ¼ fT
qc

r0 : _�� _�e � _�eT
� �

¼ fT
qc

r0 : _�� _�e � 1

3
1bs _T

� �

ð48Þ

Solving _T yields

_T ¼ fT
/T

r0 : _�� r0 : _�eð Þ; ð49Þ

where /T ¼ 1� bsfT=ð3qcÞr0 : 1 ¼ 1� bsfTp
0=ðqcÞ.

Referring to Eq. (28), we can write the rate form of the

effective stress under the locally drained and adiabatic

conditions as,

_r0 ¼ cep : _�þ s _T ; ð50Þ

where s ¼ or0=oT ¼ ðor0=o�eÞ : ðo�e=oTÞ. Similarly to

the derivation of cep, the spectral form of s can be

written as

s ¼
X

3

A¼1

X

3

K¼1

or0A
o�eK

o�eK
oT

mðAÞ ¼
X

3

A¼1

X

3

K¼1

Ae
AK

o�eK
oT

mðAÞ ð51Þ

where o�eK=oT is determined by Eq. (46). Here we assume

the rotation of principle axes is determined by �e;tr alone

(refer to Borja et al. [9] for more elaboration).

Substituting Eq. (49) into (50) and rearranging terms

yield

L�1 : _r0 ¼ B : _�; ð52Þ
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where

L�1 ¼ Iþ fT
/Tqc

s� ðr0 : ðceÞ�1Þ; ð53Þ

B ¼ cep þ fT
/Tqc

s� r0: ð54Þ

In Eq. (53), I is the fourth-order symmetric identity tensor

with components ðIÞijkl ¼ ðdikdjl þ dildjkÞ=2. We thus

obtain the tangent thermoelastoplastic constitutive

relationship under the adiabatic condition as,

_r0 ¼ cept : _�; cept ¼ L : B: ð55Þ

Here we shall call cept as the consistent thermoelastoplastic

tangential moduli tensor, which is analogous to the

undrained tangential moduli tensor in unsaturated soil

problems under the isothermal conditions [7]. Similarly to

Eq. (26), we can express the effective consistent

thermoelastoplastic tangential moduli tensor taking into

account the volumetric strain dependence of degree of

saturation as,

cept ¼ cept þ ðpa � pwÞ1�
osr

o�
: ð56Þ

Then the thermoelastoplastic acoustic tensor under locally

drained and adiabatic conditions can be written as,

aept ¼ n � cept � n: ð57Þ

The term aept is analogous to the undrained acoustic tensor

used in the bifurcation analysis of unsaturated soils [7].

4 Isothermal and adiabatic bifurcation analysis
under plane strain condition

Localized failure analysis of three-phase porous media

under the non-isothermal conditions as a boundary value

problem relies on the bifurcation analysis at the material

point level. In the section, we conduct the locally

‘‘drained’’ isothermal and adiabatic bifurcation analysis at

the constitutive level. Specifically we conduct the drained

bifurcation analysis of thermal unsaturated soils under the

plane strain condition via the derived drained bifurcation

condition under non-thermal conditions. Note that the

drained acoustic tensor is dependent on both temperature

and suction through the thermal plastic constitutive model.

The material parameters for the thermal plastic constitutive

model are shown in Table 2.

For all simulations presented in this section, the refer-

ence temperature (the ambient temperature) is assumed to

be 22 �C, and the time increment Dt ¼ 1 s of each load

step. We assume the initial effective stress on the solid

phase are r011 ¼ r022 ¼ r033 ¼ �100 kPa which represent an

isotropic stress condition. The initial specific volume of all

samples with the exception of the sample for an initial

density sensitivity analysis is assumed equal to 1.58. All

simulations are conducted under the plane strain condition.

We first simulate the locally drained and isothermal

bifurcation under the plane strain condition at four different

temperatures. Secondly, we present numerical simulations

of the locally drained and isothermal bifurcation under the

plane strain condition by imposing both mechanical and

thermal loads. We then analyze the sensitivity of the

numerical results to the initial density. Finally, we study

the locally drained and adiabatic bifurcation under the

plane strain condition at four different temperatures.

4.1 Locally drained isothermal bifurcation

at constant elevated temperature

For this example, we impose the strain increments per load

step (second), D�11 ¼ 0:0005, D�22 ¼ �0:001, and all other

D�ij ¼ 0 (plane strain on the 12-plane). In the first case, we

assume a constant suction of 10 kPa. We run simulations at

four constant temperatures, 22, 40, 60 and 80 �C, to study

the impact of the elevated temperature on the locally

drained and isothermal bifurcation of unsaturated soils.

Figure 3 shows the variation of determinant function with

the band orientation when the determinant of the locally

drained and isothermal acoustic tensor becomes negative

for the first time at these four temperatures, respectively.

