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Abstract

We consider the behavior of inf–sup stabilization in the context of transient problems with multiple time scales. Our

motivation for studying this setting is provided by reacting flows problems for which small time steps are necessary in

the integration process. We show that for algorithms defined through a process wherein spatial and temporal dis-

cretizations are separated, the coupling of implicit time integration with spatial inf–sup stabilization may lead to

anomalous pressure behavior, including the onset of spurious oscillations, for very small time steps. Effectively, this

coupling introduces a stability criterion resulting in a dependence between the spatial grid size and the time step. We

illustrate our theoretical results by numerical examples that demonstrate the stability criterion.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Finite element stabilization is a regularization technique that, in steady-state settings, is commonly

applied in three situations:

• advection dominated problems where stabilization is applied to effect upwinding and to suppress spur-

ious oscillations; see [11,13,21,25];
* Corresponding author.

E-mail addresses: pbboche@sandia.gov (P.B. Bochev), gunzburg@csit.fsu.edu (M.D. Gunzburger), jnshadi@sandia.gov (J.N.

Shadid).
1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States

Department of Energy�s National Nuclear Security Administration under contract DE-AC-94AL85000. This work was partially
funded by the Applied Mathematical Sciences program, US Department of Energy, Office of Energy Research.
2 Supported in part by CSRI, Sandia National Laboratories, under contract 18407.

0045-7825/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.cma.2003.12.034

mail to: pbboche@sandia.gov


1472 P.B. Bochev et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1471–1489
• saddle-point type weak formulations where stabilization is applied to circumvent compatibility (inf–sup)

conditions by relaxing the underlying constraint; see [10,12,23,24];

• a combination of the above where stabilization serves the dual purpose of avoiding inf–sup conditions

and providing the upwinding necessary for the advective terms; see [2,4–6,14,29–31].

Representative linear steady-state model problems for these three settings are the advection–diffusion

problem: 3

��D/ þ b � r/ ¼ f in X and / ¼ 0 on C; ð1Þ
the incompressible Stokes problem:

�mDuþrp ¼ f in X
r � u ¼ 0 in X

and u ¼ 0 on C; ð2Þ

and the incompressible Oseen-type problem:

�mDuþ b � ruþrp ¼ f in X
r � u ¼ 0 in X

and u ¼ 0 on C: ð3Þ

The formulation and analysis of stabilized methods for these steady-state problems is well understood.

However, the design of robust and efficient stabilized methods for their transient counterparts is hardly a

settled matter. It is generally agreed that for advection dominated problems, such as (1), stabilized methods

should be based on time–space elements; see [29,30]. The original argument used to motivate application of
time–space elements (see [11]) is that the time derivative and the advective term can be combined into a

single ‘‘material derivative’’ term. Then, the extension of a method such as SUPG [21] to the transient case

naturally leads to a weighting function involving this material derivative and thus the need to allow for time

variation in the finite element space.

On the other hand, the need for time–space elements is not obvious at all when stabilization is applied to

circumvent the inf–sup stability condition in the Stokes problem. This condition is caused by the saddle-

point nature of the mixed Galerkin formulation, namely, by the purely spatial divergence free constraint on

the velocity field; see [9]. To circumvent the inf–sup condition it suffices to relax this spatial constraint
which can be done without appealing to time–space elements. For the transient version of (3), the situation

is even more ambiguous as now stabilization targets two different goals. If (3) is advection dominated, then

time–space elements can be easily justified. But for low to moderate values of the Reynolds number, sta-

bilization is needed only for the spatial inf–sup condition.

Some of the most effective algorithms for treating time-dependent problems can be defined through a

process wherein the spatial and temporal discretizations are separated. Such algorithms are especially well

adapted to the cylindrical nature of the time–space domain and usually posses excellent stability charac-

teristics. Another reason for their popularity is that they reduce the PDE to either a system of ordinary
differential equations (ODE�s) or, for problems with constraints such as (2) and (3), to a system of dif-
ferential algebraic equations (DAE�s). In both cases the ensuing ODE or DAE system can be solved by
many of the available time integration algorithms and solvers. Thus, in practice for all three cases and for

several reasons, implicit, fully discrete formulations in which spatial and temporal discretizations are ef-

fected separately are in much more common use than are coupled time–space formulations. An additional
3 A fourth, separate stabilization setting arises when the reaction–diffusion equation

��D/ þ c/ ¼ f in X and / ¼ 0 on C

is dominated by the reaction term; see [15–17], or [26]. Because of its specifics, we do not consider this type of stabilization in our study.
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motivation for this choice is the desire to avoid the increase in the number of unknowns required to achieve
more accurate in time space–time formulations.

As numerical experiences have borne out, separated, fully discrete algorithms are completely adequate

for transient calculations carried out for moderate to relatively large time steps. However, in settings that

require very fine time resolution, the behavior of such algorithms is not very well understood. Pollution by

spurious oscillations at small time steps for parabolic problems was reported in [18] and further analyzed in

[19]. For time integration schemes coupled with stabilized finite element discretization in space, instabilities

have been observed for cases where a flow solver is combined with multiple time scale physics simulations,

e.g., reacting flows, that require a very small time step to resolve the chemistry [28]. Instabilities were also
noticed in time step convergence studies (as the time step becomes small compared to the spatial grid size)

in the context of inf–sup and upwind stabilized schemes; see [2,3,28].

