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Sensitivity analysis (SA) aims to identify the key parameters that affect model performance and it plays
important roles in model parameterization, calibration, optimization, and uncertainty quantification.
However, the increasing complexity of hydrological models means that a large number of parameters
need to be estimated. To better understand how these complex models work, efficient SA methods should
be applied before the application of hydrological modeling. This study provides a comprehensive review
of global SA methods in the field of hydrological modeling. The common definitions of SA and the typical
categories of SA methods are described. A wide variety of global SA methods have been introduced to pro-
vide a more efficient evaluation framework for hydrological modeling. We review, analyze, and catego-
rize research into global SA methods and their applications, with an emphasis on the research
accomplished in the hydrological modeling field. The advantages and disadvantages are also discussed
and summarized. An application framework and the typical practical steps involved in SA for hydrological
modeling are outlined. Further discussions cover several important and often overlooked topics, includ-
ing the relationship between parameter identification, uncertainty analysis, and optimization in hydro-
logical modeling, how to deal with correlated parameters, and time-varying SA. Finally, some
conclusions and guidance recommendations on SA in hydrological modeling are provided, as well as a list
of important future research directions that may facilitate more robust analyses when assessing hydro-
logical modeling performance.
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1. Introduction

Hydrological models have developed significantly over the past
three decades (Beven, 2009) in terms of their greater complexity
(from rational methods to distribution models) and their diverse
uses in many applications (Nossent et al., 2011), such as land use
(Park et al., 2013) and climate change scenario analysis (Ntegeka
et al., 2014), flood prediction (Cloke and Pappenberger, 2009),
and rainfall–runoff modeling (Modarres and Ouarda, 2013). To
obtain better model predictions, we need to assess and improve
models using different approaches such as parameter optimization,
operational management, design space exploration, sensitivity
analysis (SA), and uncertainty analysis (Jakeman et al., 2006;
Razavi et al., 2012; Wu and Liu, 2012; Nan et al., 2011; Song
et al., 2011). Hydrological models often include substantial uncer-
tainties with respect to the input data, forcing data, initial and
boundary conditions, model structure, and parameters due to a
lack of data and poor knowledge of hydrological response mechan-
isms (Ye et al., 2008; Doherty and Welter, 2010; Shi and Zhou,
2010; Zhang et al., 2011; Gupta et al., 2012; Foglia et al., 2013).
Sources of Uncertainty

Input Variables / Forcing Data

Model Parameters

Calibration Data

Hydrological Model Structure / Equations

Opti

Sketch for the relationship between uncertainty and sensitivity analysis in hydrolo
to the model’s outputs while sensitivity analysis determines the contribution of
These uncertainties have negative effects on the model accuracy,
thereby inducing uncertainties in the simulated results, thus the
model uncertainty is an important issue when constructing a mod-
eling system (Beck, 1987). Good modeling practice requires an
evaluation of the confidence in the model as well as the model
per se, which includes a quantification of the uncertainty in model
results (i.e., uncertainty analysis, UA) and an evaluation of how
much each input/parameter contributes to the output uncertainty
(i.e., SA) (Loosvelt et al., 2013). In general, UA refers to the determi-
nation of the uncertainty in the model outputs that result from
uncertainty in the model inputs/parameters, and SA refers to the
determination of the contributions of individual uncertain
inputs/parameters to the uncertainty in the model outputs. Ideally,
SA and UA should be performed in tandem because both are essen-
tial parts of model development and quality assurance, as shown in
Fig. 1.

In practice, the large number of parameters (from tens to hun-
dreds) in most hydrological models leads to the curse of dimen-
sionality where parameter estimation becomes a high-
dimensional and mostly nonlinear problem. Numerous optimiza-
Uncertainty Analysis
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Output
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Sensitivity Analysis
mization

gical modeling. Global uncertainty analysis propagates all the uncertainties, using a
each input factor to the uncertainty of the outputs.
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tion algorithms have been developed to address this problem (e.g.,
Beven and Binley, 1992; Duan et al., 1992; Vrugt et al., 2003, 2005;
Hill and Tiedeman, 2007; Abebe et al., 2010; Aster et al., 2013;
Moreau et al., 2013; Sen and Stoffa, 2013), but it is often not feasi-
ble or necessary to include all of the model parameters in the
calibration process to achieve efficient optimization. For example,
over-parameterization is another well-known problem in rain-
fall–runoff modeling (van Griensven et al., 2006). Therefore, when
we estimate the model parameters, unimportant or insensitive
parameters should be locked at a fixed value to facilitate more effi-
cient calibration (SA). At present, various SA methods (e.g., local or
global methods, qualitative or quantitative methods, and screening
or refined methods) are used widely in different fields, such as
complex engineering systems, economics, physics, and the social
sciences (Frey and Patil, 2002; Iman and Helton, 1988). However,
there are large differences among these methods in terms of their
sampling schemes, applicability, algorithm structures, and the
importance measures used for the parameters. Given the wide
range of SA methods available, it is very important that a practi-
tioner has a clear understanding of the methods that are appropri-
ate for a specific application in terms of selecting a particular SA
method, fitting the method to existing models, and presenting
and interpreting the results.

This study aims to review, analyze, and classify the SA research
with an emphasis on global SA efforts in the area of hydrological
modeling. Many reviews of SA methods have been conducted in
different fields. In particular, Hamby (1994) reviewed the literature
on parameter SA for environmental models; Frey and Patil (2002)
and Mokhtari and Frey (2005) reviewed the SA methods used for
food safety; Coyle et al. (2003) discussed the SA measures
employed in the field of economics; Saltelli et al. (2005, 2012)
focused on SA in chemical models; Borgonovo (2007) investigated
sensitivity and uncertainty measures; Mishra et al. (2009)
reviewed the global SA methods used in groundwater models;
Peter and Dwight (2010) discussed numerical SA approaches for
aerodynamic optimization; Perz et al. (2013) reviewed the global
SA and UA methods applied to ecological resilience; Tian (2013)
summarized the application of SA methods to building energy ana-
lysis; and Wu et al. (2013) review recent advances in SA for infec-
tious disease models. Some of these reviews explicitly highlighted
the advantages and disadvantages of various methods and they
provided very good summaries of these topics. To the best of our
knowledge, few comprehensive and up-to-date reviews have
Table 1
Summary of the definition of SA in the different fields.

Literature Context/discipline Definition

Viel et al. (1995) Medicine A series of analyses of a da
final interpretations or con

Pannell (1997) Economic models To determine how differen
under a given set of assum

Nestorov (1999) Pharmacokinetic and
pharmacodynamic systems

The systematic investigatio
or variations in the model q

U.S. EPA (2001) Environmental models Sensitivity refers to the var
inputs, and SA attempts to
model output variability an

Frey and Patil (2002) Food-safety risk assessment
models

The assessment of the impa

Saltelli et al. (2004) Chemical/environmental
models

The study of how the varia
qualitatively or quantitativ

Schneeweiss (2006) Medicine To determine the robustnes
changes in methods, model
‘‘results that are most depe

European
Commission (EC)
(2009)

Impact assessment To explore how the impact
parameters and how they i

Matott et al. (2009) Environmental models To study the degree to whi
Thabane et al. (2013) Clinical trials To address the question on
tracked the advances in SA for hydrological modeling. The present
study represents a unique contribution to the literature because
our objective was to summarize the advances in the application
of various global SA methods in hydrological modeling. The depth
of the review of the topics covered in this study generally varies
with the popularity of the topic in hydrological modeling, thus
the discussion revolves largely around uncertainty quantification
and optimization applications. This paper is organized as follows.
Section 2 briefly describes the typical definitions and categories
of SA. Section 3 explains the objectives and roles of SA in hydro-
logical modeling. Section 4 reviews the key SA techniques and
approaches that are applied in hydrological models, as well as
describing their corresponding advantages and disadvantages. Sec-
tion 5 proposes the steps and an evaluation framework for SA in
hydrological modeling. Section 6 focuses on several topics related
to the implementation of SA in hydrological modeling. These topics
include: how to deal with correlated parameters, the applications
of SA in model evaluation; and time-varying SA in hydrological
modeling. Section 7 provides a summary and some concluding
remarks.
2. Definitions and categories of SA methods

In general, when referring to the extent that a parameter affects
the model output, we can use the terms ‘‘sensitive’’, ‘‘important’’,
‘‘most influential’’, ‘‘major contributor’’, ‘‘effective’’, or ‘‘correlated’’
interchangeably (Hamby, 1994). There are different definitions
among fields, which are listed in Table 1. Regardless of how SA is
defined in different areas, the consensus is that models are sensi-
tive to parameters in two distinct ways: (1) the variability, or
uncertainty, associated with a sensitive parameter is propagated
throughout the model, thereby resulting in a large contribution
to the overall output uncertainty; and (2) model outputs can be
highly correlated with a parameter such that small changes in
the input value result in significant changes in the output. In
hydrological modeling, we define SA as the investigation of the
response function that links the variation in the model outputs
to changes in the input variables or/and parameters, which allows
the determination of the relative contributions of different uncer-
tainty sources to the variation in outputs using qualitative or quan-
titative approaches under a given set of assumptions and
objectives.
ta set to assess whether altering any of the assumptions made leads to different
clusions
t values of an independent variable will impact a particular dependent variable
ptions
n of the model responses to either perturbations of the model quantitative factors

ualitative factors
iation in output of a model with respect to changes in the values of the model’s
provide a ranking of the model inputs based on their relative contributions to
d uncertainty
ct of changes in input values on model outputs

tion (uncertainty) in the output of a statistical model can be apportioned,
ely, to different variations in the inputs of the model
s of an assessment by examining the extent to which results are affected by
s, values of unmeasured variables, or assumptions with the aim of identifying
ndent on questionable or unsupported assumptions’’
s of the options you are analyzing would change in response to variations in key
nteract

ch model output is influenced by changes in model inputs or the model itself
‘‘what will the effect be on results, if the key inputs or assumptions changed’’



Table 2
Summary of three typical categories for SA methods.

