Project

- Modules
 - Flow
 - Transport
 - Denitrification
- Flow, transport and denitrification modules have been developed.
- Flow module has been tested with a (MODFLOW) model of the NAS Jacksonville created by the USGS.
- Transport and nitrate estimation modules have been tested using a contaminant transport model (MT3DMS)

• Demo

– Flow transport and denitrification

guifer Denitrification			
i <mark>le Execute Settings Help</mark>			
Groundwater Flow Particle Tracking	Transport Denitrific	ation	Abort
Input Layers			
DEM surface elevation map [L] (rast	er) <u>Laver Info</u>	Hydraulic conductivity [L/T] (raster)	Layer Info
Water bodies (polygon)	Layer Info	Soil porosity (raster)	Layer Info
1	<u> </u>		-
Options & Parameters		N	
Use Water Bodies 🔽	Smoothing Amount	7 🛨 Z-Factor	1
Velocity Magnitude [L/T]			
Velocity Direction [* wrt N]			
Output Hydraulic Gradient 🔲			
Message Log			
10:56:23 Application start			~
			4
< 2			>

Flow Model

- Flow model estimates groundwater flow velocity and travel time to a target water body using various approximations
 - Steady state flow
 - Dupuit Approximation
 - Flow is horizontal
 - Hydraulic gradient is assumed to be the slope of the water table
 - Water table is a subdued replica of the topography
- Process an input DEM and use it to approximate water table.
- Use Darcy's Law to calculate the flow velocity.

Flow Model

$$v_s = -\frac{K}{\theta} \nabla h$$

- Apply a smoothing algorithm (an averaging filter) to the DEM to get water table
- Calculate the hydraulic gradient
 - Apply a Sobel filter (similarly for $\partial h / \partial y$)
 - Magnitude of the gradient is: $\sqrt{\left(\frac{\partial h}{\partial y}\right)^2 + \left(\frac{\partial h}{\partial y}\right)^2}$

- Direction is:
$$tan^{-1} \left(\frac{\partial n}{\partial h} \right)_{\partial y}$$

$$\frac{\partial h}{\partial x} \approx G_x * A, \quad G_x = \frac{1}{8\Delta x} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

* is the convolution operator.

- U.S. Naval Air Station (NAS) Jacksonville
 - 4 mi south-east of Lakeshore neighborhood
- Quite flat
- Shallow water table
 - 0–1.5 m
- Surficial Aquifer
 - 12 30 m thick
 - Medium to fine grain unconsolidated sands
- A MODFLOW model was constructed by the USGS (Davis et. Al, 1996; Davis, 1998)
 - Steady state, single layer model
 - Calibrated with 128 well measurements

- Important to determine whether the water table is reasonably approximated by the topography
 - Model applicability
- Compare with USGS model of NAS Jacksonville

Path length correlation: 0.9

Flow Paths - USGS Model

Topo-Water Table Cross-Sections

Α'

• correlation: 0.87

- General idea:
 - Given a set of septic tank locations, track groundwater flow to water body
 - Use analytical solution for a given nitrate concentration at a septic tank to calculate concentration at point (x,y).
- The effect of denitrification on plume size is taken care of by 1st order decay.

Transport Model

• Simulating contaminant transport requires solving the advection-dispersion equation

$$\frac{\partial C}{\partial t} = \alpha_{\ell} v \frac{\partial^2 C}{\partial x^2} + \alpha_{T_h} v \frac{\partial^2 C}{\partial y^2} + \alpha_{T_v} v \frac{\partial^2 C}{\partial z^2} - v \frac{\partial C}{\partial x} - kC$$