The issue of small time step instabilities in implicit time integration is only now beginning to attract

attention from researchers and practitioners. The main reason is that most applications of implicit time

integrators aim to increase rather than to decrease the time step. However, in some special circumstances

when a detailed analysis of strongly coupled continuum transport and chemical reaction physics with

multiple time and length scales is required, small time steps become necessary. This situation arises in

engineering and scientific applications that are characterized by the co-existence of transport time scales
(advection and diffusion) and very short time scales for non-equilibrium chemical reactions. The stable and

accurate finite element modeling of the reaction phase may require time steps which are orders of mag-

nitude smaller than those normally required in the flow solver. For this reason in a typical reacting flow

application an implicit time stepping scheme is often preferred to allow efficient and accurate treatment of

this stiff behavior.

Recent research has focused on small time step instabilities for scalar parabolic problems [18] and SUPG

formulations for one-dimensional advection problems [8]. Using Rothe�s method, it was shown in [18,19]
that implicit time discretization at sufficiently small time steps leads to singularly perturbed elliptic prob-
lems which can give rise to spurious oscillations. Bradford et al. [8] demonstrate amplification of under/

overshoots when Petrov–Galerkin spatial discretization is coupled with Crank–Nicholson implicit time

integration, and the CFL number is less than one. They use a heuristic argument based on a modified

equation in one space dimension to argue that small time steps lead to antidissipative effects in spatially

stabilized equations. A heuristic argument is also used in [2] to motivate the addition of a spatial basis

function scaled by the time step to a combined saddle-point/advection stabilized setting.

In this paper, we focus on theoretical and computational studies of small time-step instabilities when

implicit, finite difference time integration is applied in conjunction with inf–sup stabilization with respect to
space. With the exception of the preliminary report [7], this setting has not been studied theoretically or

computationally. Another important aspect that differentiates this setting from cases considered in [8,18] is

that it leads to semidiscrete problems that are DAE�s rather than ODE�s. Here, we extend the results of [7]
to the generalized trapezoidal rule and to three classes of stabilized methods for the time-dependent Stokes

problem. Our interest in this setting is motivated by, among other things, the fact that it is an example of a

problem for which time–space element discretizations are not easily justifiable and so one is naturally led to

separate discretizations in space and time. The addition of consistent spatial stabilization then leads to

additional couplings between the spatial and temporal ingredients that is not present in unstabilized mixed
methods.

The paper is organized as follows. A brief summary of the notations used throughout the paper con-

cludes this section. Section 2 is the core of the paper. There we develop the fully discrete spatially stabilized

equations for the transient Stokes problem and establish sufficient coercivity conditions for the associated

bilinear forms. We use these conditions in conjunction with two alternative definitions of the stability

parameter that appears in stabilized methods. Our numerical results are collected in Section 3. In Section 4,

a brief summary of the results concludes the paper.



1474 P.B. Bochev et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1471–1489
1.1. Nomenclature

In what follows, X denotes a simply connected bounded region in Rm, m ¼ 2; 3, with a sufficiently
smooth boundary C and T ¼ ð0; T Þ denotes a given time interval. Throughout the paper we employ the
usual notation HdðXÞ, k � kd , ð�; �Þd , d P 0, for the Sobolev spaces of all functions having square integrable

derivatives up to order d on X, and the standard Sobolev norm and inner product, respectively. When d ¼ 0
we will write L2ðXÞ instead of H 0ðXÞ and drop the index from the inner product designation. As usual,
Hd
0 ðXÞ will denote the closure of C1

0 ðXÞ with respect to the norm k � kd . Spaces consisting of vector-valued
functions will be denoted in bold face.

The symbol Sh
d will stand for a space of continuous, piecewise polynomial functions defined with respect

to a regular partition Th; see [27], of the domain X into finite elements K. For instance, K can be a

hexahedral or a tetrahedron in three dimensions, or a triangle or a quadrilateral in two dimensions. For

regular partitions finite element functions satisfy various inverse inequalities; see [27]. The two that will be

used here are

kDuhk0;K 6CIh�1kruhk0;K and kruhk0;K 6CIh�1kuhk0;K: ð4Þ
2. The time-dependent Stokes problem

The main focus of this paper will be on the time-dependent, incompressible Stokes equations

ou

ot
� Duþrp ¼ f in X 
 T; ð5Þ

r � u ¼ 0 in X 
 T; ð6Þ

u ¼ 0 on C 
 T; ð7Þ

uðx; 0Þ ¼ u0ðxÞ in X; ð8Þ

and on fully discrete solution methods for (5)–(8) that result from the application of inf–sup stabilized

discretization in space with implicit integration in time. In this equation the pressure has been scaled by the

density q.
We now briefly review spatial inf–sup stabilization techniques for the steady-state problem (2). To define

a mixed method for (2) we choose subspaces Vh � H10ðXÞ and Ph � L20ðXÞ and seek uh 2 Vh, ph 2 Ph such

that

Gðfuh; phg; fvh; cqhgÞ ¼ ðf; vhÞ 8ðvh; qhÞ 2 ðVh; PhÞ; ð9Þ

where

Gðfuh; phg; fvh; cqhgÞ ¼ ðruh;rvhÞ � ðph;r � vhÞ � ðcqh;r � uhÞ ð10Þ
and c ¼ �1. We recall that (9) is not stable unless the pair ðVh; PhÞ satisfies the inf–sup condition. Ulti-
mately, stabilization is applied to (9) in order to circumvent this condition because it imposes significant

restrictions on the choice of velocity and pressure finite elements. Since the main motivation for stabilized

methods is to allow the use of equal order interpolation, throughout this paper we restrict attention to

continuous pressure approximations and use the equivalent form

Gðfuh; phg; fvh; cqhgÞ ¼ ðruh;rvhÞ þ ðrph; vhÞ þ ðcrqh; uhÞ ð11Þ
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instead of (10). To stabilize (11), we choose a pair of weighting functions Wmðvh; qhÞ, Wcðvh; qhÞ; a pair of
discrete inner products h�; �im, h�; �ic; and seek uh 2 Vh, ph 2 Ph such that