Type Methods Description of the methods Characteristics Application cases

1 Local Compute local response of model output based on
the gradients (derivatives) of the model output
with respect to parameter values evaluated at a
single location in the parameter space

Easy of operation and interpret, relatively
low computational cost, no self-verification,
local effect of individual parameters

Local sensitivity measures, main effect

Global Evaluate the effect in the entire ranges of uncertain
parameters

Estimating the effect of all the inputs or their
combined effect on the variation of output
based on many model runs

Main and joint effect of multiple inputs

2 Mathematical Estimate the local or linear sensitivity of output to
individual parameter

Providing the uncertainty effect of
parameters on the output, not address the
variance of output

Deterministic analysis, inputs for linear
models, verification and validation

Statistical Analyze the influence of various inputs on model
output with running simulations based on
sampling design methods

Qualitatively or quantitatively estimate
sensitivity indices with huge computational
demand based on many model runs

Probabilistic analysis, main effect, joint
effect of multiple inputs, verification

Graphical Complement the mathematical or statistical
methods for better representation with graphical
plot

Graphical representation with more direct-
viewing and clear

Graphical representation, it can be used
as a screening method before further
analysis, and to complement the results
of other methods

3 Screening Be used to make a preliminary identification of
sensitive inputs

Relatively simple, easy of operation, not be
robust for some key model characteristics,
such as nonlinearity, interactions, and
different types of inputs

Many input factors or parameters, non-
quantitative analysis

Refined Adequately consider complex model
characteristics and need greater expertise and
resources to implement

Providing quantitative results with more
accuracy, relatively difficult to implement

Quantitative analysis, main and joint
effect of multiple inputs, more data
requirement

4 Qualitative Providing a heuristic score to intuitively represent
the relative sensitivity of parameters

Be aimed at screening a few active
parameters within a system with many non-
influential ones, relatively fewer model runs

Ranking results of input parameters,
used as screening important or sensitive
parameter

Quantitative Estimating how sensitive the parameter is by
computing the impact of the parameter on the
variance of model output

To give information on the amount of
variance explained by each parameter, a
large number of model runs

Quantify the effect of individual or
multiple parameter, deterministic or
probabilistic analysis, few inputs or
parameters
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SA methods can be classified based on their scope, applicability,
and characteristics. The simplest and most common classifications
are local SA and global SA (e.g., Saltelli et al., 2004; van Griensven
et al., 2006; Hill and Østerby, 2003). Local SA is focused on the
effects of uncertain inputs around a point (or base case), whereas
global SA is focused more on the influences of uncertain inputs
over the whole input space (Tian, 2013). Recently, local–global
hybrid method is proposed, such as Kucherenko et al. (2009) and
Rakovec et al. (2014). In their work, derivative-based methods
were used to obtain the distribution of parameter sensitivity across
the parameter space, which merged the conceptual of local and
global sensitivity analysis. Additionally, Campolongo et al. (2000)
suggested another common classification, which is based largely
on the extent of the input variable range that the technique assess-
es. In the present study, the techniques are divided into three
levels: screening, local methods, and global methods. This classifi-
cation is also used widely in SA studies, but this arrangement is
ambiguous because the classification of a technique as local or
global depends on whether the range is sufficiently large to be per-
ceived as global, or whether the number of simulations used with a
local or global method can be considered as a screening experi-
ment (King, 2009). In addition, Saltelli et al. (2004) proposed four
settings, i.e., factors prioritization setting, factors fixing setting,
variance cutting setting, and factors mapping setting. These set-
tings can also be linked to Type I and Type II errors. In general, a
Type I error is the incorrect rejection of a true null hypothesis,
while a Type II error is the failure to reject a false null hypothesis.
In SA, Type I errors occur when erroneously defining a non-influen-
tial factor as important, whereas Type II error occurs when we clas-
sify an important factor as non-influential (Zhan et al., 2013). If we
are particularly interested in avoiding Type I errors, then main
effects and factors prioritization setting will be target analysis.
Alternatively, if Type II errors are to be avoided, total effects and
factor fixing need to be considered. In the present study, we
emphasize four typical categories as follows: (1) local and global
SA methods (Saltelli et al., 2004); (2) mathematical, statistical,
and graphical methods (Frey and Patil, 2002); (3) screening and
refined methods (Song et al., 2014); and (4) qualitative and quan-
titative SA methods (Li et al., 2013; Zhan et al., 2013), which are
summarized briefly in Table 2.

3. Implications and roles of SA in hydrological modeling

SA is generally recognized as a worthwhile step to diagnose and
remedy difficulties in identifying model parameters. That is, SA is
one of the simplest aids in the diagnosis and remediation of poor
identifiability in models because it allows parameters to be esti-
mated more reliably (Shin et al., 2013). SA also aims to establish
the relative importance of the parameters involved in the model
by answering questions such as the following (Cariboni et al.,
2007; Neumann, 2012; Song et al., 2012a).

� Which of the uncertain parameters has the greatest influence in
determining how variability affects the inference?
� If the uncertainty of some parameters could be eliminated,

which should be selected to reduce the minimum variance of
the output of interest?
� Are there parameters with such low effects on the output that

they could be confidently fixed anywhere in their ranges of var-
iation without affecting the results?
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� If these parameters deviate from expectations, what will their
effect be on the model output and which are those that cause
the largest deviations?
� Which parameters are responsible for producing model outputs

in a specific region?

Essentially, the primary aim of a SA experiment is to identify
the most important factors and then to simplify the model. Many
studies have shown that the SA can reduce the output variance
to a lower threshold by simultaneously fixing the smallest number
of input parameters (Saltelli et al., 2000, 2004, 2008). This is impor-
tant for the implementation of SA for complex hydrological mod-
els, especially for those with large numbers of uncertain
parameters. However, we also argue that SA is a useful perspective
for conceptualizing and understanding hydrological models for
several reasons. As indicated by Rakovec et al. (2014), SA can be
used to: (a) detect when increasing model complexity can no
longer be supported by observations and whether it is likely to
affect model predictions (e.g., Saltelli et al., 1999; van
Werkhoven et al., 2008a; Doherty and Welter, 2010; Rosolem
et al., 2012; Gupta et al., 2012; Foglia et al., 2013); (b) reduce the
time required for model calibration by focusing estimation efforts
on parameters that are important for calibration metrics and pre-
dictions (e.g., Anderman et al., 1996; Hamm et al., 2006;
Zambrano-Bigiarini and Rojas, 2013); (c) determine the priorities
for theoretical and site-specific model development (e.g., Hill and
Tiedeman, 2007; Saltelli et al., 2008; Kavetski and Clark, 2010);
and (d) identify the advantageous placement and timing of new
measurements (e.g., Tiedeman et al., 2003, 2004).
4. Global SA methods in hydrological models

In practice, global SA methods are usually recommended in
hydrological modeling applications because they have certain
advantages compared with local SA methods (Makler-Pick et al.,
2011; Rosolem et al., 2012; Baroni and Tarantola, 2014; Song
et al., 2012a). These include their ability to incorporate the influ-
ence of input parameters over the whole range of variation, and
be well suited for non-linear and non-monotonic models, thus pro-
viding results that are independent of modeler prejudice and not
site specific. Currently, various global SA techniques have been
widely used in hydrological models, such as the screening method,
regression analysis, variance-based method, meta-modeling
method, and others (Song et al., 2014). This list is not an exhaustive
list of SA techniques. Instead, we mainly include commonly used
and often referred global methods in hydrological models. A
research database search of SA method and hydrological modeling
in Thomson Reuters (ISI) Web of Knowledge is shown in Fig. 2.
Table 3 summarizes the main studies of global SA in hydrological
models published since 2005. Table 4 gives an overview of these
global SA techniques including sampling scheme, computational
requirements and characteristics of the sensitivity measure.



Table 3
Recent global SA studies in hydrological modeling.