- To simplify, use an analytical solution (Domenico & Robbins (1985), Domenico (1987), Martyn-Hayden & Robbins (1997))
 - Used in other models e.g. BIOSCREEN, BIOCHLOR, FOOTPRINT, REMChlor (EPA), SWLOAD.xls (Pennsylvania DEP)

$$C(x, y, z, t) = \frac{C_0}{8} F_1(x, t) F_2(y, x) F_3(z, x)$$

$$F_{1} = exp\left[\frac{x}{2\alpha_{x}}\left(1 - \sqrt{1 + \frac{4k\alpha_{x}}{v}}\right)\right] \times erfc\left[\frac{x - vt\sqrt{1 + \frac{4k\alpha_{x}}{v}}}{2\sqrt{\alpha_{x}vt}}\right] + F_{2} = erf\left(\frac{y + Y/2}{2\sqrt{\alpha_{y}x}}\right) - erf\left(\frac{y - Y/2}{2\sqrt{\alpha_{y}x}}\right) + erf\left(\frac{x - vt\sqrt{1 + \frac{4k\alpha_{x}}{v}}}{2\sqrt{\alpha_{x}vt}}\right) + F_{3} = erf\left(\frac{z + Z/2}{2\sqrt{\alpha_{z}x}}\right) - erf\left(\frac{z - Z/2}{2\sqrt{\alpha_{z}x}}\right) + erf\left(\frac{z$$

Introduction • Background • Conceptual Model • Implementation • Test Case • Conclusions • Future Work

- Use a steady-state, 2-D version of the Domenico solution
 - Greatly reduces memory requirements and increases computation speed
- BIOCHLOR uses a similar approximation for computing mass loads
- Is reasonable if vertical dispersion is small

• Plumes are mapped to the flow path using a user selectable transformation

• Velocity, porosity are averaged along the flow path

Synthetic Tests

- Domenico solution considers only a single plume with a straight flow path
- Plumes are mapped to curved flow paths using a user-selectable transformation

200

Domenico solution considers only a single plume in isolation
– Our tool can handle many plumes

• Plume overlap will affect the concentration measured at a specific location

Load Calculation

- Denitrification is incorporated in the transport module using a first-order reaction.
- The load is determined by mass balance.
- In the steady state: Nitrate Load = Mass Rate In – Mass Rate Out $M_1 = M_{in} - M_{dn}$

Load Calculation

- M_{in} is calculated based on the mass flowing into the system from the constant concentration boundary
 - Advection and dispersion are taken into account

$$M_{in} = C_0 \Delta y \Delta z \theta v - \alpha_L \Delta y \Delta z \theta v \frac{\partial C}{\partial x}$$

• M_{dn} is calculated from the definition of a first order reaction and the volume of the calculation cell. The coefficient *k* is obtained from literature.

$$M_{dn} = kC\theta \Delta x \Delta y \Delta z\beta$$

Model Limitations

- Steady-state models.
- Only surficial aquifer considered
 - Saturated zone only
 - No Karst
- No recharge \rightarrow mounding due to STE not considered.
- Plume evolves in an isolated, semi-infinite domain
 - $x \rightarrow [0, +\infty), y \rightarrow (-\infty, +\infty), z \rightarrow (-\infty, +\infty)$
 - Influences from other plumes or contaminants cannot be considered directly.
- Only consider uniform flow in the longitudinal direction
 - Flow field should not deviate too much from this assumption or results may be inaccurate.
- Other parameters (e.g., dispersivity and decay rate) are assumed constant throughout each plume (can vary plume by plume)
- Contaminant source is modeled as a constant concentration plane
 - A constant concentration will remain at the source for all time.

Final Remarks

- Flow, transport and load estimation modules have been implemented: ArcNLET
- The water table is a subdued replica of the topography at the NAS
 Likely in many areas in Jacksonville as well.
- Domenico solution with warping and velocity averaging provides a satisfactory approximation of plume size and shape compared with a more advanced simulation.
- Modeling results in the Julington Creek and Eggleston Heights neighborhoods in Jacksonville look promising.
 - More detailed comparison entails model calibration and the collection of site specific parameters.

Questions?

Flow Model

- Particle tracking
 - Visualize flow field
 - Used by transport module to calculate plume centerline location

• Mean difference is 13 yr

Transport – Domenico Solution

• Domenico solution visualization

Flow Model

Introduction • Background • Conceptual Model • Implementation • Test Case • Conclusions • Future Work

• The purpose of the flow module is to generate two rasters, representing the groundwater flow magnitude and direction

Introduction • Background • Conceptual Model • Implementation • Test Case • Conclusions • Future Work

Synthetic Tests

- Effect of velocity averaging
 - Depends on the form of the flow field