Gðfuh; phg; fvh; qhgÞ þ hRmðuh; phÞ;Wmðvh; qhÞim þ hRcðuh; phÞ;Wcðvh; qhÞic ¼ ðf; vhÞ ð12Þ
for all vh 2 Vh and qh 2 Ph, where

Rmðuh; phÞ
Rcðuh; phÞ

� �
¼ �Duh þrph � f

r � uh

� �

are the residuals of (2). In what follows we focus attention to the family of standard stabilized methods. For

these methods

Wcðvh; qhÞ ¼ 0; Wmðvh; qhÞ ¼ aDvh �rqh;

where a takes the values ±1 or 0, and

huh; vhim ¼
X

K2Th

sKðuh; vhÞK

is a ‘‘broken’’ L2 inner product weighted by a stability parameter sK. A standard stabilized method seeks
uh 2 Vh and ph 2 Ph such that

Gðfuh; phg; fvh; cqhgÞ �
X

K2Th

sKð�Duh þrph � f;�aDvh þ crqhÞK ¼ ðf; vhÞ ð13Þ

for all vh 2 Vh, qh 2 Ph. The method (13) is the Pressure-Poisson stabilized Galerkin [24] when a ¼ 0; the
Galerkin-Least-Squares method when a ¼ 1 [23] and the Douglas–Wang method [12] when a ¼ �1. For a
taxonomy of standard stabilized methods and their properties see [1]. The weight sK is important ingredient
of standard stabilized methods. A typical definition is

sK ¼ dh2K; ð14Þ

where hK is a measure of the element size and d is a stabilization parameter that is independent of hK. This
parameter must remain bounded away from zero because otherwise the stabilizing effect will be lost. For

some methods, sufficient stability conditions also require that d remains bounded from above; see

[10,13,23]. Here we will assume that the proper values of this parameter are used in (13) so that the methods

are stable for any conforming choice of Vh and Ph. For more details about the proper range of values for

sK and its origins, we refer to [10,13,20,22,29,32], and the computational study in [1].
Setting Wc to zero excludes the residual of the continuity equation from the stabilization. This term is

primarily used in conjunction with the non-linear Navier–Stokes equations where it provides an additional
stabilization effect needed to cope with high advection regimes; see [29]. Here, its omission is not critical for

the analyses.

2.1. Fully discrete algorithms

Let us now turn attention to algorithms for the time-dependent problem (5)–(8) that are defined through

a process wherein the spatial and temporal discretizations are separated. When finite elements are used for

spatial discretization in (5)–(8) the resulting problem will not be stable unless the pair ðVh; PhÞ employed for
this purpose satisfies the inf–sup condition. As a result, if one wishes to use an unstable pair ðVh; PhÞ, spatial
discretization must necessarily include some form of regularization. Our principal goal is to investigate fully

discrete methods for the transient problem (5)–(8) that rely upon the same type of spatial discretization as

in (13). We will refer to these algorithms as spatially stabilized fully discrete methods. For simplicity,
attention will be restricted to pairs of C0 Lagrangian spaces defined with respect to the same triangulation
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and having the same polynomial order. For instance, in three dimensions we can set Vh ¼ ½Sh
d �
3 \H10ðXÞ and

Ph ¼ Sh
d \ L20ðXÞ.

To derive the spatially stabilized schemes we begin in the usual manner by seeking an approximate

solution to (5)–(8) in the form

uhðx; tÞ ¼
XN
i¼1

aiðtÞni
hðxÞ and phðx; tÞ ¼

XM
i¼1

biðtÞni
hðxÞ;

where fni
hg

N
i¼1 and fni

hg
M
i¼1 denote the nodal bases for V

h and Ph, respectively. After inserting this solution
into a standard weak form of (5)–(8) we obtain the (unstabilized) formulation: seek uhð�; tÞ 2 Vh and

phð�; tÞ 2 Ph such that

ð _uh; vhÞ þ Gðfuh; phg; fvh; cqhgÞ ¼ ðf; vhÞ; ð15Þ

ðuhð�; 0Þ; vhÞ ¼ ðu0; vhÞ ð16Þ

for all vh 2 Vh, qh 2 Ph and all t 2 T. Since the pair ðVh, PhÞ does not verify the inf–sup condition, the form
Gð�; �Þ in (15) and (16) is unstable. To stabilize (15) and (16) spatially it would suffice to modify Gð�; �Þ by
adding the same terms as in (13). However, if u is an unsteady solution of (15) and (16),

�Duþrp � f ¼ � _u 6¼ 0

and so the modified equation will not be consistent anymore. This problem can be solved by simply

changing the stabilization term to

�
X

K2Th

sKð _uh � Duh þrph � f;�aDvh þ crqhÞK:

The modified problem: seek uhð�; tÞ 2 Vh and phð�; tÞ 2 Ph such that

ð _uh; vhÞ �
X

K2Th

sKð _uh;�aDvh þ crqhÞK þ Gðfuh; phg; fvh; cqhgÞ

�
X

K2Th

sKð�Duh þrph;�aDvh þ crqhÞK ¼ ðf; vhÞ �
X

K2Th

sKðf;�aDvh þ crqhÞK; ð17Þ

ðuhð�; 0Þ; vhÞ ¼ ðu0; vhÞ ð18Þ
for all vh 2 Vh, qh 2 Ph and all t 2 T is consistent and stable.
Compared to the standard Galerkin semidiscrete equation (15) the spatially stabilized formulation has

two additional terms. The role of

�
X

K2Th

sKð�Duh þrph;�aDvh þ crqhÞK ð19Þ

is to stabilize the spatial discretization by relaxing the incompressibility constraint (6), while

�
X

K2Th

sKð _uh;�aDvh þ crqhÞK ð20Þ

is required to preserve the consistency. It is easy to see that (17) and (18) is an index one system of dif-

ferential algebraic equations (DAE�s)

M _cþ Acþ Bd
BTc

� �
þ Ru _cþ CucþDud
Mp _cþ CpcþDpd

� �
¼ f

0

� �
þ fu

fp

� �
ð21Þ
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with initial condition

cð0Þ ¼ c0 ð22Þ
for the unknown coefficients c ¼ ða1ðtÞ; . . . ; aN ðtÞÞ and d ¼ ðb1ðtÞ; . . . ; bMðtÞÞ of uhðx; tÞ and phðx; tÞ,
respectively. M, A and B are defined in the usual manner from (15) and represent the (consistent) mass,

stiffness, and gradient matrices; f is the Galerkin source term;

fu ¼ �
X

K2Th

sKðf;�aDni
hÞK and fp ¼ �

X
K2Th

sKðf; crni
hÞK:

The rest of the matrices in (21) are contributed by the stabilizing term (19) and the consistency term (20):

Ruij ¼ �
X
K2Th

sKðnj
h;�aDni

hÞK; Mp
ijði; jÞ ¼ �

X
K2Th

sKðnj
h; crni

hÞK;

Cuij ¼ �
X
K2Th

sKð�Dn
j
h;�aDni

hÞK; Cp
ij ¼ �

X
K2Th

sKð�Dn
j
h; crni

hÞK;

Duij ¼ �
X

K2Th

sKðrnj
h;�aDnhÞK; Dp

ij ¼ �
X

K2Th

sKðrnj
h; crni

hÞK:

To write (21) more compactly let

Mu ¼Mþ Ru; Ku ¼ Aþ Cu; Kp ¼ BT þ Cp;

Gu ¼ BþDu; Gp ¼ Dp; fu :¼ f þ fu;
so that (21) takes the form

Mu _cþ KucþGud
Mp _cþ KpcþGpd

� �
¼ fu

fp

� �
: ð23Þ

The system of DAE�s (23) and (22), or equivalently (17) and (18) may be solved by any of the available
DAE solvers. In this paper we use the h-method, also known as the Generalized Trapezoidal Rule. To
discretize in time, the interval ð0; T Þ is subdivided into L subintervals ½tk; tkþ1�, k ¼ 0; . . . ; L with lengths Dk

t .

Throughout, fu;k ¼ fuðtkÞ, fp;k ¼ fpðtkÞ; ukh, pkh, ck and dk denote approximations to uhðx; tkÞ, phðx; tkÞ, cðtkÞ and
dðtkÞ, respectively. Given c0, ckþ1 and dkþ1 for k ¼ 0; 1; . . . ; L� 1 are determined from:

1

Dk
t

Muðckþ1 � ckÞ
Mpðckþ1 � ckÞ

� �
¼ fu;kh

fp;kh

 !
� Kuckh þG

udkh
Kpckh þG

pdkh

� �
; ð24Þ

where

ckh ¼ hckþ1 þ ð1� hÞck and dkh ¼ hdkþ1 þ ð1� hÞdk

and likewise for fu;kh and f
p;k
h . The value of h ranges between 0 and 1. For h ¼ 0 the scheme (24) is the explicit

Euler method, h ¼ 1=2 gives the second-order neutrally stable Crank–Nicholson method, and h ¼ 1 gives
the first-order accurate implicit Euler rule.

Clearly, (24) is a system of linear algebraic equations

1

Dk
t

Mu þ hKu hGu

1

Dk
t

Mp þ hKp hGp

0
BBB@

1
CCCA ckþ1

dkþ1

� �
¼ fu;kh

fp;kh

 !
þ

1

Dk
t

Mu � ð1� hÞKu ð1� hÞGu

1

Dk
t

Mp � ð1� hÞKp ð1� hÞGp

0
BBB@

1
CCCA ck

dk

� �
ð25Þ
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for the unknown coefficients ckþ1 and dkþ1. We note that Mu and Mp are not symmetric mass matrices

because they include contributions from stabilizing terms. As a result, even for h ¼ 0 it may not be possible
to lump these matrices and solve (25) explicitly.

Our main interest is to investigate how solutions of the spatially stabilized fully discrete method (25)

behave when the spatial mesh remains fixed and Dk
t 7!0. It is not difficult to see that the matrix of the linear

system in (25) is engendered by the parameter-dependent bilinear form

Bðfuh; phg; fvh; cqhg; qÞ ¼
1

q
ðuh; vhÞ

 
�
X

K2Th

sKðuh;� aDvh þ crqhÞK

!