Models Number of
parameters

SA methods Objective or
output
functions

The number of runs for hydrological models Source

BSM1 32 Regression EQI, OCI 5 � 1000 Flores-Alsina
et al. (2009)

DHSVM 4 GLUE NSE 10,000 Surfleet et al.
(2010)

DTVGM 14 Morris, Meta-modeling WB, NSE, RC 600, 4000 Zhan et al.
(2013)

ESTEL-2D 9 MMGSA(Sobol’, K-L entropy, Morris) NSE 1280 Cloke et al.
(2007)

HBV 11 RSA BIAS, RSME,
NSE

60,000 Abebe et al.
(2010)

HBV 12 Sobol’ RMSE, ROCE 10,000 Herman et al.
(2013a)

HBV 15 Sobol’, RSA WB, NSE 8192, 10,000 Zelelew and
Alfredsen
(2013)

HEC-RAS 6 Sobol, K-L entropy, Morris, RSA, regression NSE, MAE Not reported Pappenberger
et al. (2008)

HEC-RAS 7 SARS-RT, Correlation, RSA Normalized
performance
measure

4000 Pappenberger
et al. (2006)

HL-RDHM 31 � 13 Sobol’ RMSE 40,000 Tang et al.
(2007a)

HL-RDHM 18 RSA, ANOVA, Sobol’ RMSE,
RMSEBox-cox

8192 Tang et al.
(2007b)

HL-RDHM 78 � 14 Morris, Sobol’ RMSE Over 6 million (Sobol’), about 20,000 (Morris) Herman et al.
(2013b)

HL-RDHM 78 � 14 Morris RMSE, ROCE 21,860 Herman et al.
(2013c)

HYDRUS-
2D

11 Sobol’, mutual entropy, RSA Output
discharge

260,000 � 11 (Sobol’), 260,000 (mutual entropy, RSA) Massmann
and Holzmann
(2012)

HYMOD 5 Sobol’, Morris, SRC, RSA, SDP NSE 18,000, 3000, 3000, 3000, 500 Yang (2011)
HYMOD 5 Sobol’ RMSE, ROCE 10,000 Herman et al.

(2013a)
LU4-R-N 41 RSA, GLUE Relative RMSE,

NSE
100,000 Medici et al.

(2012)
MARTHE 20 Sobol’ with Gaussian process NSE 300 Marrel et al.

(2009)
MARTHE 5 SDP NSE 1024 Garambois

et al. (2013)
MIKE 11 5 ANOVA Water

temperature
error

Not reported Wang et al.
(2013b)

MIKE/NAM 9 Morris with Pareto ranking RMSEpeak,
RMSElow

Not reported Liu and Sun
(2010)

MUSIC 13 Bayesian NSE 10,000 Dotto et al.
(2009)

REALM 14 Morris Yield 3 � 6000 King and
Perera (2013)

SAC-SMA 17 Sobol’ method RMSE, ROCE 10,000 Herman et al.
(2013a)

SAC-SMA 14 Sobol’ method RMSE,
RMSEBox-cox,
SFDCE, ROCE

7.5 � 106 Van
Werkhoven
et al. (2009)

SAC-SMA 14 Sobol’ method RMSE,
RMSEBox-cox,
SFDCE, ROCE

130,000 Van
Werkhoven
et al. (2008a)

SAC-SMA 14 Sobol’ method RMSE,
RMSEBox-cox,
SFDCE, ROCE

Not reported Wagener et al.
(2009)

SAC-SMA 14 Regression-based method, screening-based
method, variance-based method, meta-
modeling method

MAE 280 (Morris), 400–600 (other screening methods),
2777 (FAST), 360 and more than 1000 (McKay
method), 1050 (Sobol)

Gan et al.
(2014)

SLUPR 10 � 6 Meta-modeling and ANOVA NSE Not reported Wu et al.
(2012)

SNOW17 10 RSA NSE 10,000 He et al.
(2011)

SVAT 30 Meta-modeling Rn, LE, HF, Tair,
Mo

400 Petropoulos
et al. (2009)

SWAP 7 Sobol’ method RMSE 7168 Baroni and
Tarantola
(2014)
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Table 3 (continued)

Models Number of
parameters

SA methods Objective or
output
functions

The number of runs for hydrological models Source

SWAT 28 Sobol’ method RMSE, NSE,
ROCE, SFDCE

60,000 Zhang et al.
(2013)

SWAT 26 Sobol’ method NSE 336,000, 72,000 Nossent et al.
(2011)

SWAT 13 Sobol’ method RMSE 28,000 Cibin et al.
(2010)

SWAT 8 FAST NSE, MRE,
RMSE, SMSE,
PDIFF, LCS

243 Guse et al.
(2014)

TNT2 16, 19, 6 Morris, ANOVA 20 output
objective

1700 (16 inputs), 2000 (19 inputs), 9375 (6 inputs) Moreau et al.
(2013)

TOPMODEL 9 FAST, EFAST, Sobol’ MAD 1289(SimLab, FAST), 487 (R package, FAST), 5632
(Sobol, SimLab), 5000 (EFAST)

Reusser et al.
(2011)

VIC 10 MCAT-RSA RMSE, ARE,
RMSEBox-cox

59,049 Demaria et al.
(2007)

WASH 13 Entropy analysis, stepwise regression TP loading 250 Mishra (2009)
WaSiM-

ETH
11 FAST RMSE 487 Reusser et al.

(2011)
WDS 21 Sobol’ Resilience

index,
combined
measure

2000 Fu et al. (2012)

XAJ 15 Morris, meta-modeling NSE, WB, GE, DE 640, 4000 Song et al.
(2013)

XAJ 6 GLUE NSE 60,000 Zhang et al.
(2012)

Models: BSM1: benchmark simulation model No1; DHSVM: distributed hydrology soil vegetation model; DTVGM: distributed time variant gain model; ESTEL-2D: a finite
element subsurface flow model; HBV: Hydrologiska Byråns Vattenbalansavdelning; HEC-RAS: Hydrologic Engineering Centers River Analysis System; HL-RDHM: Hydrology
Laboratory- Research Distributed Hydrologic Model; HYDRUS-2D: a two-dimension finite element model; HYMOD: hydrologic model based on the probability distributed
model; LU4-R-N: four-response lumped model coupling riparian tank and nitrogen; MARINE: Modélisation et Anticipation du Ruissellement et des Inondations pour des
évèNements Extrêmes; MIKE11: hydrological and hydraulic model; MIKE/NAM: a rainfall-runoff model developed by DHI; MUSIC: the model for urban stormwater
improvement conceptualization; RELAM: Resource Allocation Model; SAC-SMA: Sacramento soil moisture accounting; SLURP: semi-distributed land use-based runoff
process; SNOW17: a lumped process-based model that simulates snow accumulation and ablation; SVAT: soil–vegetation-atmosphere modeling; SWAP: soil–water-at-
mosphere-plant model; SWAT: the soil and water assessment tool; TNT2: Topography-based Nitrogen Transfer and Transformations model; TOPMODEL: topography based
hydrological model; VIC: variable infiltration capacity macroscale hydrologic model; WASH: Watershed water quality model; WaSiM-ETH: water flow and balance
simulation model; WDS: Water distribution systems; XAJ: Xinanjiang model.
Objectives: ARE: Absolute relative bias; DE: relative error for low-flow; EQI: effluent quality index; GE: relative error for high-flow; HF: daily average sensible heat flux; LCS:
longest common sequence; LE: daily average latent heat flux; MAD: mean absolute difference; MAE: Mean Absolute Errors; Mo: daily average surface moisture; NSE: Nash–
Sutcliffe efficiency coefficient; OCI: operating cost index; PDIFF: Peak difference; RC: correlation coefficient; RMSE: root-mean-square error; RMSEBox-cox: root-mean-square
error of Box-Cox transformation; Rn: daily average net radiation; ROCE: Runoff coefficient error; SFDCE: Slope of the flow duration curve error; SMSE: Scaled mean square
error; Tair: daily average air temperature; TP: total phosphorus; WB: water balance error.

Table 4
General overview and comparison of various global SA techniques in hydrological modeling (adapted from Yang (2011)).