Figure 3 illustrates that the localized deformation occurs at

the load step of 7 (or equivalent 7 s) at the elevated tem-

perature of 80 �C while for other simulations at lower

Table 2 Material parameters for the thermal plastic constitutive

model (note: for the hyper-elastic model both a and �ev0 are assumed to

be zero

Symbol Value Parameter

~j 0.03 Elastic compressibility index

p0 -0.1 MPa Reference mean stress

l0 10 MPa Shear modulus

bs0 6:67� 10�4 The constant thermal expansion coefficient

[21]

M0 1.1 Critical state parameter at ambient

temperature

~k 0.11 Plastic compressibility index

vc0 1.85 Reference specific volume

N 0.4 Shape factor of yield function

q 0.779 Ellipticity

c1 0.185 Parameter of n [24]

c2 1.49 Parameter of n [24]

cT 0.23 Thermal parameter for the preconsolidation

pressure [21]

For the plastic model, the parameters are referred to [30])
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temperatures the localized deformation occurs at a load

time step of 9 (or equivalent 9 s). The critical band ori-

entations in Fig. 3 show two conjugate shear bands may

form in the sample. For this reason, only zoom-in portion

of the critical directions of shear band near 45� is presented
for all simulations. The zoom-in portion in Fig. 3 indicates

that both the critical direction for localized failure and its

range vary with temperature.

For the second case, we assume a constant suction of 20

kPa. Figure 4 shows the variations of determinant function

with the band orientation when the determinant of the locally

drained and isothermal acoustic tensor becomes negative for

the first time at the four temperatures. For this case, the

localized failures occur at larger strains for all elevated

temperatures, compared to the results at s ¼ 10 kPa pre-

sented in Fig. 3. This may be interpreted by the fact that a

higher suction expands the initial yield surface at all elevated

temperatures. Therefore, it requires a larger strain to initiate

localized failures. Figure 4 indicates that the number of load

steps (or equivalently total strains imposed on the sample) to

trigger a localized failure decreases when the sample tem-

perature increases. The zoom-in portion in Fig. 4 illustrates

the range of critical direction of shear band increases when

temperature increases. This may imply a thermal softening

phenomenon in unsaturated soils.

4.2 Locally drained isothermal bifurcation

under mechanical and thermal loads

Assuming the same initial effective stress state as used for

the simulations above, we conduct the plane strain com-

pression by imposing both mechanical and thermal loads.

The temperature increment per load step (second) is 1 �C.
To study the temperature effect on the potential localized

deformation, the strain increments for each load step Dt ¼
1 s are assumed D�11 ¼ 0:00005 and D�22 ¼ �0:0001 on

the 12-plane for the material point. We first conduct the

simulation at a lower suction, s ¼ 10 kPa.

Figure 5 shows the results of localization analysis of

samples under both mechanical and thermal loading at a

constant suction of 10 kPa. The results at the constant ambient

temperature is also shown in Fig. 5. Figure 5 demonstrates that

the localized failure occurs for the first time at the load step of

19 (or equivalent 19 s) when sample temperature increases to

51 �C. However, for the simulation at constant ambient tem-

perature, the localized failure occurs for the first time at a load

step of 24 (or equivalently 24 s). Furthermore, the zoom-in

plot of Fig. 5 shows that the range of critical direction of shear

band increases under both mechanical and thermal loads. The

simulation results demonstrate that the elevated temperature

may cause unsaturated soils to be more susceptible to local-

ized failure.
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We also conduct similar simulations at s ¼ 20 kPa. For

this case, we assume the same mechanical and thermal

loading rates for the simulation at s ¼ 10 kPa. Figure 6

presents the localized failure analysis for this case as well

as the simulations at the constant ambient temperature.

Figure 6 illustrates that the determinant function becomes

negative for the first time at a load step of 18 (or equiva-

lently 18 s) with a temperature of 40 �C while the deter-

minant function becomes negative for the first time at a

load step of 19 (or equivalent 19 s) at the constant ambient

temperature. The zoom-in part of Fig. 6 highlights that the

range of the negative determinant at the onset of a localized

failure for both simulations with and without a thermal

loading are similar. Comparing Figs. 4 and 5, Table 3, we

may conclude that the thermal effect on the inception of

bifurcation may be reduced by the increased suction state

in the soil sample. In other words, compared to the suction

the temperature may be a secondary factor affecting the

initiation of a localized deformation in unsaturated soils

under the same mechanical loading condition.

4.3 Sensitivity of locally drained isothermal

bifurcation to initial density

The initial dry density may impact the inception of local-

ized deformation in unsaturated soils. To study the sensi-

tivity of the localized deformation to the initial dry density,

we run simulations with three different initial dry density

of unsaturated soils. For all simulations, the assumed suc-

tion is 10 kPa. The three initial specific volumes are 1.55,

1.58 and 1.61, respectively. The initial temperature is

22 �C. According to Eq. (9), the initial degree of satura-

tion are 0.937, 0.927 and 0.918, respectively. The strain

and temperature increments per load step, Dt ¼ 1s are

D�11 ¼ 0:0005, D�22 ¼ �0:001, and DT ¼ 1 �C,
respectively.