þ h Gðfuh; phg; fvh; cqhgÞ
 

�
X

K2Th

sKð � Duh þrph;� aDvh þ crqhÞK

!
;

ð26Þ

where q represents the current time step. Therefore, spatial stability of the implicit time step in (25) can be
inferred from the stability properties of the associated bilinear form (26). When q 7!0, one potential source
of problems was documented in (17). There it was noted that implicit time discretization of parabolic

problems at sufficiently small time steps leads to singularly perturbed elliptic problems and a possibility for

spurious oscillations in the vicinity of thin layers. The singular perturbation is due to the standard mass

term M.
In this paper we will focus on another aspect of (26) that may have a potential destabilizing effect,

namely, the presence of the extra ‘‘mass’’ term (20), introduced in (17) to preserve consistency. This term

couples the time derivative of the velocity field with the spatial weight function Wmðvh; qhÞ. Unlike the true
mass term, (20) is non-symmetric, indefinite and includes higher order derivatives. As a result, for small

q this term may dominate Bð�; �Þ, leading to a loss of spatial stability.
2.2. Stability analysis of fully discrete forms

We will consider stability of (26) for c ¼ �1. Note that (26) is a weighted average of the two mass terms
and the spatially stabilized mixed Galerkin form from (13). Also note that the ‘‘mass’’ term (20) leads to the

coupling sK=q between the spatial stability parameter and the time step. Therefore, coercivity of (26) will
depend on all three parameters h, q and sK. The next theorem quantifies this dependence and establishes a
sufficient condition for maintaining stable approximations. To state the main result assume that there are

two positive numbers s1 and s2 such that

0 < s16 sK 6 s2 for all K 2 Th: ð27Þ

This assumption is reasonable for regular partitions of the domain X into finite elements. Moreover,

for uniform grids we can further assume that s1 ¼ s2 ¼ s.

Theorem 1. Assume that Th is a regular triangulation and let Vh ¼ ½Sh
d �

N \H10ðXÞ and Ph ¼ Sh
r \ L20ðXÞ for

some d P 2 and rP 1. Then, for 4 0 < h6 1
4 We recall that temporal stability requires 1=26 h6 1. Here we consider spatial stability of one implicit time step and for the sake
of generality h is allowed to assume any value in the interval ð0; 1�.
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Bðfuh; phg; fuh;�phg; qÞP
h2

4qC2I

�
þ C1ða; h; q; sKÞ

�
kruhk20 þ C2ða; h; q; sKÞkrphk20; ð28Þ

where for a ¼ 0 (Pressure-Poisson stabilization):

C1 ¼ h 1

�
� s2C2I
2h2

�
and C2 ¼

s1
2

h

�
� s2

q

�
;

for a ¼ 1 (Galerkin-Least-Squares stabilization):

C1 ¼ h

�
� s2C2I
2h2

ðh þ 2s2Þ
�

and C2 ¼
s1
2

h

�
� s2
2q

�
;

and for a ¼ �1 (Douglas–Wang stabilization):

C1 ¼ h

�
� s2C2I
2h2

ðhðm � 1Þ þ 2s2Þ
�

and C2 ¼
s1
2

h 1

��
� 1

m

�
� s2
2q

�
;

with m > 1 an arbitrary real number.

Proof. Setting ðvh; qhÞ equal to ðuh;�phÞ in (26) gives

Bðfuh; phg; fuh;�phg; qÞ ¼
1

q
kuhk20

 
þ
X

K2Th

sKðuh; aDuh þrphÞK

!

þ h kruhk20

 
þ
X

K2Th

sKð� Duh þrph; aDuh þrphÞK

!
:

First we bound the ‘‘mass’’ term originating from (20). Using Cauchy�s, the e and the inverse (4) inequalities
sK
q

ðuh; aDuh þrphÞK 6
sK
q

jajkuhk0;KkDuhk0;K þ kuhk0;Kkrphk0;K
h i

6

1

2q
kuhk20;K þ s2K

2q
krphk20;K for a ¼ 0;

3

4q
kuhk20;K þ s2K

2q
krphk20;K þ C2I s

2
K

h2
kruhk20;K for a ¼ �1:

8>>><
>>>:

Summing the last inequality over all elements and using (27),

X
K2Th

sK
q

ðuh; aDuh þrphÞK 6

1

2q
kuhk20 þ

s22
2q

krphk20 for a ¼ 0;

3

4q
kuhk20 þ

s22
2q

krphk20 þ
C2I s

2
2

h2
kruhk20 for a ¼ �1:

8>><
>>: ð29Þ

Next, we estimate from below the spatial stabilization term originating from (19). Using Cauchy�s, e and
inverse (4) inequalities

sKð�Duh þrph; aDuh þrphÞK P

sK
2

krphk20;K � sKC2I
2h2

kruhk20;K for a ¼ 0;

sKkrphk20;K � sKC2I
h2

kruhk20;K for a ¼ 1;

sK 1� 1
m

� �
krphk20;K � ðm � 1Þ sKC2I

2h2
kruhk20;K for a ¼ �1:

8>>>>>><
>>>>>>:
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Summing over all elements and using (27) gives

X
K2Th

sKð� Duh þrph; aDuh þrphÞK P

s1
2
krphk20 �

s2C2I
2h2

kruhk20 for a ¼ 0;

s1krphk20 �
s2C2I
h2

kruhk20 for a ¼ 1;

s1 1�
1

m

� �
krphk20 � ðm � 1Þ s2C2I

2h2
kruhk20 for a ¼ �1;

8>>>>>><
>>>>>>:

ð30Þ

where m > 1 is arbitrary real number. Combining (29) and (30) shows that

Bðfuh; phg; fuh;�phg; qÞP
1

4q
kuhk20 þ C1ða; h; q; sKÞkruhk20 þ C2ða; h; q; sKÞkrphk20;

where C1 and C2 are the constants from (28). The theorem now follows by using the inverse inequality (4) to
bound the L2 norm of the velocity from below by the L2 norm of its gradient. �

Theorem 1 implies that a sufficient spatial stability condition for the fully discrete problem is to require

h2

4qC2I

�
þ C1ða; h; q; sKÞ

�
P g1 and C2ða; h; q; sKÞP g2; ð31Þ

where, ideally, gi > 0 should be independent of h, q and s. To see what (31) means in terms of a condition
on sK and q, we must first select a definition of sK. Among the multitude of available definitions we choose
two that exemplify the two opposing avenues of approach to construction of s. To avoid unnecessary
technicalities we consider a uniform triangulationTh so that sK can take the same value on each element.
The first approach is to argue that since the role of s in the present context is to effect spatial inf–sup

stabilization it should not depend on the time step and so s should be defined according to the steady-state
formula (14). For uniform triangulations (14) reduces to s ¼ dh2 where d is a suitable stabilization
parameter independent of h (and q). We will refer to this choice as the spatial stability parameter, sS.
The second approach is to view the model equations as the limit case of a wider class of transient

problems with advection. For such problems definitions of s include a time scale variation and advective
stabilization scale; see, e.g., [4,14,32] and [29,30] for definitions in space–time settings. The alternative to sS
would be to specialize a formula from the transient setting with advection by dropping the advective scale.

For uniform meshes this gives the following definition:

s ¼ 1

q2

�
þ 1

dh4

��1=2

¼ q 1

�
þ q2

dh4

��1=2

: ð32Þ

Here d is another parameter independent from h and q. This choice will be referred to as the transient

stability parameter, sT.
For sS, sufficient stability conditions (31) specialize to

h2

4qC2I

�
þ h 1

�
� dC2I
2

��
> 0 and h � dh2

q
> 0; ð33Þ

when a ¼ 0,
h2

4qC2I

�
þ h � dC2I

2
ðh þ 2dh2Þ

�
> 0 and h � dh2

2q
> 0; ð34Þ
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when a ¼ 1, and

h2

4qC2I

�
þ h � dC2I

2
ðhðm � 1Þ þ 2dh2Þ

�
> 0 and h 1

�
� 1

m

�
� dh2

2q
> 0; ð35Þ

when a ¼ �1. Thanks to the term 1=4q the first inequality in (33)–(35) will be satisfied for a sufficiently
small q. Thus, for a fixed h and q 7!0 we are guaranteed that the coercivity constant for the velocity norm in
(28) will remain positive. Moreover, for q 7!0 this constant will grow. As a result, for small q we can expect
that stability of the form with respect to the velocity field will actually improve.

However, the second stability inequality in (33)–(35) will fail unless

h2 < CðhÞ q
d
; ð36Þ

where CðhÞ ¼ h for (33), CðhÞ ¼ 2h for (34) and CðhÞ ¼ 2hð1� 1=mÞ for (35). This relation between q and
h is reminiscent of the stability conditions for explicit time integration schemes, except that now it is
the spatial step that is bounded by the time step.
It is worth pointing out that (36) has appeared in the context of other stabilized methods as well. For

instance Blasco and Codina require essentially the same stability condition to prove time and space error

estimates for a fully discrete stabilized method for the Navier–Stokes equations; see [5,6]. Their method,

however, employs a different kind of stabilization that is motivated by the Chorin projection scheme and

does not use the residual of the momentum equation. The fact that the same condition arises in different

stabilizations suggests that there�s a certain degree of universality in (36), or at least, that one should not
dismiss it as an artifact from the analysis. Our numerical experiments will reaffirm this conclusion.

Consider next the transient definition (32). For small time steps sT ¼ OðqÞ and

h2

4qC2I

�
þ C1ða; h; q; sKÞ

�
> 0

so that the first inequality in (33)–(35) holds. Also, from (32) we see that sT < q for any d, h and q. As a
result, at least for h ¼ 1, we are guaranteed that C2 > 0 for any value of q. However, since for small time
steps sT ¼ OðqÞ,

C2 ¼ Oðq3Þ:

For instance, for the Pressure-Poisson stabilized method (a ¼ 0)

h � sT
q

¼ O q2

h4

� �
; and

sT
2

h

�
� sT

q

�
¼ Oðq3Þ:

Consequently, for fixed h and q 7!0 the coercivity constant of the pressure term will rapidly decrease,

effectively reducing (26) to an unstable mixed method. In this case it is clear that small time steps will cause

problems in the solution.

For sS we cannot draw the same definitive conclusion because our stability conditions are only sufficient
but not necessary for the coercivity of (26). As a result, their violation may not necessarily result in an

unstable form. A proper way to interpret these conditions is to treat them as cautionary warnings that very

small time steps may possibly cause problems. Nevertheless, our conditions allow us to predict what will be

the most likely manifestation of these problems should they actually occur. For both the spatial and the

transient s definitions the first inequality in (33)–(35) was never violated. In fact, form (26) becomes ‘‘more
positive’’ with respect to the velocity variable as q 7!0. Thus, it is unlikely that velocity approximation will
suffer from serious problems at small time steps. On the other hand, the second inequality was violated for
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both s definitions. This allows us to conclude that the most likely victim of small time steps will be the
pressure approximation. Another observation that can be easily verified using (32) is that

sT � sS ð37Þ

whenever d and q satisfy condition (36). For such values, sT is dominated by the spatial discretization scale
and it can be expected that both definitions will give close if not identical results.