Morris screening
method

Regression-based
method

Variance-based method Meta-modeling based
method

RSA Entropy
method

Sampling strategy Morris one-at-a-time
sampling design

Monte Carlo Quasi-random sampling,
LHS, FAST sampling

Monte Carlo, LHS, Sobol’
quasi-random sampling

Monte Carlo Monte Carlo

Computational
requirementsr

r(n + 1) Cheap m Cheap m(n + 2) �m(2n + 2)
High

m Cheap Depends on the
filtering criterion

m Cheap

Characteristics of
sensitivity
measure

Qualitative/screening Quantitative Quantitative Quantitative Qualitative Quantitative

Applicability Model-independence Linear model or
monotonic model

Model-independence Model-independence Model-
independence

Model-
independence

Reliability High Depends on R2 High High (with dependence on
R2)

Weak High

Parameter
interaction

Yes/qualitative Depends on the
regression form

Yes/quantitative Yes/quantitative No Yes

Coping with
nonlinearity

Yes Depends on the
regression form

Yes Yes Yes Yes

r: r represents the number of the trajectories, m is the sample size, and n is the number of factors.
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4.1. Screening method

The purpose of screening method is rather to identify which
input variables are contributing significantly to the output
uncertainty in high-dimensionality models, than to quantify sensi-
tivity exactly (Saltelli et al., 2008). One of the most commonly used
screening method is the Morris screening method or the elemen-
tary effect method proposed by Morris (1991) and improved by
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Campolongo et al. (2007). Parameters are taken as a discrete num-
ber of values, which are different from other global SA methods in
which parameter values are directly from distributions. For a given
X = (x1, x2, . . ., xk), the elementary effect of the i-th parameter is
defined as:

diðXÞ ¼
yðx1; . . . ; xi�1; xi þ D; xiþ1; . . . ; xkÞ � yðXÞ

D
ð1Þ

where D is a value in {1/(p � 1), . . ., 1-1/(p � 1)}, p is the number of
levels, and y(X) is target function value for the parameter values X.
Two sensitivity measures, the mean (l) and standard deviation (r)
of the elementary effects, can be calculated by Eqs. (2) and (3):

li ¼
1
r

Xr

j¼1

diðjÞ ð2Þ

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r � 1

Xr

j¼1

diðjÞ �
1
r

Xr

j¼1

diðjÞ
" #2

vuut ð3Þ

where di(j) is the elementary effect for input i using the j-th base
sample point, j = 1, 2, . . ., r (r is the number of repeated sampling
design or trajectories of sample points in the parameter space).
When the model is non-monotonic, some elementary effects with
opposite signs may cancel out. Hence, Campolongo et al. (2007)
proposed an improved measure l⁄:

l�i ¼
1
r

Xr

j¼1

jdiðjÞj ð4Þ

The l estimates the overall effect of each parameter on the out-
put, and the r estimates the higher order effects, such as nonlin-
earity and interactions between inputs, respectively. If l�i is
substantially different from zero, it indicates that parameter i has
an important ‘‘overall’’ influence on the output. A large ri implies
that parameter i has a nonlinear effect on the output, or there
are interactions between parameter i and other parameters.

Advantages of the Morris screening method are that it has a
lower computational cost compared to other global SA methods,
and it is simple to implement and easy to interpret (Shin et al.,
2013; Tian, 2013; Zhan et al., 2013). For example, the total number
of runs is only 44 if there are 10 parameters with 4 trajectories for
each parameter. Hence, the Morris method is more suitable to
computationally expensive models, which often have a large num-
ber of uncertain parameters. However, the drawback of this
method is that it cannot quantify the effects of different factors
on outputs (Brockmann and Morgenroth, 2007; Sun et al., 2012),
and type II errors (failing to identify some unimportant inputs as
important parameters) might occur with the Morris screening
method (Zhan et al., 2013). Saltelli et al. (2004) also highlighted
that it cannot estimate individual interactions between para-
meters, thereby giving only the overall interaction of a parameter
with the rest of the model. As a result, this method does not allow
self-verification, which means the analyst does not know how
much of the total variances of outputs have been taken into
account in the analysis.

Recently, the Morris screening method has been widely used in
hydrological models. For example, Song et al. (2012b, 2013) and
Zhan et al. (2013) analyzed the sensitivity of hydrological para-
meters for a distributed time-variant gain model and Xinanjiang
model based on the Morris method and other quantitative meth-
ods. Liu and Sun (2010) implemented Morris method based on
Pareto ranking strategy to identify the key parameters for MIKE/
NAM rainfall–runoff model under the different objective functions.
They suggest that no single objective function is adequate to mea-
sure the ways in which the model fails to match the important
characteristics of the observed data. Moreau et al. (2013) used
Morris method to screen for input factors with the greatest influ-
ence on hydrological and geochemical output variables for spatial-
ly-distributed agro-hydrological model TNT2. Yang et al. (2012)
proposed a two-step, multi-objective SA approach, incorporating
the Morris method and the SDP (state dependent parameter)
method, and estimated WetSpa model parameters with case stud-
ies in the Chaohe basin in China and the Margecany basin in Slo-
vakia. Ruano et al. (2011) also used the Morris method to
identify these important parameters in a water quality model. It
was found to be important to select or optimize a proper repetition
number of the elementary effects of the Morris method. Working
with a non-proper repetition number could lead to Type I error
as well as Type II error, hence emphasizing the importance of find-
ing the optimal repetition number of each study in question. In
addition, in view of the limitations of the Morris one-at-a-time
(OAT) design, the LH-OAT method, which takes the Latin Hyper-
cube samples as initial points for an OAT design, was proposed to
apply to the SWAT model (Holvoet et al., 2005; van Griensven
et al., 2006). This method, as a screening tool for the SWAT model-
ing system, has been widely used in many catchments (e.g.
Nossent and Bauwens, 2012; Singh et al., 2012).

4.2. Regression method

The principle of regression methods is to approximate the rela-
tionships between an output and the parameters by:

yi ¼ b0 þ
X

j

bjxij þ ei ð5Þ

where xj (j = 1, 2, . . ., k) are the jth parameters; i = 1, 2, . . ., N repre-
sents the number of model runs; bj is the coefficient to be estimated
via the least-squares methods for each xj; and ei is random error.
Once bj is determined, the regression model can be rewritten as:

y� �y
ŝ
¼
X

j

bjŝj

ŝ
xj � �xj

ŝj
ð6Þ

where

�y ¼
XN

i¼1

yi

N
; �xj ¼

XN

i¼1

xij

N
; ŝ ¼

XN

i¼1

½yi � �y�2

N � 1

" #1=2

; ŝj

¼
XN

i¼1

½xij � �xj�2

N � 1

" #1=2

ð7Þ

The coefficients bjŝj=ŝ in Eq. (6) are standardized regression
coefficients (SRCs). When the parameters xj are independent of
each other, the SRCs can provide a sensitivity index for the factor
xj. Each SRC gives information about the effect of changing an input
from its standard value by a fixed fraction of its standard deviation,
while maintaining the other factors at their default values. Regres-
sion analysis allows also for the estimation of the model coefficient
of determination, R2, which represents the fraction of the output
variance explained by the regression model itself. In the case of lin-
ear models, the SRCs exactly quantify the amount of output vari-
ance explained by each parameter; when models are moderately
non-linear (i.e. R2 > 0.7), the SRCs can be still used to qualitatively
assess the parameters’ importance; finally, when R2 becomes
small, the SRCs cannot be considered as a reliable sensitivity mea-
sure (Cariboni et al., 2007).

The advantages of this method are its simplicity and ability to
estimate the sensitivity of each parameter, even though all para-
meters affect model output simultaneously. However, it is not
applicable when the relationship between parameters and model
output is non-linear or non-monotonic, or when there are interac-
tions among parameters. Although the rank transformation
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method (standardized rank regression coefficient, SRRC) can be
helpful for non-linear models, it fails with non-monotonic models,
and the result cannot be transformed back to the original model
(Saltelli and Sobol’, 1995).

Regression method has also been used to estimate the sensi-
tivity of parameters in hydrological models. For example,
Tiscareno-Lopez et al. (1993) address uncertainty in hydrologic
and soil erosion predictions from the WEPP watershed model
due to errors in model parameter estimation identified using
regression, and runoff volume and peak runoff predictions from
hillslopes were very sensitive to rainfall characteristics. He et al.
(2011) analyzed the parameter sensitivity of the SNOW17 model
using the Spearman’s rank correlation coefficient method, and
the rankings of parameters were determined using the results of
significance testing. Zeng et al. (2012) used stepwise regression
analysis and mutual entropy analysis method to assess the uncer-
tainty parameters of probability density function of groundwater
level series. Regression analysis also has been used in other hydro-
logical models, such as SWAT (Muleta and Nicklow, 2005), SWMM
(Wang et al., 2008), HYMOD (Yang, 2011), SAC-SMA (Gan et al.,
2014).
4.3. Variance-based method

Variance-based methods use a variance ratio to estimate the
importance of parameters with the foundation of variance decom-
position (Saltelli et al., 1999; Sobol’, 1993). In general, the attribu-
tion of total output variance to individual model parameters and
their interactions can be written as follow (Saltelli et al., 2004,
2008):

V ¼
Xk

i¼1

Vi þ
Xk

i¼1

Xk

j>i

V ij þ . . .þ V1;2;...;k ð8Þ

where V represents the total variance of the model output, Vi repre-
sents the first-order variance for each factor xi (Vi = V[E(Y|xi)]) and
Vij (Vij = V[E(Y|xi, xj)] � Vi � Vj) to V1. . .k the interactions among k fac-
tors. The variance of the conditional expectation, V[E(Y|xi)], is some-
times called the main effect and is used to indicate the significance
of xi on the variance of Y. Variance-based methods allow calculation
of two indices; i.e., the first-order sensitivity index corresponding to
the parameter xi:

Si ¼
V ½EðY jxiÞ�

VðYÞ ð9Þ

and the total-order sensitivity index of a single parameter (index i)
and the interaction of more parameters that involve index i and at
least one index j – i from 1 to k:

STi
¼
X

Si þ
X
j–i

Sij þ � � � þ S1...k ð10Þ

The difference between the first-order and the total-order sen-
sitivity indices can be regarded as a measure for the interactions of
i with others (Massmann and Holzmann, 2012). Because the inter-
actions increase with the number of considered parameters as well
as with their variation range, variance decomposition methods are
well suited for models with many parameters. There are many
techniques to carrying out variance decomposition, such as Sobol’
method, the Fourier Amplitude Sensitivity Test (FAST), and the
extended FAST methods. Advantages of variance-based methods
include: (i) model independence (i.e., it works for non-linear mod-
els, non-monotonic models, and models with interaction among
parameters); (ii) the method captures interaction effects; and (iii)
the method can treat sets of parameters as single parameter. How-
ever, it often requires a large number of model evaluations in
applications, and it may be very difficult to apply in complex mod-
els with a large number of parameters.

