Preliminaries

- 1. In c:\arcnlet, create new subfolder called workshop
- Open ArcMap (Look for it in the start menu-> programs)
- **3**. Create a new empty map
- 4. Add data
 - 1. Add file

c:\arcnlet\lakeshore_example\PotentialSepticTankLocations.shp

- 2. All data in c:\arcnlet\lakeshore_example\OriginalData
- 5. Change the data frame coordinate system to UTM Zone 17N
- 6. Save the map to

c:\arcnlet\workshop\workshop.mxd

Clipping the Data

- 1. Create clipping region
 - a) Open the Create Feature Class tool from the toolbox
 - b) Enter **c:\arcnlet\workshop** for the Feature Class Location
 - c) Name it **clip**
 - d) For coordinate system, select UTM Zone 17N
 - e) Leave everything else as default
- 2. From the editor toolbar, select Editor->Start Editing (if the toolbar is not visible add it)
 - 1. From the box that appears, select **c:\arcnlet\workshop**
 - 2. Create a new polygon
 - **3**. Exit the editing session and save when prompted.

Clipping the Data

- Open the Extract by Mask tool from the toolbox (you can also use the Clip tool if you want)
 - a) Input: lakeshore.img
 - b) Mask: clip
 - c) Output: c:\arcnlet\workshop\lakeshore.img (make sure to add the .img extension)
 - d) Click the Environments button
 - i. Select General Settings
 - ii. Set the output coordinate system to Same as Display. The box below should read NAD_1983_UTM_Zone_17N

Clipping the Data

- 4. Open the Clip (analysis) tool to clip the water bodies
 - a) Input: NHDFlowline_DEP_NHD
 - b) Clip Features: **clip**
 - c) Output: C:\arcnlet\workshop\NHDFlowline_DEP_NHD_clip
 - d) Click the Environments button
 - i. Select General Settings
 - ii. Set the output coordinate system to Same as Display. The box below should read NAD_1983_UTM_Zone_17N
- 5. Repeat previous step for NHDArea_DEP_NHD. Save as C:\arcnlet\workshop\NHDArea_DEP_NHD_clip
- 6. Save the map.

Merge Line Features With Water Bodies

- 1. Create a buffer around the flow line
 - a) Open the Buffer tool
 - b) Input: NHDFlowline_DEP_NHD_clip
 - c) Output: c:\arcnlet\workshop\NHDFlowline_DEP_NHD_clip_5m. shp
 - d) Linear Unit: 5 meters
 - e) Leave everything else as default

Merge Line Features With Water Bodies

1. Open the Merge tool

- a) Add the two input datasets:
 NHDFlowline_DEP_NHD_clip_5m and NHDArea_DEP_NHD_clip
- b) Output: c:\arcnlet\workshop\waterbodies.shp
- **3**. (OPTIONAL) Delete any parts of the buffered flow lines that overlap the main water bodies
- 4. Save the map

Hydraulic Conductivity & Porosity

This example will use a homogeneous hydraulic conductivity and porosity

- 1. Open Raster Calculator from the Spatial Analyst toolbar (enable it if it is not present)
 - a) Double click the lakeshore entry
 - b) Enter the expression [lakeshore] * 0 + 2.113
 - c) Right click on the resulting Calculating and select Make Permanent
 - d) Save it in **c:\arcnlet\workshop\hydr_cond.img** (be sure to select the ERDAS IMAGINE format)
 - e) Add the layer manually to the map
- 2. Repeat the process to create the porosity raster (use 0.25 instead of 2.113.) Save as **porosity.img** and add it to the map.

Add a Value for C0

- 1. Add field to specify C0 (initial concentration) for each septic tank
 - a) Open the Add Field tool
 - b) Select the PotentialSepticTankLoctions table
 - c) Enter N0_conc as the field name
 - d) Select FLOAT as the field type

Note for this particular data set, the NO_Conc field is already present so you will get an error if you try to add it again.

- **2**. To change the value of the NO_Conc field
 - a) Right click on the PotentialSepticTankLoctions layer and open the attribute table
 - b) Right click on the column name and open field calculator
 - c) Enter the desired value and click OK
- **3**. To change each value individually, it must be done within an edit session.