We test these conjectures numerically in the next section.
3. Numerical results

In this section we present numerical results that complement the theoretical analysis of Theorem 1. Our

goal is to determine to what extent violation of the sufficient conditions in this theorem is reflected in

numerical instabilities or other anomalies at very small time steps.

In all experiments X is the unit square in R2. To test numerical stability of (26) we perform one step of
the implicit Euler method ((24) with h ¼ 1), for the exact steady-state solution

u ¼ sinðpx� 0:7Þ sinðpy þ 0:2Þ
cosðpx� 0:7Þ cosðpy þ 0:2Þ

� �
;

pðx; yÞ ¼ sinðxÞ cosðyÞ þ ðcosð1Þ � 1Þ sinð1Þ:

The initial condition in (8) is set equal to the exact solution and f is computed by evaluating the momentum

equation (5) for the exact solution. Then we solve (24) with c0 initialized by the finite element interpolant

of the exact velocity field and

qn ¼ 10�n for n ¼ 1; 2; 3; 4; 5; 6:

In all experiments, the pressure and velocity are approximated by piecewise quadratic finite elements de-

fined with respect to the same uniform triangulation of X into triangles. The mesh is obtained by dividing X
into 100 squares and then drawing the diagonal in each square. All matrices are assembled using a seven-

point quadrature rule and the linear system is solved using a direct solver. Note that an initial condition for

the pressure is not required for h ¼ 1. We recall that the P2–P2 pair employed here does not satisfy the
inf–sup condition.
To establish a reference point for evaluation of the possible impact from the stabilizing term (19) and

the consistency term (20), we compute a mixed Galerkin finite element solution using the same mesh and

the stable Taylor–Hood pair. This solution is obtained following the same procedure, i.e., by one step of the

implicit Euler method, but applied to the unstabilized problem (15) and (16). Table 1 shows the L2 errors of
the velocity and pressure approximations and the H 1 error for the velocity. We observe a slight deterio-

ration in the pressure approximation as the time step is being decreased. Pressure contours in Fig. 1 show

the onset of spurious oscillations for the smallest time step that can be expected to occur according to the

analyses of [18].
We now turn attention to the three stabilized methods. Results are presented for spatial and transient

stability parameters. Both definitions require a choice of the real parameter d. For each fully discrete
algorithm we chose the value that minimized the error in the companion steady-state method for the given

mesh. For the Pressure-Poisson and Douglas–Wang methods this value turned out to be d ¼ 0:05. For the
Galerkin-Least-Squares we found that the smallest error occurs at d ¼ 0:04. Tables 2–4 list the L2 and H 1

errors for the six different time steps. For comparison, the third row in each table gives the errors computed

by the associated steady-state stabilized method.



Table 1

Finite element errors after one implicit Euler step: Taylor–Hood spatial discretization

n Velocity Pressure

L2 H 1 L2

q > 0:0005

1 0.39334D)03 0.30349D)01 0.67770D)03
2 0.39244D)03 0.30349D)01 0.69915D)03
3 0.39239D)03 0.30352D)01 0.90321D)03

q < 0:0005

4 0.39477D)03 0.30390D)01 0.15369D)02
5 0.39665D)03 0.30439D)01 0.18965D)02
6 0.39698D)03 0.30450D)01 0.66562D)01
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Fig. 1. Pressure approximation for q1, q2 and q3 (top) and q4, q5 and q6 (bottom): Taylor–Hood spatial discretization.
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As expected, we observe that reduction of the time step has no negative impact on the velocity

approximation. The type of s-definition also does not affect velocity errors which remain virtually identical
to the Taylor–Hood errors.

Consider now the pressure approximations. According to (37) the values of sS and sT will be close if
h and q satisfy (36). In our case CðhÞ ¼ 1, d ¼ 0:05 or d ¼ 0:04, h � 0:1 and (36) holds if

q > maxf0:05
 0:01; 0:04
 0:01g ¼ 0:0005: ð38Þ
Inequality (38) is true for q1, q2 and q3 and we can expect all three methods to yield comparable pressure
approximations for these values regardless of the s employed. Tables 2–4 and Figs. 2–7 show that this is
indeed the case for the first three time steps.

The remaining three time steps q4, q5 and q6 do not satisfy (38). We see that violation of this condi-
tion also coincides with degradation of the pressure approximation for both sT and sS. However, the



Table 2

Finite element errors after one implicit Euler step: Pressure-Poisson spatial stabilization and P2–P2 elements

n Velocity (S) Pressure (S)

L2 (0.399E)3) H 1 (0.303E)1) L2 (0.450E)2) H 1 (0.179E)1)

sS sT sS sT sS sT sS sT

q > 0:0005

1 0.400E)3 0.400E)3 0.303E)1 0.303E)1 0.223E)2 0.223E)2 0.176E)1 0.176E)1
2 0.400E)3 0.400E)3 0.303E)1 0.303E)1 0.450E)2 0.450E)2 0.180E)1 0.180E)1
3 0.398E)3 0.398E)3 0.304E)1 0.303E)1 0.245E)1 0.237E)1 0.487E)1 0.543E)1

q < 0:0005

4 0.398E)3 0.393E)3 0.304E)1 0.304E)1 0.141E+0 0.332E)1 0.295E+0 0.151E+1

5 0.398E)3 0.391E)3 0.304E)1 0.305E)1 0.446E+0 0.784E+0 0.113E+1 0.213E+2

6 0.397E)3 0.391E)3 0.305E)1 0.305E)1 0.789E+0 0.889E+1 0.229E+1 0.221E+3

Table 3

Finite element errors after one implicit Euler step: Douglas–Wang spatial stabilization and P2–P2 elements

n Velocity (S) Pressure (S)