Variance-based methods are also widely used for parameter SA
in hydrological models (Table 3) as they can provide most accurate
and robust sensitivity indices for complex nonlinear models (Tang
et al., 2007b; Yang, 2011; Herman et al., 2013b, 2013c; Zhan et al.,
2013). For example, Zhang et al. (2013) investigated the parameter
sensitivity of SWAT model based on Sobol’ method for the four dif-
ferent objective functions; van Werkhoven et al. (2008a) and
Wagener et al. (2009) estimated the sensitivity of parameters for
the SAC-SMA model, with single-objective and multi-objective
functions; Francos et al. (2003) coupled the Morris and variance-
based FAST methods to identify and analyze the important or sen-
sitive parameters for the SWAT model. Results showed that the
integration framework can be efficiently applied in complex hydro-
logical models with tens or hundreds of parameters.

4.4. Meta-modeling method

The basic idea of meta-modeling method is to simulate the
response function between input parameters and model output
via various statistical or experimental design methods, to replace
the original, complex physical or conceptual models, and then to
analyze the parameter sensitivity indices or the influence of para-
meter variation on model output. The core of the meta-modeling
based methods is to select appropriate sampling design and
response fitting methods. When we select the response fitting
method, the meta-modeling approach can accurately simulate
the behavior of real phenomena in the domain of influential para-
meters; i.e., the meta-model can replace the original model by a
mathematical approximation. Currently, there are many fitting
methods used in hydrological models, and non-parametric meth-
ods have found more application because they do not require much
hypothesis generation or prior knowledge of the actual response
relationship, such as MARS (multivariate adaptive regression
splines) (Li et al., 2013; Zhan et al., 2013; Gan et al., 2014), SVM (-
support vector machine) (Song et al., 2012a), GP (Gaussian process-
es) (Gan et al., 2014), TGP (treed Gaussian processes) (Gramacy and
Taddy, 2010). Similarly, sampling design methods must be selected
for response surface analysis, which requires that the sampling
design can cover the range of parameters as much as possible.
Some sampling design methods have been verified as effective
(Razavi et al., 2012), such as central composite design
(Montgomery, 2008), full factorial design (Gutmann, 2001), Latin
Hypercube sampling (Gan et al., 2014), quasi-random sampling
(Elsawwaf et al., 2010; Zhan et al., 2013).

Meta-modeling based sensitivity analysis approach is a two-
stage approach. First, a meta-model is created based on the original
hydrological models and forcing data, and consequently it can be
suitable for these hydrological models. Second, sensitivity mea-
sures are calculated based on classical SA methods, where the most
common method is variance-based method (Song et al., 2013; Tian,
2013; Zhan et al., 2013; Gan et al., 2014). The immediate advantage
is that it can simplify computationally intensive models and thus
enables much faster model runs (Storlie et al., 2009), especially
for a complex hydrological model with high computational cost
of hundreds or thousands of model runs. Therefore, meta-modeling
approaches have been particularly used in model evaluation for
hydrological models (Razavi et al., 2012; Li et al., 2013; Song
et al., 2012c, 2013; Zhan et al., 2013; Gan et al., 2014). However,
it requires output values and corresponding values from probabil-
ity distributions of input parameters calculated in the original
hydrological model, and it is calibrated to the data generated from
the hydrological model. Thus, it is only valid within the range of
values used to generate the calibration dataset. Typically, the effect
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of all parameters with respect to sensitivity cannot be evaluated in
meta-models; most meta-modeling based studies are based on
fewer inputs, which are primarily screened out among the list of
original parameters. In addition, the uncertainty of analysis results
based on meta-model approaches should not be ignored. For exam-
ple, there is no guarantee that a model parameter deemed insensi-
tive on the basis of meta-model analysis is truly insensitive in the
original hydrological model (Razavi et al., 2012). A question that
meta-model users need to address in any meta-modeling practice
is whether an exact fit to the set of design sites or an approximate
fit, possibly with smoothing capabilities, is required. Therefore, it is
essential to assess the accuracy of a meta-model for prediction
before it can be used for SA studies (Stephens et al., 2011;
Borgonovo et al., 2012). Despite advances in meta-modeling based
SA in many fields, the uncertainty assessment of meta-modeling
based SA should be further explored in the future.

Recently, meta-modeling based SA method has been used in dif-
ferent fields. For example, three meta-modeling techniques (Krig-
ing, Radial-basis function network (RBF), and support vector
machines (SVM)) and two popular SA methods (FAST and Sobol’)
were used to estimate the sensitivity indices of a probabilistic
engineering design (Sathyanarayanamurthy and Chinnam, 2009).
Ratto et al. (2007) proposed a state-dependent parameter (SDP)
method based on the Kalman filter, combined with fixed interval
smoothing, and then used the Sobol’ method to evaluate sensitivity
indices. Song et al. (2012a,b, 2013) combined the Sobol’ method
and response surface model (RSM) approach (RSMSobol’; e.g., the
SVM, multivariate adaptive regression splines (MARS)) to estimate
parameter sensitivity for hydrological models, involving the Xinan-
jiang and distributed time-variant gain models (DTVGM).
Borgonovo et al. (2012) pointed out that the meta-model allows
an accurate estimation of density-based sensitivity measures when
the main structural features of the original model are captured.

4.5. Regionalized sensitivity analysis

Regionalized sensitivity analysis (RSA), also called generalized
sensitivity analysis, has been originally developed in the context
of environmental models by Spear and Hornberger (1980) and fur-
ther developed by Beven and Binley (1992) in hydrological models.
Generally, it is a graphical approach based on Monte Carlo simula-
tions with parameter combinations taken from their whole distri-
bution range, which is why it is regarded as a global SA method
(Massmann and Holzmann, 2012). These parameter sets are classi-
fied as behavioral or non-behavioral based on the comparison of
the model results with a predefined threshold (Saltelli et al.,
2004; Song et al., 2014). Jakeman et al. (1990) summarize the typi-
cal steps to implement RSA:

(1) Define a prior parameter distribution from which the sam-
ples will be drawn as well as goodness criterion with a cor-
responding threshold for separating the results into a
behavioral and a non-behavioral group.

(2) Run the hydrological model using the parameter sets based
on Monte Carlo sampling design.

(3) Classify the result as behavioral or not.
(4) Plot the relative cumulative probability distribution against

the parameter values.
(5) Implement statistical analysis (e.g. Kolmogorov-Smirnoff

test) to detect significant differences between both groups.

The Kolmogorov-Smirnoff test describes the maximum vertical
distance between two cumulative distributions. If the distributions
of a parameter xi in the two groups are dissimilar then the para-
meter xi is considered influential, and vice versa. The larger the dis-
tance, the more sensitive the parameter is (Yang, 2011). RSA has
been widely used in hydrological models (e.g., Lence and Takyi,
1992; Freer et al., 1996; Pappenberger et al., 2006; Sieber and
Uhlenbrook, 2005; Ratto et al., 2007; Tang et al., 2007a;
Pappenberger et al., 2008; Yang, 2011; Massmann and
Holzmann, 2012). From these studies, we can see that its advan-
tage is conceptually simple and easy to implement. Results are
easy to understand and the method is model-independent (Yang,
2011). However, the disadvantage is that they need to define a
threshold for separating the results into a behavioral and non-be-
havioral group, which is a highly subjective task that might have
important effects on the results (Beven, 2009). To resolve this dif-
ficulty, Wagener et al. (2001) presented an extension of this
method, in which the behavioral parameter sets are sorted from
best to worst with respect to their ability to reproduce the
observed results. Then they are separated into 10 equally sized
groups, with the first group comprising the best 10% parameter
sets, the second group the best 10–20% parameter sets and so on.
Conclusions about parameter sensitivities are made qualitatively
by examining differences in the marginal cumulative distributions
of a parameter within each of the ten groups. Ten lines in the RSA
plot represent the cumulative distributions of a parameter with
respect to ten sampled sub-ranges. If the lines are clustered, the
parameter is not sensitive to a specific model performance mea-
sure (Demaria et al., 2007; Wagener and Kollat, 2007). In addition,
although under certain circumstances the Kolmogorov-Smirnoff
test can highlight some interaction effect (Saltelli et al., 2008),
the RSA method cannot quantify higher order effects or search
for interacting structures (Yang, 2011). This means that the insig-
nificance of the distance does not imply irrelevance of the input
factor, due to possible missed interaction effects.