Figure 7 presents the variation of the determinant

function with the band orientation when the determinant

first becomes negative for these three cases. Figure 7

implies that the determinant functions are similar to each

other upon the inception of localized deformation though

the ranges of the band orientation are different as shown in

the zoom-in portion. However, the smaller initial specific

volume requires larger strains and higher temperature (or

equivalently longer loading time) to trigger a localized

deformation. For example, upon the inception of localized

deformation, for the sample with an initial specific volume

of 1.55 the imposed strains are �11 ¼ 0:0135 and

�22 ¼ �0:027, and the final temperature is 49 �C. While for

the sample with an initial specific volume of 1.61 the

imposed strains are �11 ¼ 0:011 and �22 ¼ �0:022, and the

final temperature is 44 �C.
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Table 3 Summary of the timing, total strains and temperature upon

bifurcation of samples under both mechanical and thermal loads

Suction

(kPa)

Total loading

time (s)

Total strains Final temperature

(�)

10 19 �11 ¼ 0:0095,
�22 ¼ �0:019

51

10 24 �11 ¼ 0:0120,
�22 ¼ �0:024

22 (fixed ambient

temperature)

20 18 �11 ¼ 0:0090,
�22 ¼ �0:018

40

20 19 �11 ¼ 0:0095,
�22 ¼ �0:019

22 (fixed ambient

temperature)
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4.4 Locally drained adiabatic bifurcation

at constant elevated temperature

In this part, we study the thermal impact on the inception of

localized failures of unsaturated soils under the locally

drained and adiabatic conditions. Here by assuming a

locally drained condition we aim to highlight the thermal

effect generated by the plastic deformation on localized

failures in unsaturated soils. In addition to the material

parameters for the isothermal bifurcation analysis, we

assume a normalized heat capacity parameter �c ¼ c=c0 �
103 with c0 ¼ 703 J/(kgK) [50]. Furthermore, the density

of the soil skeleton is assumed as q ¼ 2000 kg/m3. The

same loading rates used for the examples in Sect. 4.1 are

adopted. To study the locally drained adiabatic bifurcation,

we run simulations at four different temperatures with a

constant suction of 20 kPa. Figure 8 portrays the variations

of determinant function with the band orientation when the

determinant of the adiabatic acoustic tensor under the

locally drained condition becomes negative for the first

time at the four temperatures. Figure 8 demonstrates that

localized failure occurs at a lower load step number

(equivalent smaller strains) as detected by the adiabatic

bifurcation condition (Eq. 57) than that predicted by the

isothermal bifurcation condition as shown in Fig. 4. This

may be interpreted by the thermal softening generated by

the plastic work under the adiabatic condition. Therefore,

bifurcation is detected at lower values of strain. As dis-

cussed by Semnani et al. [50], here we assume a smaller

value of c to illustrate the thermal effects that may occur

because of larger plastic deformations.

5 Summary and conclusions

We presented a locally drained isothermal and adiabatic

bifurcation analysis of thermal unsaturated soils via a

recently proposed meso-scale thermal plastic model for

unsaturated soils. We derived the kinematics of a tabular

band formed in unsaturated soils under the locally drained

condition via the infinitesimal strain theory. We also for-

mulated a spectral representation of the locally drained

consistent tangent operator which is dependent on both

temperature and suction via the thermal plastic constitutive

model. This spectral representation was utilized to detect

the negative value of the determinant at the onset of

localized failure and to compute the critical angle of the

localized failure. Assuming a constant suction, the

numerical simulations of unsaturated soils at the constitu-

tive level were conducted under plane strain condition at

elevated constant temperatures. We also ran similar simu-

lations under both mechanical and thermal loading until

localized failure occurs. The results were compared with

the results obtained at constant ambient temperature. A

negative determinant function and the critical angle of

localized failure were shown to be dependent on the tem-

perature. Under similar hydro-mechanical and boundary

conditions, the elevated temperature may cause an unsat-

urated soil to be more susceptible to localized failure.

Furthermore, the simulations showed that the initial density

may affect the timing and orientation of bifurcation in

thermal unsaturated soils. The numerical modeling also

demonstrated that adiabatic bifurcation condition may

predict an earlier bifurcation than isothermal bifurcation

under a locally drained condition. The findings and the

spectral representation of the consistent thermal plastic

tangent operator in this article are useful for conducting

localized failure analysis in thermal unsaturated soils at the

specimen level as a boundary value problem, for example,

persistent shear banding triggered by thermal fluctuations

in such materials.

The aforementioned simulations were conducted at the

material point level assuming infinitesimal deformation

under suction-controlled plane strain condition. The

objective here was to probe how the temperature could

affect the timing and the critical angle of bifurcation of

unsaturated soils. Preliminary results show that the ele-

vated temperature and the initial density affect the timing

and critical orientations of bifurcation, though this influ-

ence is not as dramatic as the one caused by mechanical

loading. The simulations do not include the local fluid flow

and its impact on the inception of bifurcation in unsaturated

soils. Further study will be needed to incorporate this local

condition when modeling unsaturated soils under the non-

isothermal conditions. To the authors’ knowledge, there are
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no such laboratory results available in the literature.

Therefore, experiments will be conducted in the future to

validate the numerical results. Furthermore, the simulations

of soil samples as an initial boundary value problem at the

specimen level are required to investigate the thermal

bifurcation of unsaturated soils as a multiphysical process.
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