L2 (0.399E)3) H 1 (0.304E)1) L2 (0.228E)2) H 1 (0.157E)1)

sS sT sS sT sS sT sS sT

q > 0:0005

1 0.398E)3 0.398E)3 0.304E)1 0.304E)1 0.241E)2 0.241E)2 0.157E)1 0.157E)1
2 0.398E)3 0.398E)3 0.304E)1 0.304E)1 0.356E)2 0.356E)2 0.164E)1 0.164E)1
3 0.398E)3 0.398E)3 0.304E)1 0.304E)1 0.145E)1 0.142E)1 0.350E)1 0.438E)1

q < 0:0005

4 0.398E)3 0.393E)3 0.304E)1 0.304E)1 0.999E)1 0.299E)1 0.235E+0 0.151E+1

5 0.398E)3 0.391E)3 0.304E)1 0.305E)1 0.433E+0 0.783E+0 0.114E+1 0.213E+2

6 0.397E)3 0.391E)3 0.304E)1 0.305E)1 0.852E+0 0.890E+1 0.246E+1 0.221E+3

Table 4

Finite element errors after one implicit Euler step: Galerkin-Least-Squares spatial stabilization and P2–P2 elements

n Velocity (S) Pressure (S)

L2 (0.713E)3) H 1 (0.438E)1) L2 (0.237E)2) H 1 (0.176E)1)

sS sT sS sT sS sT sS sT

q > 0:0005

1 0.690E)3 0.690E)3 0.435E)1 0.435E)1 0.319E)2 0.319E)2 0.175E+0 0.175E+0

2 0.601E)3 0.600E)3 0.408E)1 0.408E)1 0.209E)1 0.208E)1 0.171E+0 0.171E+0

3 0.438E)3 0.430E)3 0.326E)1 0.322E)1 0.909E)1 0.820E)1 0.248E+0 0.255E+0

q < 0:0005

4 0.396E)3 0.392E)3 0.304E)1 0.304E)1 0.175E+0 0.364E)1 0.431E+0 0.160E+1

5 0.397E)3 0.391E)3 0.304E)1 0.305E)1 0.330E+0 0.786E+0 0.899E+0 0.213E+2

6 0.397E)3 0.391E)3 0.304E)1 0.305E)1 0.547E+0 0.890E+1 0.173E+1 0.221E+3
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manifestation of this deterioration is different for the different s-definitions. Recall that for small q a sta-
bilized method that employs sT reduces to a mixed formulation. The expected outcome is a pressure field
polluted by spurious oscillations. This is exactly what we see in Figs. 5–7.
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Fig. 2. Pressure approximation for q1, q2 and q3 (top) and q4, q5 and q6 (bottom): Pressure-Poisson stabilization with sS.
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Fig. 3. Pressure approximation for q1, q2 and q3 (top) and q4, q5 and q6 (bottom): Douglas–Wang stabilization with sS.
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In contrast, when sS is employed, pressure approximations do not develop significant oscillations even
for the smallest time step. However, as the time step is being reduced, pressure begins to deviate from the

expected profile. For Pressure-Poisson and Douglas–Wang methods deviation occurs at q4, for the
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Fig. 5. Pressure approximation for q1, q2 and q3 (top) and q4, q5 and q6 (bottom): Pressure-Poisson stabilization with sT.
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Fig. 4. Pressure approximation for q1, q2 and q3 (top) and q4, q5 and q6 (bottom): Galerkin-Least-Squares stabilization with sS.
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Galerkin-Least-Squares it occurs earlier at q3. These values are in a very good agreement with the sufficient
bound in (36).
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Fig. 6. Pressure approximation for q1, q2 and q3 (top) and q4, q5 and q6 (bottom): Douglas–Wang stabilization with sT.
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Fig. 7. Pressure approximation for q1, q2 and q3 (top) and q4, q5 and q6 (bottom): Galerkin-Least-Squares stabilization with sT.
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To summarize, our experiments indicate that

h2 < C
q
;

d
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where C is a constant that depends on the type of implicit time scheme but not on the values of h and q, can
be used as a reliable indicator for the threshold values of the time step beyond which methods will expe-

rience problems with stability or accuracy.
4. Conclusions

We have demonstrated theoretically and numerically that implicit time integration combined with inf–
sup stabilized spatial discretization may lead to anomalous solutions for very small time steps and fixed

spatial mesh. The type of anomalies depends on the type of s-definition employed in the method. For
transient stability parameters small time steps lead to spurious pressure oscillations while for spatial sta-

bility parameters pressure profiles begin to deviate from the exact solution. In both cases the onset of

anomalous behavior occurs when time step becomes smaller than the threshold value q � CðhÞdh2. As a
result, the spatial grid size cannot be chosen independently from the time step, if stable and accurate

approximation is desired. For problems with multiple time scales this stability prerequisite forces an

excessive, non-physical spatial refinement and significant increase in computational cost.
Since the cause for the anomalous behavior is the coupling between the spatial and temporal scales

engendered by the ‘‘mass’’ term (20), problems can be avoided by either lagging or completely discarding

this term. This effectively renders the scheme into a penalty-like formulation. Alternatives that can both

maintain consistency and provide stability are to employ time–space elements or to use stable pairs of finite

element spaces. Further studies are also needed to reveal the source of the anomalous pressure behavior

when the spatial stability parameter sS is employed in the methods. These will be reported in a forthcoming
paper.
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