4.6. Entropy-based method

Entropy can be regarded as an indicator of the information con-
tent or as a measure of the uncertainty of a random variable
(Mogheir et al., 2004; Liu et al., 2006; Auder and Iooss, 2009;
Mishra et al., 2009). It also provides comparatively more informa-
tion since two variables with no mutual information are statistical-
ly independent, while two uncorrelated variables are not
necessarily independent (Frey and Patil, 2002). Different entropy
indicators, which assess the relationship between a dependent
and an independent variable, have been described in some studies,
such as marginal, joint, conditional and mutual information. The
mutual information is being used as an indicator of variable impor-
tance in many fields. Mishra and Knowlton (2003) describe a
methodology for global SA that combines the mutual information
concept with contingency table analysis. More details refer to
Mishra and Knowlton (2003), Liu et al. (2006) and Mishra et al.
(2009).

The major advantage of the entropy-based method is that it can
capture more complete probabilistic sensitivity information by
studying the impact of an input variable on the probabilistic dis-
tributed rather than on low-order moments such as on perfor-
mance variance with the variance-based methods. However, it
should be noted that the entropy-based method can only give a
relative importance ranking of random variables and the absolute
values of the measures are hard to interpret, which is the major
limitation for the entropy-based method. Some studies also use
entropy-based method to analyze the sensitivity of parameters
for hydrological models. For example, Pappenberger et al. (2008)
applied five different methods (Sobol’, Kullback–Leibler entropy,
Morris, RSA, and regression) to investigate the sensitivity of para-
meters of a one-dimensional flood inundation model (HEC-RAS)
on the River Alzette. They found that the different methods leaded
to completely different ranking of importance of the parameter
factors and it was impossible to draw firm conclusions about the
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relative sensitivity of different factors. Massmann and Holzmann
(2012) also discussed the comparison of the three global SA meth-
ods (Sobol’ method, RSA, mutual entropy) for a rainfall–runoff
model. The results revealed that entropy-based method was more
robust than the RSA method at a daily scale and the Sobol’ method
was the least robust method. These results differed from the
results obtained by Pappenberger et al. (2008). Neumann (2012)
also discussed five SA methods (derivatives, screening, regression,
variance decomposition and entropy) for a model predicting
micropollutant degradation in drinking water treatment.
5. Salient issues of sensitivity analysis

The typical SA evaluation framework for hydrological models is
shown in Fig. 3. Though the field is currently rapidly developing,
there are no established standards in the choice of particular tech-
niques for specific application. Below we briefly outline the most
popular GSA approaches currently in use, and we also consider
some practical issues, such as the determination of parameter
ranges, the choice of sampling design method, objective functions,
and adequate SA methods. In general, all global SA techniques are
designed to allow exploration of the model behavior in the space of
the model inputs. Therefore, they employ various sampling algo-
rithms for extraction of parameter sets from predefined areas of
parameter space. Then for each parameter set the model outputs
are calculated, and various objective functions and SA methods
are applied to deduce particular metrics to quantitatively describe
model input–output relationships. Thus, one way of classifying the
existing GSA implementations would be to characterize them with
regard to their choice of above techniques.
5.1. Selection of the ranges for parameters and sampling design

The first crucial step is to determine the ranges for the inputs
and select the appropriate sampling design methods when imple-
menting SA in hydrological modeling (Zhan et al., 2013). The
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ranges and distributions of parameters depend mainly on the prior
information. Some studies have highlighted the effects of the
ranges and distributions of inputs on the SA results. For example,
Tong and Graziani (2008) noted that the appropriate specification
of the ranges and shapes of the distributions can dramatically
affect the outcome of the analysis. Shin et al. (2013) stated that
reducing or expanding the ranges will affect the sensitivity indices,
thereby causing insensitive parameters to become sensitive or vice
versa. Wang et al. (2013a) also showed that different parameter
ranges for the WOFOST crop growth model resulted in differences
in the sensitive parameter. The sensitivity of parameters can be
affected strongly by the ranges of inputs, thus it is important that
the ranges used yield parameter sets that are considered plausible
(Shin et al., 2013). In addition, Ben Touhami et al. (2013) investi-
gated the effects of different distributions (e.g., Gaussian distribu-
tion, normal distribution, and uniform distribution) of parameters
on the SA results. They found there were notable differences
among the different distribution conditions in terms of their sensi-
tivity. Normal and uniform distributions are often used in practice
(Esmaeili et al., 2014), but it is necessary to consider different types
of distributions (Kucherenko et al., 2012). In general, probability
distributions can be constructed based on expert elicitation if there
is not sufficient information. Even with expert elicitation, however,
it is still challenging to build distributions with high confidence.
Therefore, more work needs to be conducted to determine the
ranges of the inputs as well as investigating their distributions
and response surface shapes. For most global SAs, after defining
the probability distributions of model parameters, it is necessary
to implement sampling strategies to generate samples. For regres-
sion-based and meta-modeling methods, Latin hypercube sam-
pling (LHS) and Sobol’ sequence random sampling methods are
very popular due to their efficient stratification properties (Zhan
et al., 2013; Song et al., 2014). Screening and variance-based meth-
ods usually require special sampling methods (Saltelli et al., 2008;
Tian, 2013), e.g., the Morris one-at-a-time sampling design should
be used in Morris screening and the FAST sampling design should
be used with the FAST method.
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5.2. Selection of objective functions for SA

It is also essential to select appropriate objective functions,
which have immediate effects on the SA results (Shin et al.,
2013; Song et al., 2013). For example, Zhan et al. (2013) showed
that the most sensitive or important parameters for three different
objective functions differed according to the distributed time-vari-
ant gain model. Song et al. (2013) highlighted the differences in the
sensitivity indices among four objectives for the Xinanjiang model.
The same conclusions were obtained for the Sacramento model
and MIKE/NAM model by van Werkhoven et al. (2008a, 2009)
and Liu and Sun (2010), respectively. However, Foglia et al.
(2009) suggested that a well-designed single objective function
that includes many data types can also be useful. In general, the
contributions to the objective function are weighted, where the
weighting considers the various units and precision of the different
contributions to the objective function (Hill and Tiedeman, 2007).
The weights allow the statistics to quantify the information provid-
ed by different types of observations by combining the contribu-
tions of different functions into a single objective function (Song
et al., 2012c). Therefore, SA should be implemented based on mul-
ti-objective functions or by combining single functions for different
objectives, which can provide valuable and comprehensive insights
into the parameters of hydrological models (Hill and Tiedeman,
2007; Foglia et al., 2009; Shin et al., 2013).

5.3. Selection of SA methods for hydrological models

Given the wide range of SA methods, practitioners require ade-
quate resource to better understand the methods that are appro-
priate for a specific application (Ratto et al., 2007; Tang et al.,
2007b; Pappenberger et al., 2008; Confalonieri et al., 2010; Yang,
2011; Reusser et al., 2011; Sun et al., 2012; Gan et al., 2014). Dif-
ferent types of SA methods can be selected based on: (a) the objec-
tive of the analysis, (b) the number of uncertain input factors, (c)
the degree of complexity of the model, (d) the computing time
for a single model simulation, and (e) the analyst’s time available
to perform a SA (Cacuci et al., 2013; Saltelli et al., 2005, 2012;
Wallach et al., 2006; Zajac, 2010).

In practice, the objective of the analysis is the crucial step when
selecting appropriate SA methods. For example, if the focus is rank-
ing characteristic parameter sensitivity measures, qualitative ana-
lysis or screening-based methods can be selected. However, if the
goal is obtaining insights into the characteristics of sensitivity
indices, quantitative methods may be the best choice. Shin et al.
(2013) stated that if the aim of the SA is to select non-influential
parameters with respect to the target function and possibly to fix
their values, then the total-order sensitivity index may be a reason-
able measure.

It is also well known that the dimensions of parameters have
significant effects on the selection and application of SA methods
in hydrological models, i.e., the performance efficiency of SA
depends largely on the parameter dimensions. In general, the glob-
al screening method is preferred if the number of parameters is
much greater than tens. Screening methods are designed to handle
hundreds of model input factors but they can only provide qualita-
tive sensitivity measures (Zoras et al., 2007). Using qualitative
ranking results, we can fix the non-sensitive parameters and
reduce the parameter dimensions or number of parameters to
make quantitative SA more tractable.

Generally, increasing model complexity has important effects
on model uncertainty, thus increasing the degree of the difficulty
for sensitivity analysis in hydrological modeling. For example,
Shin et al. (2013) also investigate the issue ‘‘which rainfall–runoff
models tend to be more difficult to identify’’ for the four routine-
ly-used lumped conceptual hydrological models: IHACRES, GR4J,
Sacramento and SIMHYD models. There are of varying complexity,
from four to thirteen parameters. To some extent, the complexity
of model structure is consistent with the number of model para-
meters. They found that SA supported prior observations that mod-
el structures are problematic if they have many insensitive
parameters with any objective functions, and simpler conceptual
model structures may be preferable. As a result, for a hydrological
model with high complexity, we suggest the hydrologists can refer
to the choice of SA methods when the hydrological models exist a
large number of parameters. That is, the combination of the screen-
ing method and other methods is preferred.

The computational cost of a single model run is another con-
straint that determined the choice of SA method in hydrological
modeling. For example, SA is usually performed by running the
model a number of times, i.e., a sampling-based approach. This
can be a significant problem when a single run of the model takes
a significant amount of time (minutes, hours, or longer), which is
not unusual with very complex models, or when the model has a
large number of uncertain inputs. Consequently, the computation-
al cost is a problem for many practical SA implementations. Some
methods for reducing the computational costs include the use of
meta-modeling methods (for large models) and screening methods
(for reducing the dimensionality of the problem).

Therefore, synthetic SA approaches that consider the advan-
tages and disadvantages of various analysis methods, as well as
combining these methods in a systematic analysis technique, have
been used in complex models. The Morris screening method cou-
pled with variance-based methods is a common approach for SA
in many scientific fields and a flowchart showing this integration
method is provided in Fig. 4. For example, Francos et al. (2003)
integrate the Morris method with FAST for qualitative and quanti-
tative analyses (the two-step analysis method) to estimate para-
meter sensitivity for the SWAT model. Sun et al. (2012) also
showed that when the number of input factors in the model is
too high to allow a computationally expensive quantitative analy-
sis, a more efficient two-step procedure based on a screening pro-
cess (first stage) and a quantitative analysis method (second stage)
can be adopted. In addition, Song et al. (2014) integrated the Mor-
ris method, RSM, and the Sobol’ method to allow the clear and effi-
cient identification of the effects of parameters on the model
outputs from the DTVGM and Xinanjiang models. According to the-
se results, the integrated technique facilitated qualitative and
quantitative SA, and greatly reduced the computational costs with
fewer model runs.
6. Other relative issues to SA in hydrological models

6.1. Analysis of correlated parameters in hydrological models

It is not unusual for the input parameters to be correlated in
hydrological models. The correlations among hydrological or
hydraulic parameters have important effects on the estimation of
hydrological parameters, as well as significant effects on the pre-
dictions and associated uncertainties of hydrological modeling
(Ahn, 1996; Pohlmann et al., 2002; Lemke et al., 2004; Manache
and Melching, 2008; Pan et al., 2011). Understanding the contribu-
tion of each parameter and the joint contributions of correlated
parameters to predictive uncertainties is also critical for uncertain-
ty reduction (Rojas et al., 2009; Fox et al., 2010). The correlations
among parameters may be strong in some cases (Xu and Gertner,
2007), but existing SA methods for hydrological models typically
assume that parameters are independent (e.g., Li and Yeh, 1998;
Boateng, 2007; Zhu et al., 2010; Zhan et al., 2013). However, for
example, for models featuring dependent parameters, the use of
Sobol’ indices may lead to a wrong interpretation because the sen-
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sitivity induced by the dependence between two factors is implic-
itly included in their Sobol’ indices. Thus a straightforward solution
consists in computing Sobol’ sensitivity indices for independent
groups of dependent variables. First introduced by Sobol’ (1993),
this idea is exploited in practice by Jacques et al. (2006),
Borgonovo (2007), Borgonovo and Tarantola (2008) and
Borgonovo et al. (2011). In addition, other studies have also applied
SA with correlated parameters (e.g., Elston, 1992; Helton et al.,
1995; Fang et al., 2004; Jacques et al., 2006; Pan et al., 2011). For
example, Iman et al. (2002) proposed partial correlation as a mea-
sure of parameter sensitivity for models with correlated inputs
based on the LHS method. Xu and Gertner (2008a) proposed a
regression-based method for deriving the correlated contribution
(based on variations in parameter that were correlated with other
parameters) and the uncorrelated contribution (based on varia-
tions in parameters that were uncorrelated with other para-
meters). Unfortunately, their methods assumed that the effects of
parameters are approximately linear. In general, for complex
hydrological models, it can be expected that the effects of para-
meter are too nonlinear to allow these methods to yield reliable
results. Fang et al. (2004) proposed the use of sequential sampling
to approximate a differential sensitivity index. Saltelli et al. (2004)
proposed a correlation ratio method based on McKay’s one-way
ANOVA method, which is based on replicated Latin hypercube
sampling and it is suitable for nonlinear and nonmonotonic mod-
els. However, Bedford (1998) found that Sobol’ evaluations depend
on the order of the parameters. According to Xu and Gertner
(2008b), the method of Fang et al. (2004) and the correlation ratio
method require a large sample size, which would be impractical for
complex models. Many techniques have been proposed to general-
ize variance-based SA methods to correlated or dependent vari-
ables (Kucherenko et al., 2012; Xu, 2013), but have been very
few successful applications in hydrological modeling. Thus, further
research should consider using these methods to investigate the
influence of correlated parameters in hydrological models on the
model outputs.
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6.2. Applications of SA in model evaluations

As mentioned earlier, the distributed modeling of catchment
hydrology is a valuable approach for understanding, reproducing,
and predicting the behavior of hydrological systems. However, dis-
tributed hydrological models are still simplified and imperfect rep-
resentations of physical processes, which use uncertain
observation data to estimate model inputs (e.g., parameters and
initial conditions). Thus, parameter estimation is critical for devel-
oping useful models of complex hydrological systems, where the
important characteristics cannot be measured accurately or in suf-
ficient detail to define the model input values (Matott et al., 2009;
Song et al., 2012d). In practice, SA is generally a required step and a
necessary prerequisite before other steps, as discussed below.

6.2.1. SA and parameter identification
For hydrological models, parameter identification has become

an increasing problem as the model complexity increases with
the high dimensions of model parameters. Model identification
involves choosing a suitable model structure and degree of com-
plexity, thus it is important to ensure that the model description
and parameterization remain as simple as possible to allow ade-
quate calibration, but it must also be distributed to capture the
spatial variability in the key model parameters. Thus, the dimen-
sionality of the parameter space must be limited to avoid model
over-parameterization. For efficient parameter identification, SA
is useful in providing the qualitative and quantitative indices need-
ed to identify important and non-important parameters (Yang,
2011; Pappenberger et al., 2008; Confalonieri et al., 2010). It might
be difficult to estimate these parameters efficiently when there are
many parameters with no clearly identifiable influence on output
variables, or when many parameters have similar effects (or inter-
actions) on the output variables. In these cases, SA will be crucial
for parameter identification. Thus, SA and parameter identification
are usually performed together during model calibration. For
example, Castaings et al. (2009) and Cibin et al. (2010) showed that
the global SA of parameters can provide much more information
for parameter identification and estimation. Vandenberghe et al.
(2001) highlighted the complementarity of the SA for parameter
identification and calibration in practice. To some extent, SA can
be regarded as a solution to parameter identification.

6.2.2. SA and UA
In generally, the contribution of parameter uncertainty depends

on the model structure, which is also related to the parametric sen-
sitivity in modeling systems. Saltelli and Annoni (2010) stated that
the objective of UA is to answer the question: ‘‘How uncertain is
this inference?’’ whereas that of SA is to answer: ‘‘Where does this
uncertainty come from?’’ In general, SA can be used to characterize
a pure UA (Kennedy, 2007). Irrespective of the terminology used,
SA is intended to complement UA rather than being an alternative.
The two tasks have different objectives but they are often coupled
in most cases (Saltelli and Annoni, 2010). For example, Mishra
(2009) discussed the use of various UA methods (e.g., Monte Carlo
simulation, first-order second-moment analysis, the point estimate
method, logic tree analysis, and the first-order reliability method)
and SA techniques (e.g., stepwise regression, mutual information
or entropy analysis, and classification tree analysis) in hydrological
models. They found that the results of UA were consistent with
those obtained from SA based on two case studies. The same con-
clusion was reported by Wang et al. (2010) and Elsawwaf et al.
(2010). These studies demonstrate that the two approaches can
support our understanding of the uncertainty effects of model
parameters on output variables and the structural characteristics
of hydrological modeling systems from different points of view.
Currently, the two approaches are usually employed together.
Beven and Binley (1992) developed the generalized likelihood
uncertainty estimation (GLUE) method, which is as an extension
of the regionalized SA (RSA) method proposed by Spear and
Hornberger (1980), for estimating parameter uncertainty and
demonstrating the equifinality of different parameters. The GLUE
method has often been used for UA and SA in hydrological models.
Ratto et al. (2001) proposed a new approach for model calibration
that coupled the GLUE and variance-based SA methods, and found
that this integrated application enhanced the efficiency of per-
forming calibration procedures.

6.2.3. SA and parameter optimization
Model calibration or parameter optimization is challenging for

complex models due to the uncertainty of a large number of para-
meters (Fienen et al., 2009; Foglia et al., 2009; Keating et al., 2010;
Ye et al., 2014). In practice, it is also difficult to ensure the accuracy
of model applications and the reliability of predictions by empirical
estimation or automatic optimization (Ciriello et al., 2013). Thus,
while we seek more efficient and reliable optimization algorithms,
we also require SA and UA to estimate the effects of parameters on
model predictions. As mentioned by Rakovec et al. (2014) and Ye
et al. (2014), parameter SA can reduce the time of model calibra-
tion by focusing the estimation efforts on the important para-
meters for model predictions. Therefore, SA may be a better
choice before model calibration for complex hydrological models
with many parameters. For example, van Werkhoven et al.
(2009) investigated the use of global SA as a screening tool to
reduce the parametric dimensionality of multi-objective hydro-
logical model calibration problems, while maximizing the informa-
tion extracted from hydrological response data. They used the SAC-
SMA model as an example and suggested that it can reduce the
complexity of calibration, while still obtaining high quality model
predictions. Liu and Sun (2010), suggested that no single objective
function is adequate for measuring how a model fails to predict the
important characteristics of the observed data, thus multiple crite-
ria should be considered. They coupled the Morris screening
method with multi-objective differential evolution (MODE) (non-
dominated sorting differential evolution, NSDE) to quantify para-
meters in the MIKE11/NAM rainfall–runoff model. Their results
showed that the integrated method could identify the optimal
Pareto front and it maintained reasonable diversity in the front
obtained for model calibration.

6.3. Temporal and spatial variations of SA in hydrological models

Distributed hydrological models allow model parameters and
forcing data to vary on a spatial scale, thereby enabling represen-
tation of the spatial variability of watershed processes at the cost
of increasing model complexity, which poses several challenges
in terms of model identification and diagnosis (Herman et al.,
2013c). Given the widespread applications of distributed models,
there is still a need for diagnostic methods to study these models
in terms of their full spatial and temporal complexity. Some of
the model parameters often represent processes that only matter
during specific time periods, i.e., specific modes of the system, such
as recession constants or parameters that control the extent of
saturated areas in a catchment during a flood event. These para-
meters are only likely to be identifiable if these periods can be iso-
lated, or if they have sufficient impacts on a global objective
function. It has often been observed that the important parameters
during low flow periods, when errors are generally small, or para-
meters that are only important for a very short time, are not easily
identifiable. Therefore, more recent studies have explored time-
varying sensitivities at predefined intervals throughout the model
simulation, thereby determining the dynamics of model controls in
changing conditions (Wagener et al., 2003; van Werkhoven et al.,
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2008a; Reusser and Zehe, 2011; Reusser et al., 2011; Garambois
et al., 2013; Herman et al., 2013a; Guse et al., 2014). In general,
the SA methods used for time-varying analysis include local and
global approaches. Regardless of the method applied, they are gen-
erally used to estimate the sensitivity at each time step or for a
running window (Massmann et al., 2014). In addition, several stud-
ies that focused on event-scale spatial sensitivities (Tang et al.,
2007a; van Werkhoven et al., 2008b; Wagener et al., 2009) pro-
posed the use of observations to identify representative events
for a watershed. However, if the dynamics of a watershed cannot
be restricted accurately to one of several event classifications, the
selection of representative events may fail to account for the full
range of the process’s variability. Therefore, Herman et al.
(2013c) extended the event-scale approach mainly to investigate
the full dynamics of spatially distributed model controls based
on the Morris screening method. To some extent, time-varying
and spatial-scale SA provides a valuable opportunity to overcome
the complexity of distributed parameter identification by restrict-
ing the search only to those parameters that are active at a specific
time and location, thereby helping to improve the models repre-
sentation of hydrological processes and to enhance the under-
standing of the hydrological cycle system.
7. Summary and outlook

In general, the aim of SA is to determine the model parameters
with the greatest influence on model results. This information then
allows unimportant parameters to be fixed or not incorporated
into the model, as well as providing direction for future research
to reduce parameter uncertainties and increase the model accura-
cy. It is widely accepted that identifying the most relevant para-
meters in a model is essential for hydrological modeling because
of its roles in supporting effective parameterizations as well as
the development of the model itself. Various SA methods are
employed in hydrological modeling but practical experience sug-
gests that no single analysis method is better than any other.
Regression-based methods (e.g., SRC and SRRC) are simple to
implement and easy to interpret, thus they may be still the first
choice because they only incur moderate computational costs with
hydrological models. However, for a complex hydrological model
with many parameters and high computational costs, the Morris
screening methods may be the preferred choice for qualitative ana-
lysis, although better choices may be meta-model approaches,
while the integration of both methods is the best choice (Francos
et al., 2003; Song et al., 2012a, 2013; Zhan et al., 2013). This is
because qualitative screening methods can reduce the number of
variables for quantitative analysis while quantitative method
(e.g., variance-based methods) can quantify the influence of each
input in the output variance. The RSA method, which is a graphical
SA, can provide information about the relationships between the
output response and the input parameters, thereby improving
our understanding of the model results. However, the results
obtained using RSA depend mainly on the choice of filtering crite-
rion, thus it should be used with care. Entropy-based methods are
more competitive for delineating nonlinear and nonmonotonic
multivariate relationships than regression-based methods.

Most previous studies have employed only one methodology to
compute sensitivities, although various SA methods may rank the
importance of the model factors differently. Instead, we suggest
that several different sensitivity measures should be used in tan-
dem. In addition, it is necessary to build more realistic, integrated
hydrological models to represent real-world thresholds, nonlin-
earities, and feedbacks, which are capable of representing the
implications of environmental change. The construction of these
necessarily more complex models must also be accompanied by
the development of significantly more powerful identification
and evaluation algorithms. These algorithms, which should com-
bine optimization and SA methods while considering uncertainty,
need to be capable of examining how models represent
hydrological cycle systems and determining whether this presen-
tation is consistent with the perception of the actual system.
Finally, we present our viewpoints on development trends,
research issues, and hotspots related to SA for complex hydro-
logical models.

(1) For complex hydrological models, the computational effi-
ciency of model evaluation and SA may be an unavoidable
problem, even with the most effective algorithms or high
performance computers. Performing hundreds or thousands
of model evaluations for global SA (e.g., variance-based
methods) is very inconvenient and it incurs high computa-
tional costs (e.g., greater than days or months), especially
when the number of parameters exceeds hundreds. Meta-
modeling approaches have been applied often for SA of
hydrological models, but there some technical issues still
need to be resolved concerning the reliability and good-
ness-of-fit of meta-models. For physical-based, distributed
hydrological models, practitioners who use meta-models to
represent the response relationship between parameters
and model outputs should consider the following questions:
(1) do the meta-models reflect the usual characteristic rela-
tionships between the parameters and outputs of the origi-
nal models?; (2) how should the goodness-of-fit of the two
models be evaluated based on different criteria?; and (3)
how should the adaptive meta-modeling approach be select-
ed and developed to construct the surrogate models?

(2) The convergence and reliability of SA is another problem for
scientists. Given the availability of different SA techniques,
selecting an appropriate technique, monitoring the conver-
gence, and estimating the uncertainty of the SA results are
crucial for hydrological models, especially distributed mod-
els, due to their nonlinearity, nonmonotonicity, highly corre-
lated parameters, and intensive computational requirements
(Yang, 2011). Many previous studies have examined the
reliability of SA results in complex models, such as Yang
(2011), Pappenberger et al. (2008), and Confalonieri et al.
(2010). These investigations also showed that no SA method
is ideal and they explicitly stated that it is important to avoid
erroneous interpretations of the model outputs’ sensitivity
to the parameters. Therefore, appropriate and correctly inte-
grated methods must be selected based on their advantages
and disadvantages to meet the actual requirements. In addi-
tion, multi-objective SA and parameter optimization are
more important for complex hydrological models when
evaluating the simulation results obtained based on differ-
ent criteria.

(3) Many SA methods have been developed and used in these
fields, but these methods involve too many hypotheses or
they have other limitations, including the independence of
input variables and the monotonicity of response functions.
In practice, the parameters employed by hydrological mod-
els usually have interactions or correlations, thus these para-
meters may have significant joint effects on the output
variables of interest. If these parameters are separated to
analyze the effects of each parameter, there may be some
errors (e.g., Type I or Type II errors) when making judgments
or decisions. As a result, developing an efficient and effective
global SA method will be an objective for many scientists in
the future.
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